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'J;'he asymptotic value of the interaction cross sections (in the e4 approximation) for two 
high-energy Fermi particles, which is valid for all angles, is obtained with double logarith­
mic accuracy. It is shown that the cross section da e- e + decreases for angles in the region 
of 1r. 

INTRODUCTION 

JN connection with the experiments with clashing 
beams, which are planned, and with the aid of 
which it is proposed to verify the laws of electro­
dynamics at small distances, and also in connec­
tion with the attempt to obtain the trajectory of 
the Regge poles with the aid of a perturbation 
theory series, it becomes important to obtain the 
asymptotic form of the cross sections for the in­
teraction of two Fermi particles, calculated in 
particular in the e4 approximation. 

The first to obtain the cross section for the 
scattering of an electron by an electron were 
Polovin [t] and Redhead [2], while the electron­
muon scattering cross section was calculated by 
Nikishov [3]. The authors of these papers were not 
specially interested in the scattering angles close 
to forward and backward scattering, and yet these 
asymptotic values have interesting qualitative 
features. Moreover, general expressions for the 
cross sections, given in these papers, give differ­
ent results for the asymptotic values of interest 
to us. An investigation of the asymptotic value of 
the cross section for the interaction between an 
electron and a positron in backward scattering, 
with allowance for the higher approximations (in 
e2 ), was first carried out by Abrikosov [4], who 
showed that this cross section increases with 
energy. Our calculation in the e4 approximation 
shows that actually the qualitative behavior of 
this cross section is just the opposite, and is in 
agreement with the results of Milekhin and Frad­
kin [s]. 

The purpose of the present paper is to obtain 
the correct expressions [see formula (16)] for the 
asymptotic values of the following cross sections 
in the e4 approximation: (1) electron electron 

scattering, (2) electron positron scattering, 
(3) electron 11+ (11- )-meson scattering, (4) pro­
duction of a pair of muons upon annihilation of an 
electron pair. 

ELASTIC CROSS SECTIONS 

In order to obtain the radiative corrections to 
the scattering cross section of two particles in 
e 4 approximation, it is necessary to consider the 
diagram shown in the figure. We are interested 
here only in asymptotic values of the radiative 
corrections at large values of the energy and in 
the regions of large and small angles, when the 
main contribution is made by the doubly logarith­
mic terms. Therefore the diagrams containing 
the self-energy parts, which do not contain such 
terms after renormalization, will not be taken 
into account. 

The foregoing diagrams can describe different 
processes. We shall consider at first a process 
with different particles, for example e- + 11-
= e- + 11-, and obtain a formula for the scattering 
cross section in the form of a function of the in­
variant quantities s, t, and u. All the remaining 
processes are obtained as usual by permutation 
of these variables. The asymptotic values of the 
cross sections of the processes are obtained with 
the aid of asymptotic expressions for these func­
tions. 

For the process e- + 11- = e- + f.l- the elastic 
scattering cross section is of the form 

dcrel = C Re {Sp [Ag + 2an-l 

. x (AoA 1 + AoA 2 + AoAa + AoA4)]} do, (1) 

where C is the usual factor and a = e 2/ 47r. We 
put 
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2 Re Sp AoA 1 = QBl, 

2 Re Sp A 0A 2 = QB2, 2 Re Sp AoA 3 = QB3 , 

2 Re Sp AoA4 = QB4, B1 + B2 + Ba + B 4 = l>, 

CQ do= dc;0 • 

In this notation 

An exact expression for Re Sp A0Ai ( i = 1, 2, 3, 
4) can be found, for example, in the paper by 
Nikishov [3J. 

(2) 

We assume that a particle with momentum p 1 · 

has a mass m, and the particle with momentum 
p2 is a muon with mass M. Further, 

(pl + P2)2 = s, (pl- p~)2 = t, (p1 - p~)2 = u, 
( 3) 

s + t + u = 2 (M2 + m2 ) = 2y. 

With the aid of s, t, and u the expressions for 
Bi, in which we retain only the terms which turn 
into double logarithms in one region and another, 
can be written in the form 

1 t I s <fl<1> [ 1 1 t I J B =2x(s)In---___!__ J<1>(s) +--x(s)In-
1 ;v t Q • 8 - r m2 

(1) (1) 

- ~ ~ G (t m2 ) - ~ ~ G (t M2) ( 4) 
t Q ' t Q ' ' 

(2) 

B. = - 2x (u) ln L:l_ ~~ (1<1> (u) + x (u) In L:l) 
• 1.,2 t Q u -r m2 

(2) (2) 

- ~~ G (t m2)- ~ ~ G (t M2) (5) 
t Q ' t Q ' ' 

"'M 
M2 c Bs=- XM (t) ln '¥- 4cth 2ro j ~ th ~ d~, (6)* 

"' 

The notation is taken from the paper of Niki­
shov [3] with the following modifications: 

£ = - t, TJ = s- 2y, ~ = - u, 

X (x) = (x- r) f.L (x), r = M 2 + m2 • 

The expressions for I ( x) and G ( x) can be 
written, accurate to the doubly-logarithmic 
terms, in the forms respectively, 

(8) 

I (x) = - _!_ In2 I xI+ r 
2x Mm ' 

G ( 2) = - _!_ I 2 I x I + m2 x, m 2x n m" ' 

G ( M2) = - _!_I 2 I X I + M2 
X, 2x n M2 • (9) 

Such a notation merely signifies that when 
x ~ M2 or m 2 the corresponding doubly-logarith­
mic terms vanish. 

The expression for K ( x) could also be 
written in the form ln [ ( I x I + y )/Mm], since 
in the region x » y 

x (x) =In (x/Mm). ( 10) 

However, K ( x) yields a pole at x = ( M + m )2, an 
important factor in the determination of the Regge 
spectrum. Therefore the functional dependence 
at small x is of great significance. 

Thus, we can write the following expressions 
for Bi in the asymptotic region E » M, and we 
recognize that E/M » M/m, where E is the 
total energy of the interacting particles: 

I t I s2 - u2 ( 2 I s I + r 2 I t I ) B1 = 2x (s) In 1:2- 2 (s2 + uz) In Aim- X (s) In 1n2 

- 3s2 + uz (_!_ I 2 I t I + m2 + _!_ I 2 I t I + M2 ) 
2(s2 + u2 ) 2 n m2 2 n M 2 ' 

(11) 

m2 \ 
B4 = - Xm (t) In 1.,2 - 4 cth 2ro J ~ th ~ d~. 

0 

(7) B.=- 2x (u) lnl!l- (s2
- u2

) (In2 1 u I+ 1 - 2x (u) In L:l) 
• 1.,2 2 (s2 + u2) Mm m2 

"'X/1/ Az= 

P! Ill' 

*cth = coth, th = tanh. 

+ 3u2 + s2 (_!_ I 2 I t I + m2 + _!_ I 2 I t I + M2 ) 
2 (s2 + u2) 2 n m2 2 n M2 ' 

- M2 1 21ti+M2 B3 - - XM (t) In'¥ - 2 In M 2 , 

R m 2 1 2 I t I + m 2 
4 = - Xm (t) In -xa - 2In m 2 

It is easy to see that the Bi are related as 
follows: 

B 1 (t, u, s) = - B 2 (t, s, u), 

( 12) 

(13) 

( 14) 

( 15) 

We obtain ultimately the following formula for o, 
which is valid for the entire region of angles with 
doubly-logarithmic accuracy 
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m 2 M2 
- Xrn (t) ln f:2- XM (t) ln V 

_ __!_ (1 2 I t \ + mz + l 2 I t I + M 2 ) 
2 n m2 n M" 

It I s2 - u2 

+2ln1:2(x (s)- X (u))- Z(s"+u2) 

x(In21sl+r +In2 !ul+r )+ s•-u2lnl.U 
\ 111m Mm s" + u2 m2 

s2- u2 
X I( X (s) + x (u))- Z(s" + uij 

dcre-w = d::;0 [1 + cxrt-16 (min [t, u], max [t, u], s)J, (21) 

where du0 is the Moller cross section, and 6 is 
given by ( 16). 

The same is readily seen also from (20). In­
deed, for small t the principal role is played by 
the direct diagrams, for small u this role is 
played by the exchange diagrams, and in the re­
gion u ~ t the matrix elements for the direct and 
exchange diagrams become equal to each other. 
Since the principal double logarithms of the 
ln2 ( E/m) type drop out in this region for each 

(l 2 I t l + m• + 1 2 I t I + M" ) 
X n m" n ]Vf2 • (16) chain [see (11) and (12)], they drop out also for 

To obtain the e- + f.l + scattering cross section it 
is necessary to make the substitution s - u in 
the initial formulas. The annihilation cross sec­
tion is obtained with the aid of the substitutions 

s --> u, u --> t, t --> s. 

In the region of large and small angles we can 
obtain simpler formulas for the cross sections, 
namely 

( [xm(tl + XM (t)]InA2 , t ~ -y 

Onp.- = 6 (t, u, s) = 1 ft 1 s , 
~ -2x(u) In~+ z-In2 Mm, u;:;;-y 

( 17) 

6e-+p.+ = o (t, s, u) 

( [xm (t) + xM (t)]ln A2, t~-y 

= { f t s A2 1 s 
l2x (u) In V + 41n Mm In ft- :rln2 Mm, u~-y' 

( 18) 

6e-+e+--+p.-+p.+ = 6 (s, t, u) 

-v; 1 s 
{-2x(t)Inv+:rin2Mm' t~-y 

l vs s vi 1 s 
2x (u) In~- 4In Mm In --v--:rln2 Mm, u ~- y 

(19) 

In the case of interaction of identical particles 
it is necessary to take into account the exchange 
diagrams. Then the cross section for the elastic 
scattering of an electron by an electron will be 
of the form 

dane-= W1/ (t, u, s)- u-1/ (u, t, s))2 do, (20) 

where t- 1 f ( t, u, s) corresponds to a matrix 
element made up of direct diagrams, and 
u - 1 f ( u, t, s) is for exchange diagrams. 

The calculations, carried out with the correct 
expression written out by Polovin [1] 1l have shown 
that due+e- can be written in the form 

1)See the remark at the end of this section. 

the entire cross section. The remaining double 
logarithms of the type ln ( E/m) ln ( v E/11.), after 
the addition of the inelastic cross sections, 
ln ( E/m) ln ( E/ ~£), which drop out when ~£ 
~E. 

The cross section due-e+ is obtained from 
due-e+ simply by making a substitution s ..- u, 
i.e., 

da.-.+ = (t-1/ (t, s, u) - s-1/ (s, t, u))2 do. (22) 

From this expression we see immediately that 
whereas for small t the cross section is deter­
mined only by the direct diagrams, for large t 
the entire cross section increases only by a 
factor of four. In other words, due- e + can be 
written in the form 

dae-e+ = dcr 0 (1 + an-1o (t, s, u)), 

where du0 is the Bhabha cross section. 
Thus, taking into account all that has been 

stated above, we obtain 

{ 
1 + ctn-1& (t, u, s), 

dae-e- = da0 
1 + ctn-1& (u, t, s), 

{ 
& (t, u, s) = 2xm (t) In A•, 

0 --
8 e- - & (u, t, s) = 2xm (t) In A2, 

Oe-e+ = o (t, s, u) 

t;:;,-m2 

t~-m2 

u ;?;'; -m2 ' 

(23) 

(24) 

(25) 

f 2xm (t) In A2 t;:;,-mz 

lzxm (t) In V s -4In•~ In f t _ ___!__ ln2 _!__ , 
Az -m2 A2 2 m2 

u?-m2 

(26) 

The asymptotic formulas are valid in the 
region of angles 0 :S I t I :S ')I for forward scat­
tering and in the region 0 :S I u I :S ')I for back­
ward scattering. We see here that the e- + e + 

backward scattering cross section decreases with 
energy rather than increasing, as was obtained 
by Abrikosov [4]. 

We must make a few remarks here concerning 
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misprints in the papers of Polovin [1] and 
Redhead[2J. Intheterm a7T- 1 B3Q (see[1J), which 
is designated there as C5, there is missing the 
important term 

<I> 

- 4Q cth 2<1> ~ ~ th ~d~. 
0 

In Redhead's paper [2], this term has a plus 
rather than a minus sign [formula (1)]. In 
Abrikosov 's paper [4], in the derivation of the 
equations for the matrix element of electron­
positron scattering, it is necessary to reverse 
the signs preceding the integrals in formulas ( 4)­
(11). This reverses the sign in the final result, 
too. In the argument of the exponent, the quantity 
( Y2) ln2s will be contained with a minus sign 
[formula (18)]. 

INELASTIC CROSS SECTIONS 

In order to eliminate t...2 from the elastic cross 
sections, it is necessary to add to them the in­
elastic cross section with emission of a single 
real quantum with energy not larger than ~£. The 
inelastic cross sections are not invariant relative 
to the transition from ~he laboratory system 
(l.s.) to the center of mass system (c.m.s.). We 
have therefore written out individually the asymp­
totic values of these cross sections in both refer­
ence frames. 

It is known (see, for example, [3J), that 

dcr inel = dcro : ( L- L0 ln ~8) ; 

L 0 = 4 + 2K0 (pl, p~) + 2Ko (p2, p~) 

- 4Ko (pl, P2) + 4Ko (plt P~), 

L = K (pl, pJ + K (p2, Pz) + K (p~, p~) + K (p~, p~) 

- 2K (p1, p~) - 2K (p2, p~) 

- 2K (p1 , p;) - 2K (p~, Pz) 

+ 2K (pl, p 2) + 2K (p~, p~); 

"t"1 

Ko (pl, Pz) = 2 (P1P2) ~ [(p1 + P•) :~1-p2)z]• 
-1 

(27) 

(28) 

(29) 

( 30) 

The function 

(-}x(x)(ln:~--}In lx~!r) c.m.s. 

i 1 ( E2 lxl+ ) l2x(x) In mM -In mM r l.s. 

where x = ( p1 - p2 ) 2 and E-energy of the inci­
dent particle. We have 

6 inel = L - L 0 ln ~8 , 

E• 
6inel (t, u, s) = 2 [x (s)- x (u)- x (t)lln mM 

+ [xm (t) + XM (t) + 2x (u) - 2x (s)!In <~:>• 

(31) 

(32) 

(X (s) In I ~,t r- X (u) In I :;~ r -X (t) In I ~,t r c. m. s. 

h[x(s)ln I slt r -x(u)ln lu~,t i -x(t)ln I tlt- r] l.s. 

( 33) 

The remaining processes are obtained by the 
same substitution as in the case of elastic cross 
section. Here, however, E 2 must not be touched. 
The similar cross section in the c .m .s. is of the 
form 

E2 
6tot = - (Xm (t) + XM (t)) In (1'18)2 

+ 2 [x (s) - x (u)l (In l~ + In(::)") 

+ s2 - u• [ ( ) t s• - u• [ 1 s 1 + r s•+u• x s +x(u)]Inni2- 2 (s•+u•) In2~ 

+In•lul+r]- s•-u• (In• ltl+m2 +Inzltf+M•) 
mM 2 (s• + u•) m2 M• 

-X (s) In Is I+ r +X (u) In I u I+ r + .!_X (t) In It I+ m• 
mM mM 2 m m• 

+..!_xM(t)ln lti+M•_.!_(In• [tl+m• +In•lti+M•) 
2 M2 2 m2 M• • 

The asymptotic values for the total cross 
sections in the c.m.s. are: 

6q.- (t, u, s) = [xm (t) + XM (t)]In (~~)•, 

t ;;;:;-r. 

(34) 

(35) 

" ( ) 2 [ (1'18)2 1 mM J 1 2 s uqJ.- t, u, s = x (u) lnE2 + 2 In -1-t-l + 2ln mM, 

u;;;:;-r; 

6q.+ (t, s, u) = [xm (t) + XM (t)lln (~~)•, 

t;;;:;-r. 

" ( ) 2 [ (1'18)2 1 2 s J u.-p.+ t, s, u =- X (u) lnE2 + 2ln mM 

4l mM I ( 1'18)2 1 2 s 
- nTtT n B• -2ln mM' 

(36) 
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u;::;- r; 

6e-e+=11-p.+ (s, t, u) = 2x (t) [ln (~~)• +-}In 7~~1 

+ -Lln2_s 
2 · mM' 

t;::;-r, (37) 

{) ( 2 [ (~e)• 1 mM] .-.+=p.-11+ s, t, u) = - x (u) ln E• + 2 1nTtT 

4 mM (~e)• 1 2 s 
- In -1 t-l In 7f2 - 2 In mM , 

.__ " 2 (~e)• up- r; Ve-e-= Xm (t) In E• • (38) 

0 _ [ (~e)' 1 'm2 J .-.+- - 2xm (u) In £2 + yIn iTl 

m 2 (~e)2 1 2 s 
- 4In Iii In Ef2 - 2 In mM , u;;;,-m2 • (39) 

In the laboratory system 

t;::;-r.(40) 

[ (~e)2 1 mM] 
6e-11+ = - 2x (u) In £2 + z-In -1 t-l 

4 mM (~e)2 3 2 8 
- In Ttl In 7J2 + 2 In mM , 

u;::;- r; 
6 [I ·(~e)2 1 mM J 1 2 s 

.-.+=11- 11+ = 2x (t) n lJ2 + 2 In TUT + z-In mM , 

t;;:;-r, (42) 

6..--e+=l-'-1-'+ =- 2x(u)[ln (~~)• + fln 7~] 

4 mM (~e)2 3 2 8 
- ln -1-t-1 In 712 + 2 1n mM' 

u;::;- r; 

t;::;- m2, 

be-e-= 2Xm (u) ln (~~)', u ;;::; - m2; 

" 2 ( (~e)• 
Ue-e+ = Xm t) In £2 ' t;::; - m2 ' 

" 2 ( ) [l (~e)" 1 m• J v.-.+ = - Xm u n fi2 + -zln ItT 

41 Jtll E•+312s ...__ 2 
- n m• n(~e)• 2 n m•' u;:::;-m. 
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