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Oscillations of the field-emission current from a metal in a magnetic field perpendicular to 
the sample surface are investigated theoretically. The oscillations are shown to have two 
causes: I) oscillations of the number of electronic states in a magnetic field, and 2) oscilla
tions of the chemical potential of the metal. The second type of oscillations usually has a 
considerable amplitude; the first type is appreciable for metals containing only small elec
tron groups (and in a few other cases). The properties of emission from a complex cathode 
of the metal-thin dielectric film-thin metallic film type are considered. 
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Here E ( p) is the electron dispersion law; v 
= dE/dp; D is the transmission coefficient of the 
barrier; f is the Fermi distribution function; ~ 0 

is the chemical potential; 

<D (e) = ~ D (e, Px, py) dpxdpv; 
!:(E) 

I: (E) is the projection of the part of the surface 

( 1) 

THE study of the quantum oscillations of various 
physical quantities (magnetic susceptibility-the 
deHaas-vanAlphen effect, electric conductivity
the Shubnikov-deHaas effect etc.) is at present, 
along with the study of cyclotron resonance and 
magneto-acoustic oscillations, one of the most 
effective means of investigating the Fermi sur
faces of metals. All oscillatory phenomena enable 
us to determine the same spectral characteristics 
(extremal cross sections of the Fermi surface 
and, less accurately, the effective masses); how
ever, the investigation of some particular effect 
may be the most convenient in specific instances. 
In an earlier publication[!] (see also [2]) it was 
shown that by studying oscillations of the tunnel 
current between two metals separated by a thin 
dielectric film one determines not only the extre
mal cross sections but also the effective masses 
more accurately than ordinarily (without utilizing 
the temperature dependence of the effect). It was 
also shown that oscillations of the tunnel current 
depend greatly on oscillations of the chemical 
potential of metals. 

Oscillations of the field emission current from 
a metal, which are considered in the present work, 
are also essentially related to the dependence of 
the chemical potential (and therefore of the work 
function) on the magnetic field. 

E ( p) = E where Vz > 0, on the PxPy plane; the z 
axis is parallel to F and is therefore perpendicu
lar to the surface of the sample. 

1. Electrons can be extracted from metals by 
a strong electric field F; this is known as field 
emission. The current is the result of the tunnel-

Our present calculations were performed using 
an arbitrary function D ( p); the free electron 
model was used to derive estimates. 1l 

For the simplest type of potential barrier 

1 >0ur next communication will be devoted to determining 
ing of electrons through the potential barrier a transmission coefficient for an arbitrary dispersion law. 
(Fig. 1). The current density vector is parallel Suitable assumptions are made in cases in which a compli-
to F and has the magnitude (at low temperatures) cated dispersion law leads to qualitatively different results. 
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(Fig. 1) described by 

V {- W inside the metal (z < 0) 
(z) = - eFz outside the metal (z > 0) 

Equation (1) gives[3] 

. _ {- nemoh-3 (eFao)2 Dmax , eFao ~ ~o 
lo (~o) - - 2nem0h-3? 2 D ? 0 ....g" eFao 

~:::to max' '::o~ 

where Dmax ~ exp ( -4w/3eFa0 ), a 0 = h/J2m0w 
is a distance of the order of the lattice constant, 
and w = W - t 0 is the work function. This ex
pression is valid for w » eFa0 (corresponding 
to fields F « 107 - 108 V/cm) or b » a 0 (b is 
the minimum width of the potential barrier), 

(2) 

(3) 

which condition we shall assume. In view of this 
last condition, the deviation of the real potential 
from (2) does not affect the correctness (with 
logarithmic accuracy) of (3). The main ( exponen
tial) factor of (3) is also similar in the case of an 
arbitrary dispersion law, because it is determined 
by the electron wave function inside the barrier, 
i.e., outside the metal. 

Since the transmission coefficient depends very 
sharply on p, an essential contribution to emission 
comes from electrons within a small region of 
p-space where D is close to its maximum value. 
For free electrons this region is close to the sur
face of the Fermi sphere, where Pz is maximal. 

According to (3) measurable currents appear 
when w/eFao is of the order of a few tenths, i.e., 
when eFa0 ~ lo-2 -lo-t eV, F ~ 106 - 107 V/cm. 

2. When a monocrystalline sample is placed in 
a magnetic field the emission current is modified 
by the quantization of electron energy. We consider 
the case of a magnetic field perpendicular to the 
metal surface (H II Oz). In the quasiclassical 
approximation (large n) quantized levels of 
orbital motion En ( Pz) are determined from the 
familiar relationr4,5] 

S (e, Pz) = ehHc-1 (n + 1/ 2), (4) 

where S ( E, Pz ) is the area of the section through 
the surface E ( p) = E by the plane Pz = const; we 
assume that the orbits bounding these cross sec
tions are closed and non-selfintersecting. 

In this approximation, to calculate the current 
corresponding to an electron state ( n, pz) we must 
average the expression for the current over the 
orbit in the absence of a magnetic field, using the 
classical law of orbital motion[B] 

dp e 
di- = - c [vH], 

. dl e H 
Le. di =cV_l_ . 

This gives for the density of the field emission 

*[vH]=vxH. 

(5 )* 

current in a magnetic field 

j = - e~~ ~ ~ ~ (vzD)npz f (en (pz) + rJf-toH) dpz. (6) 
a n 

Here u = ± 1/z is the projection of electron spin and 
/J-o = en/m0c; summation is over all orbits contain
ing segments with vz > 0 (Fig. 2) from which an 
electron can pass outside when it approaches the 
metal surface; the symbol ( ) npz denotes the 
aforementioned averaging over an orbit. 

P, 

a b 

FIG. 2. Orbital segments with v z > 0 are denoted by thick 
lines. Crosses denote a pair of symmetric orbits. 

Using the central symmetry of constant-energy 
surfaces, the contributions of symmetric orbits 
(Fig. 2b) can be combined, thus transforming (6) 
into 

. e2H ~ (' ~ 
1 = - h2c .i:,J J LJ (I Vz I D)npz: 

a <i!z>O) 

(7) 

(in this and the following equations D ( p) must be 
understood to mean D ( p sign Vz). Here the sum
mation includes only orbits on which Vz > 0; the 
bar denotes time averaging in accordance with the 
orbital motion law ( 5): 

- ~ dll~dl I Vz I D = I Vz I D - - • 
vj_ vj_ 

( 8) 

Equations (7) and (8) are, of course, valid when the 
sign of Vz does not change along the orbit 
(Fig. 2a). 

It is easily seen that 2 > 

- ( &S I &S ) den 
Vz lnvz = -- &pz • ~ npz = dpz' 

(9) 

( 10) 

where the region 62: is the projection on the PxPy 
plane of the portion of the surface E ( p) = E lying 
between the plane Pz of a quantized orbit and the 

2 >We note that (9) was obtained in[7] when quasiclassical 
wave functions were used in calculating the quantum-mechan
ical mean velocity Vz of an electron in a magnetic field. 
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a 

FIG. 3. The shaded region ol 

infinitesimally close plane Pz + Opz (Fig. 3). 
Transforming in the integral (7) to the variable 

En(Pz) by means of (9) and using (10), we obtain 

. e2H ~~ ~ 
1 = - h'c -'.I J -'.I D (e, n) / (e + cr ~-t 0H) de, 

a n 

where 

D (e, n) = [ 111~ I ~ D (e, Px• py) dpxdpy] 
~E n 

(11) 

plays the part of the effective transmission coeffi
cient. Further calculations follow the customary 
procedure for distinguishing the oscillating parts 
of the physical quantitiesPJ and yield 

. 1 ~ . ('" + H) + .osc+ ., 1 = 2 -'.I Jo "' !J!-lo h J ; (12) 
a 

where s is the chemical potential of the metal in a 
magnetic field and contains a small added oscilla
ting term:[ 4J s =so+ ?;osc; j?sc is an oscillating 
term; j' is a term that is monotonically dependent 
on H and vanishes when H = 0 (this term will not 
interest us). 

Equation (12) shows that the current oscillations 
in a magnetic field have two causes: 

1) The oscillatory variation of the number of 
electron states (the term j~sc). These are ordi
nary de Haas-van Alphen oscillations. 

2) Oscillations of the chemical potential [the 
first term of Eq. (12) ]. This effect results from 
the variation of the barrier minimum, and there
fore of the transmission coefficient Dmax• as s 
varies (Fig. 1). For so« eFa0 the principal role 
is played by the dependence of the current on s, 
as determined from the pre-exponential factor 
[see Eq. (3) ]. 

3. The oscillating part j?sc of the current is 
the sum of terms associated with each orbit on the 
Fermi surface that bounds an extremal area 
Sm ( s) (assuming henceforth s = s 0 ). The ex
pressions determining each oscillating term will 
differ in the following cases: a) Vz = 0 on an ex
tremal orbit (Fig. 2a); b) the sign of Vz is re
versed on an extremal orbit (Fig. 2b). In both 
cases Vz = 0 on an extremal orbit [see Eq. (9) ]. 

In case a) the effective transmission coefficient 
on an extremal orbit, D ( s, nm) = D, is the mean 

value of the true transmission coefficient in the 
absence of a magnetic field for the region 01:: 
[see Eq. (11)], since the area of 01:: = I oS I (Fig. 
3a). The oscillating term associated with this 
orbit is 

00 

·osc = ± 2em ("H)2 D ~ (-1)P -qr (pJ.,) 
h nh3 ,... -'.I p 2 

P=l 

( m ) ( cSm ((;)) 
X cos 'ltp mo COS p elifi ; 

eli 
1-l = lmlc' 

1 dSm 
m=2ndf' 

'Y ( ) u }., = 2n 2 kT . 
U =sinh u ' J1H ' 

(13) 

the upper sign will henceforth pertain to Sm = max 
and the lower sign to Sm = min. Equation (13) and 
the subsequent results are correct when the condi
tion for quasiclassical quantization, ~-tH « s, is 
satisfied. 

In case b) the effective transmission coefficient 
(11) on an extremal orbit becomes infinite, since 

area 61:: = area 6~ 1 + area 6~~ =1= 0 

(Fig. 3b). The oscillating current component asso
ciated with this orbit is 

·osc_ . lj-2 em';, ~I tg !p I dl ( H)'! D ~ (-i)P 
It --sign m ;t---,.--- I a•s;ap•l';, 1-l ' -'.I ~ 

z m r>=l 

( m ) ( cSm ((;) n \ 
X 'Y (pJ.,) cos np mo cos p enH =f 4 j • (14) 

where D is the mean value of D ( p) for the region 
01:: as in (13), cp is the angle between v and the 
xy plane. If I tan cp I ~ 1 on the average along the 
orbit the ratio of this expression to (13) is of the 
order ( s!~-tH) 1/2 » 1. 

Upon comparing (13) and (14) with (3), we see 
that for sufficiently low temperatures (A. ~ 1) the 
relative smallness of oscillations depends mainly 
on the parameters ~-tH/ eFa0 (or 1-LH/s 0 ) and 
D/Dmax· In fields H ~ 104 Oe the first of these 
parameters is not too small only for groups with a 
small effective mass (m/m0 ~ 10-3 - 10-2 ). The 
ratio of the transmission coefficient on an extre
mal orbit to its maximum value (in the free elec
tron model) is 

-- ~ exp ~-,-- ~ - w -- • D { 4 [(w+~)'/, ] 1 } 
Dmax 3 w'h eFao 

Ordinarily s ~ 1 - 10 eV and this ratio is expo
nentially small; D/Dmax can be of the order of 
unity only when the chemical potential of the elec-
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trons is unusually small (!; ~ eFa0). Thus an 
appreciable magnitude of the considered oscilla
tions can be expected when the metal contains only 
small groups (compare with the conclusion in [ 1] ). 3> 

4. The first term of (12) can be put into the 
form j 0 (!; 0 ) +jose, where j 0 (!; 0 ) is the current 
in the absence 6f a magnetic field (1), and 

'osc= _ 2e <D ("") fOSc 
12 h" so s 

A comparison with (1) gives 4> 

i~sc~ {\;osc jeFao, 

/o Sosc /\;o, 

eFao ~ S3 
\;o~eFao 

(15) 

(16) 

since with decreasing E:, <I> ( E:) decreases exponen
tially at a distance of the order eFa0• 

The oscillating part of the chemical potential is 
[8] 

osc= 2 f2n (enH )'/.""'I ()2S ~-'/, ~ (-i)P+l 
~ dUjd\; c ..::::.J ap; m p-=l p'/, 

( m ) ( cSm (\;) _ n ) 
X '¥ (p"A) cos np mo cos \ P ---etJf + 4 • 

where U ( {;) is the volume of p-space occupied by 
electrons; the first summation is performed over 
all extremal orbits on the Fermi surface. The 
order of magnitude of the amplitude of ?;osc is 
determined by the largest group; for A. :S 1 we 
have 

here 'j1 is the magneton of this group averaged 
over the orbits and magnetic field directions; 6 is 
computed from the bottom of an electron group, or 
from the top of a hole group. Consequently in the 
case of a large group (?; "' 1 - 10 eV, m "'m0 ) we 
have sosc "' 10-7 - 10-6 eV (for H"' 104 Oe ), max 
and the relative amplitude of the current oscilla-
tions (16) is j~~~/j 0 "' 10-6 - 10-4• When only 
small groups are present, j~~'k. /j 0 is limited only 
by the condition IJ.H « {; and can be of the order 
10-2. 

5. In conclusion we consider the properties of 
field emission from a complex cathode consisting 
of two metals separated by a thin dielectric film 
through which electron tunneling can occur. 

When a negative bias of the order of one to a 

3 lA complicated electron dispersion law leads to the 
conclusion that the relative size of j~sc can also be quite 
large in certain other cases (for example, when in addition 
to small groups, large groups are present but are situated 
farther than the small groups from the center of the first 
Brillouin zone.) 

4 >Except for some special cases when ci> ( 8) reaches a 
maximum for 8 < (0• 

FIG. 4 

few volts is applied to metal 1, the potential bar
rier for tunneling electrons will be considerably 
lower than for electrons of metal 2 (Fig. 4). Let 
metal 2 be a film whose thickness is no more than 
the order of the mean free path of these "hot" 
electrons. A considerable field current then 
exists even in a relatively weak field F that can
not induce appreciable emission from metal 2 (in 
the absence of a potential difference between the 
metals). 51 

When a magnetic field is applied the field 
emission current observed under the foregoing 
conditions exhibits various oscillations associated 
with both metals (if they are monocrystalline). 

The experimental investigation of field emission 
current oscillations is, of course, an extremely 
complicated problem. A flat emitter requires 
extremely higher accelerating voltages than the 
conventional [ 1o] sharp points or thin wires. High
voltage pulses could possibly be used. 

In the case of the usual geometry[ IO] most of 
the emission comes from a very small region of a 
monocrystalline cathode. The necessary condi
tions for observing oscillations can then also be 
realized by properly orienting the magnetic field 
relative to the single crystal surface. 

Note added in proof (February 18, 1964). We note that the 
oscillating term defined by (14) is due to electrons perform
ing an incomplete revolution between collisions with the 
metal surface. However, in the case of diffuse reflection a 
contribution to the oscillations comes only from electrons 
completing many revolutions before colliding with the sur
face; these electrons must come from the interior of the 
metal. As a result, even in case b) the oscillating term j~sc 
has the form (13) except that D will be defined somewhat 
differently than in case a). 
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