
SOVIET PHYSICS JETP VOLUME 19, NUMBER 3 SEPTEMBER, 1964 

NONADIABATIC TRANSITIONS IN SLOW COLLISIONS BETWEEN HEAVY PARTICLES 

G. V. DUBROVSKil 

Leningrad State University 

Submitted to JETP editor June 1, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 863-871 (March, 1964) 

The parametric-method equations are solved in the adiabatic approximation by expanding 
the solution in powers of the colliding-particle velocities. Asymptotic integration of the 
differential equation yields the transition probabilities in the presence of a frequency min­
imum and a formula which is an extension of familiar results of the pseudo-intersection 
theory but does not possess its shortcomings. The method can be used to investigate the 
effect of other features of the interaction and frequency w on the cross section for various 
inelastic transitions in the adiabatic region. 

A theoretical investigation of slow collisions be­
tween heavy particles in the presence of a point of 
pseudo-intersection of levels was carried out by 
Zener [1] and Stueckelberg [2], who obtained an 
identical result 1 >. The shortcomings of the 
Landau-Zener theory were pointed out by Bates [3J. 
The connection between the two-level approxima­
tion with the problem of superbarrier reflection, 
established by Dykhne and Chaplik, [4, 5] has made 
it possible to obtain a formula analogous to the 
Stueckelberg formula, valid for the case when the 
transition region is much smaller than or of the 
order of the distance between the zeroes of the 
function w; this corresponds to very low colliding­
particle velocities. 

The Landau-Zener theory was made more pre­
cise in many papers (for example [S]) by different 
model approximations of the interaction matrix 
element. However, owing to the strong dependence 
of the theory on the analytic properties of the in­
teraction and on the frequency, the question of the 
applicability of these formulas to specific problems 
remains open. This circumstance was already 
pointed out before [7]. 

In the present paper asymptotic integration is 
carried out of the equations of the parametric 
method, and a general formula is obtained for the 
probability of a double transition in the presence 
of a minimum of the frequency w. From this in­
tegration it is possible to obtain the results of 

1 >A more general formula for the transition probability in 
the form of a function that depends on integrals along a com­
plex contour, which go around the zeroes of w, is the direct 
consequence of the method of phase integrals (see the Ap­
pendix). 

Stueckelberg, Dykhne, and Zener as limiting cases, 
and also the general dependence of the transition 
probability on the parameters that characterize the 
point of minimum of w and the velocity in a wider 
velocity interval. It must be pointed out that the 
character of the obtained adiabatic solutions makes 
it possible to trace more fully the connection be­
tween the parametric method and the wave method, 
connection between the coming together of the two 
terms and the problem of over-the-barrier reflec­
tion, and also the characteristic features of sym­
metrical resonance. 

For simplicity we solve the Schrodinger equa­
tion by the parametric method, assuming the tra­
jectories of the nuclei to be straight lines. For 
most problems such an approximation is permis­
sible. Then z = vT, where v is the velocity of 
the colliding particles, T the time, and z the 
projection of the ray's vector R on the z axis. 
The system of equations for the transition coeffi­
cients, based on the expansion of the total wave 
function in a series in the atomic wave functions 
cp j, can be written in the form ( :5 = 1 ) : 

(1) 

For simplicity we assume that the functions cp j 
are orthogonal. If they are not orthogonal (charge 
exchange ) , the differences are not of fundamental 
significance [SJ. In some problems we can confine 
ourselves to the two-level approximation. Then 
the system of equations for the transition coeffi­
cients takes the form 

. da1.2 V ' ' , ( 
. z ) 

l dZ = v exp ±-;~adz a2 , 1 , (2) 

I ad- oo) I = 1, a2 (- oo) = 0, (2a) 
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where V = H12 is the atomic matrix element of the 
interaction, a = H11 - H22 is the difference in the 
terms of first-order perturbation theory. The sys­
tem (2) was recently considered in [9], but was not 
integrated there, and only the phases of the asym­
ptotic solutions were used. Consequently the for­
mula obtained in [9] yields the same result as the 
adiabatic perturbation theory in the case of prac­
tical interest when w has a minimum. 

By reducing the system (2) to a single second­
order equation for the transition coefficients a2 ( z ) 
and by introducing a new function y ( z ) defined by 

a2 (z) = V'i•exp (- ~ ~ (J.dz') y (z), (3) 

we obtain 

d•y + Q• - O· 
dz2 ii2 Y - ' (4) 

Q2 ro2 iV v d ex 2 V 2 2 4V = 4 - 2 dz" v- v { ,z}, w = (}. + 2• 

3 V'2 1 V" 
{V, z} = Tv• - 2v · (5) 

Here { V, z} is the Schwartz derivative of V with 
respect to z. Equation (4) is analogous to the equa­
tion for a wave propagating in a medium with com­
plex refractive index. 

We seek a solution of (4) for low velocities in 
the form 2> 

y (z) = exp {~ (S0 + vS1 + v2S 2 + ... )} . (6) 

Substituting the expansion (6) in (4) and equating 
coefficients of equal powers of v, we obtain, ac­
curate to terms proportional to v in the argument 
of the exponent, an approximate solution for (4) in 
the form 

z t 
A+ .Q A .Q y (z) = vro-e' + v~e-t ; Q 1 \ d 1 i \ dt' 

= 2V ~ w z - 2 ~ ,r 1 - t'• 
z, t, f 

(7) 

where A+ and A_ are constants. In this form the 
solution is very similar to the quasiclassical wave 
function of Stueckelberg [ [2], formula (26)], the 
only difference being that in [2] we deal with two 
waves that "propagate" along two reaction chan­
nels. 

From the boundary conditions (2a) we have 

(8) 

The choice of the coefficient A_ depends on the 
start of the integration and on the argument of the 
exponent, and is determined by a condition that 

2 >The small parameter is essentially the quantity vh. 

follows from the system (2), viz., 

\d;z2 1~ ~~~ as z ~- oo. 

Differentiating (3) with allowance for (7) and (8) 

and then substituting the result in (9), we obtain 
for the coefficient A_ the following expression 
(the start of integration in the exponent is the 
point z = z1 ) 

(9) 

1 A_ 1 = (1 + k2/4)-'/, (tl + V 1 + tn-•r., (1o) 
k = 2pv/11E, p = V'(- oo)/V (- oo). (11) 

Under condition (8), the function (7) tends to 
zero as z - + oo if we move along the real z axis, 
and we obtain no transition whatever. Inclusion of 
the next terms of the expansion (6) does not change 
the situation, that is, a complete analogy is ob­
tained here with the problem of over-the-barrier 
reflection in the quasiclassical approximation. For 
symmetrical resonance a = 0; if we choose A+ 
= A~ , we obtain for the transition probability the 
well-known formula 

+oo 

P = sin2 ( ~ )oo V dz'). (12) 

We thus obtain for the symmetrical process a 
nonzero transition probability due to the adiabatic 
transitions. The expansion (7) can obviously not 
be employed near the zeroes and singularities of 
the function w. We confine ourselves henceforth 
to an investigation of the very important case when 
w has a minimum at the points z = z1 and z = z2, 

and consequently it has a pair of complex-conjugate 
roots near each of these points in the complex z 
plane. We neglect the influence of the remaining 
zeroes and singularities of w and V, which are 
situated far from the real axis. 

At low colliding-particle velocities, determined 
by the condition for discarding the terms of order 
v in the exponent, we can continue the solution (7) 

with boundary conditions (8) and (10) from the re­
gion z « z1 into the region z » z2 by the phase­
integral method. As shown in the appendix, we 
have in this case the following transition formula: 

A_ w-'f, e-iQ (z) ~ - 2iA_ w-'f, ev ( 1 - e2v)'/• sin fl. 

exp {i [Q (z)- Q (z2)]}, (13) 

(+) z, 

V=~~wdz', t-t=fv~ wdz'. (13') 
z, 

The contour in the integral for v is drawn clock­
wise around the roots of w. Recognizing that 

t 

\ ,r dt = ln (t + y1 + t2 ) + C 
.\ f 1 + t 2 
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and that t--oo as z--oo, we obtain for the tran­
sition probability 

P = 4K (k) e2" (1 - e 2") sin2 11; (14) 

K (k) = (t1 + v 1 + t~f2 (1 + k2/4f\ k = 2pvf!J.E. (15) 

Equation (14) coincides with the Stueckelberg for­
mula apart from the term K, which has not been 
taken into account. For the reaction with charge 
exchange, p is a quantity proportional to the 
smallest ionization potential. Thus, the term K 
appears naturally as a consequence of allowance 
for the time variation of V and the fact that the 
terms do not move apart at infinity. 

In order to obtain a formula which is valid in a 
broader velocity interval, and also to estimate the 
region of applicability of (14), we present a more 
accurate method for integrating (4) with the aid of 
the associated equation. This method is not con­
nected directly with the expansion of (7), and if w 
and V are smooth it can give a result which is 
valid over a wider velocity interval. 

If the following inequality is satisfied on any 
contour around two zeroes of the function w, 

I w2 J I iV d ct V I -4->v :Lt-.;;v+v{ ,z} • (16) 

then on the basis of a known theorem concerning 
the roots of analytic functions we can state that 
n also has two roots in this region n- w/2 as 
v - 0 and the roots of n coincide with the roots 
of w. Inequality (16) imposes a limitation on the 
range of variation of the velocities. 

We denote the roots of n near the point z1 by 
b1 and b2 and near the point z2 by b3 and b4• We 
now choose in the vicinity of the point z = z1 an 
associated equation with a coefficient that has two 
zeroes. The theory of the associated equation 
can be found in papers by many authors [10 - 12 ]. By 
way of such an equation we choose the equation for 
the parabolic-cylinder functions: 

d2U/dx2 + (x2/4 + v) U = 0. (17) 

In order to reconcile the roots of n and x2 I 4 + v 
and to obtain the correct asymptotic behavior at 
large values of these quantities, the connection 
between the variables z and x must be established 
in the form 

Z X 

~ ~ Qdz' = {- ~ V x2 + 4v dx' (18) 
b, -2iY;-

and the parameter v must be chosen from the con­
dition 

b, +2i¥-;-

~ ~ Qdz' = } ~ _ Y x2 + 4v dx' 
b, -2iYv 

inv. (19) 

Putting 
z 

<D (z) = ~ ~ Qdz', (20) 
z, 

b, b, 

<1> 1 = iv ~ Qdz' + ;h ~ Qdz', (21) 
z1 Z 1 

we can write the substitution (18) in the form 
X 

<D -- <1>1 = } ~ V x~ + 4v dx' = f x Y x2 + 4v 
0 

+ 'V In (x + V x2 + 4v) - ~ In 4v. (22) 

When z varies along the real axis from - oo to oo , 
x changes along a complex contour whose ends go 
to infinity. 

We assume, for concreteness, that a > 0 when 
z < z1 and z > z2, and choose a branch of the func­
tion n such that Re n > 0 when z is real. In the 
approximation under consideration the solutions 
of (4) and (17) are connected by the relation 

y (z) = V dz!dx U(x). (23) 

The solutions of (17) will be the parabolic-cylinder 
functions 

U 1•2 (x) = D±iv-'J, (e+ir.J4x). 

The asymptotic expressions for the functions 
U1 (x) and U2(x) at large values of x, when 
Re [ exp (:I: 1ri/ 4 )x 1 < 0, are of the form 

( ix2 nv ni) +. ,1 U 1,2 ---* exp ± 4 + 4 ± S X _tv- ' ' 

(24) 

(25) 

and when Re [ exp ( :1: 1ri/ 4 )x 1 < 0, they are obtained 
with the aid of the well-known turning formulas 
(see, for example, [13]). 

Using (22), we can write 

(nv ni i I iv) 2 U1(x) -> exp 4 + 8 + 2 v n v- 2 (x + 4v)-'1• 

X 

X exp( f ~ Y x'2+ 4v dx') , 
0 

Re (e-i"l"x) > 0. 

(26) 

(27) 

The corresponding expression for U2(x) is ob­
tained by replacing i with - i. Equation (4) is 
solved in the same manner near the point z = z2, 

the only difference being that <1> 1 is replaced here 
by 

b3 b.., 

<1>2 = _!_ \ Qdz' + _.!. \ Qdz' 
' 2v ~ 2v • 

(28) 
Zz Z2 

and v2 = vi= v*, where v1 and v2 are the values 
of the parameter v at z = z1 and z2• 

Near the point z = z1 we represent the solution 
in the form 
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.. ,r:2dz 
y(z) = N_V vdx U1 (- x), (29) 

and near z == z2 in the form 

y (z) = v~~ [M1 U1 (- x) + M 2 U2 (- x)J. (30) 

After simple but rather long and cumbersome cal­
culations, we obtain the following formula for the 
transition from the region z « z1 to the region z1 
< z < z 2 and then to the region z » z 2: 

N- g-•;, e-i<I>~z) 

--> N g-'1• [ei(<I>-2<I>,-1t/2+i1tv) + 1 . e-i(<I>+vlnv-V-i1tvf,) J 
- r (112- tv) 

~ V21i:N_ Q-'1, [ei<I>(z.l+icp- e-i<I>(z,)-icpl ei[<I>(z)-<I>(z,)] 
I r (1/2 + iv) I ' 

(31) 

where the phase c.p is expressed in rather compli­
cated fashion in terms of the phases of v and y­

functions. We shall not write out the phase since 
the term in the square brackets averages out in 
the final results. 

The transition formula is obviously compatible 
with the boundary condition (2a), and the coefficient 
N_ is again determined from the condition (9). We 
obtain ultimately for the transition probability 

p - 2nK1 (k) I e(-31tV/2+ivlnv-iv) 1 2 1 ei[<I>(z,)+'P] - e-i[ci>(z,)+cpJI2; 
- I r (1!2 + iv) I 

K1 (k) = 8 [2 + k2/2 + 2 Y 1 + k2 

+ 2 Jl2 (Jfi=FF + 1)''· 

+ yzk (Y1 + k2 - 1)'1•J-1 (t1 + Y1 + ti) 2 , 

(-) 

1 ,r., ,....d , k = 2pv 
v = 2niv 'f •• z ' /';.E ' 

and we take the integral over a closed counter­
clockwise contour around the roots. 

If the simple inequality (16) is replaced by a 
strong inequality, we can write approximately 

Q ~ ~ _ ~ dtjdz 
" ~ 2 2 "Vt + t• 

We then obtain 

where 

' <+> 

(32) 

(33) 

(34) 

(35) 

'1:1 = - 4~v ~ wdz', '1:2= 1, W I z<z1 > 0. (36) 

We obtain for the transition probability in this 
case 

P = 4K1e-2"~' (1 - e-2"~•) exp ( 2,;1 tan- 1 . 2~1 - 1) 
. z, 

X .. f 1 + ~ sin2 (d; ~ wdz' + <p) , (37) v 4T1 z, 

If we assume that T1 » 1, then we have 

P = 4K1e-2"~' (1 - e-2"'•) sin2 (d; ~ wdz'). 
z, 

(38) 

This coincides with formula (14), which is equiva­
lent to the Stueckelberg formula apart from a fac­
tor K1• If we replace the square of the sine by t;2, 

we obtain the formula of Dykhne and Chaplik[5J 
(accurate to K1 ) • 

If we use the expansion near z1 

then we obtain in this approximation 

p = 2K1e-v,;v (1 - e-v,rv), 

2 ~.r-y """? v0 = nw1/ r 2 w1 , 

where K1 ~ k if k is small. 

(39) 

(40) 

(41) 

If the terms cross, then a 1 == 0, t 1 == 0, and v 0 

== 27rV1/a1, that is, (40) coincides with the Zener 
formula (accurate to K). 

If the terms do not cross, we have approxi­
mately 

v0 = n(ai+ 4Vi)I4V'Y1+a'2/4V'i. (42) 

It must be noted, however, that (38) and (40) are 
obtained only if I v I » 1, when the second term in 
the parentheses is essentially small. Thus, they 
are not applicable in the region of the maximum 
probability, when I v I is of the order of magnitude 
of unity. In this case it is necessary to use the 
more general formula (32) or the simplified for­
mula (37), which are valid in a wider range of ve­
locities, determined by the inequality (16), and 
which give the correct dependence of the transition 
probability on the system parameters. 

It can be verified that the transition probability 
determined by (32) [or by the simplified (37)] does 
not exceed unity; at very small v, (37) coincides 
with the Zener formula, and at large v it gives a 
decrease like v-2, something missing from the 
Zener theory. 

For the reactions An++ B- A(n-1)+ + B+ (see 
the papers of Bates and his co-workersC14 - 16]) we 
have in the approximation given by (37) the follow­
ing expression for the charge-exchange cross sec­
tion: 

(43) 

where Rx is the distance to the point of pseudo­
intersection, f the statistical weight of the corre­
sponding term, and 

oo\ -. ;-n• ·-
!1 (•YJ) = • e-~x (1 - e-~x) V 1 + (T]x)2 
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(44) 

where f..l- reduced mass in 0 16 units, .6.URx­
separation of the terms, .6.E- resonance defect, 
and Ep- energy of relative motion in eV. W~ 
must take here IB for p. 

We did not use any model representation in our 
deduction, and took account only of the presence of 
zeroes of w which lie close to the real z axis; 
these zeroes determine the region of non -adiabatic 
transitions. Consequently our derivation is free 
of the shortcomings of the Zener theory, connected 
with the nonseparation of the terms at infinity, 
failure to take into account the time variation of 
the matrix element, the breakdown of the pertur­
bation into two parts, etc. The analogy with the 
over-the-barrier reflection and the connection 
between the adiabatic approximation and the quasi­
classical theory is most completely manifest here. 

In conclusion we note that the phase-integral or 
associated -equation methods can be used to inves­
tigate the influence of other analytic singularities 
of w and V, which determine the transition prob­
abilities, and consequently also the cross sections 
for the different inelastic processes in the adia­
batic region. 

We take the opportunity to thank Yu. N. Demkov 
for a discussion of the work. 

APPENDIX 

The method of phase integrals is based on the 
fact that if a function y ( z ) is analytic, then this 
property is not possessed by its asymptotic ex­
pansions, and a jumplike change in the coefficients 
(the Stokes phenomenon) is necessary in order to 
represent the function with the aid of its asymptotic 
expansions on the entire plane. This jumplike vari­
ation of the coefficients occurs on Stokes lines 
which are determined for our case by the condition 

z 

arg ( ±i5 wdz') = n + 2nn, j = 1, 2, 3, 4. (A.1) 
) 

These lines for A+, shown solid in the figure, 
leave the points b 1 and b2 at angles 2n/3 and 
57r /3, while the lines for A1 leave at angles 1r /3 
and 4n/3 (they are shown dashed). 

For the point z 2 the situation is reversed, for 
whereas we have w > 0 for z < z1 when z is real, 
we obtain w < 0 for z 1 < z < z2• The standard pro­
cedure for determining the Stokes coefficients 
yields in this case [2] 

(+) 

at=~= r = fJ = ei"/2 (1- e 2v)'l•, v = ~v ~ wdz'. (A.2) • 

lm Z 

The continuation of the solution (7), with allow­
ance for (8), along the contour shown in the figure, 
from the region I into region II and then into re­
gion III, is realized in the following fashion: 

- [aA_M 1M2N~e -;~'-' 

+at (1 +a~) A.M;N1N2ei~'-J w-'/,eiQ(z)-iQ(z,) 

+ B _w-'f,e-iQ(z)+iQ(z,); (A.3) 

b, t(b,) 

( 

0 ~ 1 (' dt ) 
N 1 = exp ;v ~ wdz' + 2 J -y 1 + t , 

z. ft 

(A.4) 

and the value of the coefficient B_ will not be writ­
ten out, since this term vanishes when z -- + oo. 

lJ sing the relations 

M 1M2 = N 1N1 = 1, ~=Mi.= e<v-i">12 , (A.5) 

we obtain in this case formula (13) of the main 
text for the transition from region I into region III. 
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