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The case when the usual expressions for the correlation functions in a plasma are unstable 
with respect to the appearance of Langmuir plasma waves is considered. A new method for 
solving the equations for the higher correlation functions is employed, based on a simple 
representation of the corresponding Green's functions. Approximate equations for the correla­
tion functions in which nonlinear interactions are taken into account are derived for small 
instability increments. It is shown that the quasilinear approximation is valid only if the in­
stability exists in a sufficiently small region of phase velocities of the waves. 

WHEN the plasma temperature is sufficiently 
high, the collisions play a small role and conse­
quently do not always serve as the main dissipa­
tion mechanism. In particular, in the presence of 
microscopic instability with longitudinal (Lang­
muir) waves or in the case of cyclotron resonance, 
an important role is played by the nonlinear proc­
esses connected with the interaction between the 
waves and the particles. Vedenov, Velikhov, and 
Sagdeev[ 1,2J have developed an approximation 
which they call quasilinear and which takes into 
account the effect of the waves on the particle 
scattering. Kadomtsev and Petviashvili[ 3] and 
Galeev and Karpman [ 4] take account of the non­
linear interaction of the waves. In all these 
papers the starting point is the Vlasov kinetic 
equation with self-consistent field without colli­
sions, and the first distribution function is 
assumed to be random. In [ 3] a chain of equations 
is constructed in this way for several new corre­
lation functions. 

Klimontovich 15] used a different approach to 
this problem, solving approximately the equations 
for the pair correlation functions, and constructed 
kinetic equations for the first distribution functions. 

In the present paper we show, using a different 
method, that kinetic equations analogous to those 
obtained in [ 1-5] can be obtained directly from the 
general Bogolyubov equations for a chain of corre­
lation functions[G]. In this case account is taken 
of the nonlinear terms and the associated higher 
correlation functions. This makes it possible, in 
particular, to establish the limits of applicability 
of the "quasi linear approximation" equations. 

We consider a completely ionized spatially­
homogeneous plasma without a magnetic field. 

The plasma temperature is assumed to be suffi­
ciently high so that the plasma parameter 
11 == e3n112j( KT ) 312 « 1, where e-electron charge, 
n-particle density, T-absolute temperature, and 
K- Boltzmann constant. We consider the case when 
the first distribution functions Fa (a indicates the 
species of the particle) are such that the disper­
sion equation 

" a 2 (+) _ ~ ik ~ Fa 4nean« d"v _ 
e (Qk, k) = 1- LJ 1~12 -a--- ·g + .k -0 (1) 

a=I ._ v ma - l k l V' 

has roots with Im Qk == Yk > 0 for several k. In 
this case stationary solutions of the chain of equa­
tions for the correlation functions, which can be 
obtained by expansion in powers of 11[G,7J, are 
unstable [ 8]. The deviations from the stationary 
solutions increase rapidly with time until the non­
linear interactions and the change in the first dis­
tribution functions stop their growth. Our purpose 
is to obtain expressions for the second correlation 
function, since it determines the variation of the 
first distribution functions. At large instability 
indices it is necessary to consider to this end the 
entire chain of equations for the correlation func­
tions, and this entails great difficulties. We there­
fore confine ourselves to the case when the insta­
bility index is a small quantity, so that the ratio 
I Yk /Re Qk I is of the order of some dimensionless 
small parameter y. We can then construct approx­
imate equations for the correlation functions, ne­
glecting the higher powers of y and 1-L. 

In place of the ordinary chain of equations for 
the correlation functions[G] it is convenient to con­
sider equations in the form [ 8] 
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ag<•> • 
a, ... a. ~ ( a ) (s) 

_o_t_ + t:l vi oqi ga, ... a. 

Here g~~~ .. as ( q 1 ..• qs, v 1 •.. v s) are irreducible 

correlation functions of order s, obtained from 
the usual distribution functions F(s) by sub-

at ... as 
tracting all possible products of the distribution 
functions of lower order, so that g(s) - 0 if 

at· .. as 
at least one difference I qi - qj I - oc. Sums of 
the form 

are taken over all possible permutations of the s 
indices of a, for fixed indices i and k, and also 
over all possible p. 

We shall assume that the order of the quantity 
g~s) a is connected with the parameter y in 

1· •. s 
such a way that 

(2•+2) I I (2•) 1 ga, .. a2s+ 2 ~ r ga, .. a2S ! 

s > 1, 

(3) 

(we assume that fY » ll). We shall show in what 
follows that such a relation is satisfied if it is 
satisfied at the initial instant of time. 

Using proposition (3), we can rewrite (2) in the 
lower order in y in the following fashion: 

(4) 

where the upper index of g(s,i) denotes that 
at ... as+t 

the index ai has been left out from among the 
subscripts. 

We consider in greater detail the equations (4) 
for the second distribution functions g~1la.z. We 
put 

(5) 

where G<2l is the stationary solution of the sys­ata2 

tern (4) for s = 2, corresponding to the instanta­
neous values of Fai (t) (see [ 7] ). 

Taking Fourier transforms in q 1 and ~. we 
obtain for f~/a2 the equation 

8/(2) 

;t" + i (k1v1 + k 2v2) /~:~, 

(6) 

We do not include the quantity aG~la /at in (6), 
1 2 

since it is small and will be taken into account 
when the next-approximation equations are con­
sidered. For symmetry in notation, we use the 
function f~ia.z ( k 1, k2, v 1, v2), which contains in the 

homogeneous case under consideration the factor 
6 ( kt + k2). 

It is easy to verify that the product of the two 
solutions of the corresponding linearized system 
of Vlasov equations 

(7) 

is the solution of the system (6). In (7) we have 
left out the subscripts, fOl is a vector, and L is 
a matrix integral operator: 

Therefore the Green's function R~1~b~~ of the 

system (6) is the product of the Green's functions 
R<1l of the system (7)[ 8], so that 

t~:~, = 

I 3 'd3 ' 
i=O d Vj V2' 

(8) 

We can show analogously that the Green's function 
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of the homogeneous system (4) with arbitrary s is 
represented in the form of a product of s func­
tions R1 !) . 

We shall assume that the initial data f~1'a2 I t=O 

are analytic functions of the different components 
vai in a sufficiently broad strip 

0 > lm v~i > - h. (9) 

In addition, we shall assume that the initial data 
are much smaller than those values of f~1'a2 which 

are attained in succeeding instants of time because 
of the instability 

/ (2) I ~ /(2) I a,a, i=O ~ a,a, i>!fywp• (10) 

We can use then the asymptotic expression (A.8) 
of Appendix A for R~~ outside the narrow region 

I k · v + w(r) 1. We assume that to each k there 
k 

correspond not more than two roots gl+l and Sl <-l 
k k 

of Eq. (1) with small yk> and yk_-l, and we put 

Re n~> = - Re Qkl = wk_1l, that is, there exist 

waves propagating in opposite directions with 
equal velocity. In the expression for Ra<2l we 

ta2a3a4 
can retain only four terms corresponding to the 
roots with small Yk (since the remaining terms 
attenuate rapidly), of which two oscillate with fre­
quency ±2w~1 l and the two others do not oscillate. 

It can be shown that the oscillating terms make a 
relatively small contribution in the equations for 
the first distribution functions. Consequently we 
henceforth disregard the oscillating terms. We 
can, for example, choose initial conditions 
f~1l~ I t=O such that these terms vanish. Finally, 

using (A.9), we find that in the lower approxima­
tion f~1'a2 is of the form 

1~:~. = 2J Q~:k, Q~:k, r~: 6 (kl + k2), ( 11) 
r, 

where 

Qr i.k°Fa ea [ 1 ~~ ] 
ak = k" 7fV m . r + . k + . - ( r )2 ' a zwk z v '-' iwk + i kv + I'> 

L1--+ + 0, 

x exp (~~: + ~~~), ,1 __, + 0. 

We can write an analogous expression for the 
irreducible correlation functions f(s) In the 

at ... as. 
lower approximation it will contain the product 

Q(ri) and the following condition should be satis­
aiki' 

fied 
8 

,, (r;) = 0. 
L..J (i)k; 
i=l 

In addition, f(s) contains, by virtue of the 
at ... as 

(12) 

homogeneity, the function 6 ( k 1 + ... + ks). Condi­
tion (12) is a supplementary equation which relates 
the ki with one another, and can be satisfied, gen­
erally speaking, only on some hypersurface in the 
k1, ... , ks space. In the case of Langmuir oscilla­
tions, however, the wkr) with small k are practi-

cally independent of k, and the region where 

is sufficiently broad for all the correlation func­
tions of even order, whereas for functions of odd 
order this equation cannot be satisfied. Thus, we 
can assume for the case of instability with Lang­
muir waves that the functions of odd order vanish 
in first approximation. We shall henceforth con­
sider just this case. 

In the next approximation the triple irreducible 
correlations will be determined from (2) with 
s = 3. In this equation it is possible to neglect the 
terms outside the integral sign with potential 
energy, since these terms make a contribution 
proportional to fl (we assume that fl « y ), that is, 
that the principal role is assumed by those parts 
of the correlation functions which grow as a result 
of the instabilities). 

As a result we obtain for gl3l an inhomoge-
ata2a3 

neous equation with a right half expressed in terms 
of irreducible first-approximation correlation 
functions with s = 2 and s = 4. The solution for 
g<3 l, after going to Fourier components and using 
the form of the Green's function Rm, can be 
written in the form 

CJ. 1 

g~:1,a, = 2J ~ ~ R~~h, (t, -r) R~~~' (t, 1:) R~:~. (t, -r) 
b1,b2=l 0 

(13a) 
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(13b) 

It is assumed here that g<3> lt=O = 0. 

When this expression is substituted in (2) for 
s = 2, the corresponding term can be regarded as 
a small addition and we can assume in it g<2> 

ata2 
~ fa12 >a (we neglect here o~>a as a quantity con-

I 2 1 2 

taining 1'-), where f<2> is determined by (8). We 
ata2 

can analogously put g< 4> ~ f14> Since 
ata2a3a4 ata2a3a4 

the product of the three functions R< 1> (t, T) is an 
oscillating function of T, and since f<2> and f14> 
are slowly varying functions of T, g 13 l is of the 
same order as T 13 > ( see proof of an analogous 
statement in Appendix B). We conclude therefore, 
in accordance with assumption (3), that g<3> is of 
the order of l. 

Expressions (5) and (8) for the second correla­
tion function do not yield a solution of the corre­
sponding equation (2) for a nonvanishing triple 
irreducible correlation. Accordingly, we put 

( 14) 

When an equation is obtained for og12 > it is nec­
ata2 

essary to take into account the derivative 
ao<a2> /at, which is connected with the variation 

1a2 
of Fai. Since we are considering large time inter-

vals, we can use the asymptotic representation (11) 
for f~{a2 , and assume that, owing to the nonlinear 

interactions, the quantities r~rs)' like the func-
1 

tions Fa. vary slowly with the time, apart from 

the time -dependent factor exp (/3k(r1) + {3 (r2k) ) ; this 
1 - 1 

must be taken into account when f~:~ is differen-

tiated with respect to the time. 
We shall denote by the symbol a'fl2) I at the 

ata2 
time derivative when {3(r) and if!(r) are not differ-

k k 
entiated. The equation for og<2 > takes the form 

ata2 

~<'Ja(2l+ L 6g<2l +L'<'lg<2l =- ac<2l- a•t<2l + r<2l, 
at b 1 2 at at 

where 

(15) 

As shown in Appendix B, the solution of this equa­
tion for og~:a2 for t ::0: 1/y is of the order of y 

(since g<3> ~ r 2 ~ y2), if the orthogonality condi­
tion (B.3) is not satisfied, and is of the order of 
l everywhere except in narrow zones (of width 
on the order of y) in the space v 1, v2 if the 
orthogonality condition is satisfied. Thus, og<2> 
can be neglected in (14) if 

" ~ (ac<2) a·t (2) ) "' ~ +~2 - Ti2) a "'-~ at at '··· 2 
a 1,a2=_l 

(16) 

The superior bar denotes the nonoscillating part 
of the corresponding function or its time average 
over a sufficiently long interval. Analogous equa­
tions can be obtained for higher irreducible even 
correlations 

(17) 

The notation in this equation is analogous to that 
introduced above for s = 2 and s = 3. Equations 
(17) determine the values of the different correla­
tions. 

We shall assume that the initial data for the 
irreducible functions with s > 2 are exceedingly 
small, so that these functions increase only be­
cause of the nonlinear terms. Then T<4> will be 
of the order of magnitude of y 3, since it contains 
the product f<2 > f(3). 

It is possible to conclude from (17) that within 
a time of the order 1/y the quantity f14 > becomes 
of the order of l. We can show analogously that 
the function f(2s) will be of the order of ys, and 
f(2S+t) will be of the order of yS+t, in accordance 
with the assumption (3) above. Thus, the contri­
butions made to (17) by the irreducible functions 
of order ( 2s + 2) and by the reducible functions 
contained in T 12 s> are of the same order in y, so 
that we have a coupled infinite chain of equations. 

In addition to y, we have still another parameter 
which determines the range of those values of k 
for which (1) has roots with Im Qk > 0. By way of 
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such a parameter we can take the ratio D-v/vT, 
where D-v is the width of the second maximum of 
the distribution function and VT is the thermal 
velocity (we have in mind a sausage instability). 
We assume D. v /vT to be a small quantity. Let us 
consider the quantity T(3l. It is easy to see, in 
accordance with formula (13b), that the integral 
with respect to x of the product g(2l can be cal­
culated in explicit form, since g:i21~2 (k1 , k2) is 
proportional to o(k1 + k 2). From this we see that 
the part of T(3l containing g(4l will have a term 
with D.v /vT raised to a higher power than in the 
terms containing the product g(21 , owing to the re­
maining integration with respect to X • 

Thus, in the first approximation in D-v/vT we 
can neglect in (12) the terms containing gc''. The 
chain (17) breaks off, so that Eqs. (16) in conjunc­
tion with (13a), (13b), and (15) form a system from 
which r~~ can be determined. The quantities Fa 
should be determined here from (2) with s = 1: 

Making the natural assumption that rk_ = rk' 
= ( rk )* (it is easy to verify that this assumption 
does not contradict the equations for rk), and using 
expressions (11) for fi{1'a2 , we obtain 

(18) 

The second term in the square brackets plays a 
small role in the change in the part of Fa which 
causes the instability. We have retained this term 
because in the calculation of the integral quantities 
it may make a contribution of the same order as 
the main term 1l, in spite of the fact that in the 
present paper we are not systematically calculat­
ing terms of order y 2 for the quantity gi21'a2 • 

In this formula Ia (fp? is the usual screened 
collision integral (see [T-). The main contribution 
in the integral with respect to k is made by the 
region of instability, where rk are largest ( rela-

tive to D.v/vT). Let us transform Eq. (16). Using 
(12) and (13), the asymptotic expression (11) for 

1lThe authors are grateful to Yu. L. Klimontovich who 
called our attention to this fact. 

gl2 l, and the asymptotic value of R(1), we obtain 
for large t: 

2 3 

- 2J 2J 2J' Q~~k,;, Q~; kz <D~;·v) (v;, k;, kz) 
p.,v=! i=l · 

(19) 

The indices ai, aj , and a z are chosen from 
among a 1 , a 2 , and a 3 with i "' j "' l "' i. The 
primed summation is over all possible permutations 
of the indices l and j . The indices !J. and !J.' or 
v and v' are related in the following fashion: 

p. + p.' - 0 v + v' - 0 
w-k; wk; - , Wkz W-kz - . 

Using the equations for g( 3l and the fact that the 
functions ~~, k are ''eigenfunctions'' of the Vlasov 
operator L with eigenvalues -iw~ +D., we can 
easily show that 

(20) 

This formula can be derived also more rigorously, 
in analogy with the derivation of (A.8). 

Using (20), (19), and (15), we can reduce (16) 
after laborious but straightforward manipulations 
to the form 

I v',rs ~ ):( rs' -;- Aa. (X, k., k.- X) ~a. -k (v •• ) 
• s • s 

X [<D~; (v., k. - x, - ks) 

+ <D~~ (v., k. - x, x)l d3 v. r~xr~. L~:~a. (21) 
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where 

r i k oF a ea [ 1 ~~ ] 
Qa,k = k2av ma iw~+ i kv + !1- (iw~ + i kv + !1)2 ' 

11~ 0; 

11~ 0: (22) 

s' =f=s. 

For those k and wk at which instability takes 
place, that is, for kvph ~ wk, where Vph is the 
velocity at the point of the second maximum of the 
distribution function, equations (21) and (18) lead 
(when kvT « w) to the estimate 
rk ~ Yk(mvph/e) 2 (~v/vT) 2 • The estimate of 
the ratio of the nonlinear terms to the linear ones 
in (21) yields in the instability re~ion a value 
~ (~v/vT) 3 , which is the parameter assumed small 
when terminating the chain of equations (17). 

Let us summarize briefly the results of the 
present work. 

We have developed in this paper a new method 
for solving the chain of equations for the correla­
tion functions in a plasma; the method uses the 
simple representation of the Green's functions for 
the homogeneous part of the s-th equation of the 
s-th equation of the chain in terms of the Green's 
function of the linearized Vlasov equation. This 
representation is quite general and valid both in 
the presence of a magnetic field and in an inhomo­
geneous plasma. 

For the case of a homogeneous weakly unstable 
plasma without a magnetic field, the use of the 
present method makes it possible to obtain a chain 
of equations describing the evolution of the corre­
lation functions. If the ratio of the width, ~v, of 
the interval of phase velocities for increasing waves 
to the thermal velocity VT is small, this chain of 
equations yields the closed equations (18) and (21) 
for the first and second distribution functions. 
Equations (18) and (21), neglecting the terms that 
take into account the nonlinear interaction of the 
waves, go over into the equations derived in [t-s, 9J 
(it is necessary to recognize in the comparison 
that the result presented in [s, 9J pertains to the 
isotropic case). 

Thus, the necessary condition for the applica­
bility of the equations of the "quasilinear" ap­
proximation for large time intervals is the small­
ness of the ratio ~v /vT (in addition to smallness 
of the increments). 

The terms that take into account the nonlinear 

interaction of the waves in the lower order in 
~v/vT and y differ from the corresponding non­
linear terms in [3J. The main difference lies in 
the fact that in [ 3 ~ [equation (36)] there are no 
terms analogous to the terms with r !\ r_:' X_ k 
in our Eq. (21). s 

The authors are grateful to N. N. Bogolyubov 
and Yu. L. Klimontovich for a discussion of the 
problems connected with the present work. 

APPENDIX A 

Let us consider the behavior of the solutions of 
Eq. (7) for large values of the time. The solution 
of the system (7), as is well known, is of the form 

· e 1 oF (t') 
I = :_~ ~ \ m (t' 't) _a __ e-ikv(H') dt' 

a k2 m J ... ' o v 
a~ 

(A.1) 

where <p(t , T) satisfies the equation 
t 

~ E (t- t', t') !p (t', 't) dt' = D (t- 't, 't), (A.2) 
~ 

and 

E (t - t', t') = {J (t - t') 

'ill! "' a a a -ikv(t-1') -"' • 1. • k n e2 ~ oF (t') 
--- ~-- --- e u-v 

k2 a Ina ' av ' 

D (t - 't, 't) = 4:rt ~ ea na ~ Ia I I=< e-ikv(t-~) cPv 
a 

We assume that Fa and fa 1 t=T are analytic 
functions of the different components of va in 
some sufficiently broad strip 0 ~ Im Vaj ~-h. 
Then it is easy to verify that E (t - t' , t') and 
D (t - T , T) tend rapidly to zero as t- oo. We 
shall assume that Fa varies slowly with the time, 
so that I F3:1 BFa/Btl ~ ywp· Under such assump­
tions, we can neglect for large t the value of 
D (t - T, T) in (A.2), and the integrand can be ex­
panded in a series about t' = t . Putting 

!p = 2J A l;> ex p ( i,'ljll;>) 

and assuming that A(r) and 81/J (r);at are slowly 
. f . k b k varymg unctions, we o tain 

t { o\jl(r) } 
Al;>(t) exp {i'ljll;\t)} ~ exp i otk (t' - t) 

< 

{ [ 
. 0z..o,(r) J 

X 1 + .:._ __ 'l'k_ (t' - t) 2 
2 ot•· 

X E (t - t' t) + Of'. (t - t',!l) I (t' - t) } dt' • oa o=t 
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ilA(r) t { i)21jl(r) 
+ a: exp {i'iJt) (t)} ~ exp i at~ (t' - t) } 

., 

X (t' - t) e (t - t', t) dt' = 0. (A.3) 

Since the integrand attenuates rapidly for large 
t - t' , the lower limit can be put equal to -oo with 
the assumed accuracy. In the zeroth approximation 
in y we obtain 

t 

'Pt) = J wl:) (t') dt', 
<+It 

where w~r) is the root of the equation 
ReE<+l(-w(r),k,t) =0. 

Equationk(A.3) can be integrated in the next 
approximation in general form. Bearing in mind 
the application to a sausage instability, and neglect­
ing terms containing aw~)/at, we get 

I 

Al;> (t)/Al;> (-r + t1) = exp { ~ rl:> (t') dt'} 
<+It 

= exp {~l;> (t)}, 

r (r) I a Re e<+) I 
Yk = e<+ > (- wk , t) aw -wf> • (A.4) 

We have left out in this expression terms of order 
y. 

We choose t 1 such as to make D (t1 , T) 

:£ E ( t 1 , T) :£ y. Since these quantities attenuate 
rapidly, we can assume here that yt1 « 1. Then 
for t - T :-:; t 1 we can assume that Fa is indepen­
dent of the time and we can obtain the solution 
(A.2) with the aid of a Laplace transformation 
(see [to]). This enables us to calculate 

() --[aR;we<+>,_r]- 1 ~ A; I 1=1,+< u .::.J 4neb nb 
"'k b=1 

(A.5) 

Expression (A.l) can be written for large t - T 

in the form 

Ia = eikv(l,-1) 2; ~ Rj,~ (v, v'' t1, 0) /b I I=< dv' 
b 

t 

+] exp {i\j)~·) (t)} J exp{i [ljll;) (t') -'!Jl:) (t)l} 
l 1+o 

oF · k e 
X exp {~Lr) (t')} -!'- k! 2 2 exp { i kv (t-t') dt' 

uV ma 

-1 CJ. 

;< [~e_e<+) j -J ~ 4neb nb \---1---
ilw -wl;) b=1 .) iwf) + i kv + !'. 

X I" ( v') I I=~ cflv'. (A.6) 

R~~ in the first term can be obtained by assum­
ing Fa independent of the time. The first term 
remains bounded, whereas the second term increa­
ses with time in the case of instability. 

Expression (A.6) is somewhat cumbersome and 
inconvenient for computation of different integrals 
with respect to v with the function fa (or its deriva­
tives with respect to v), in the form 

~ Ia (v, t) 8 (v, t) cflv, 

where ® (v, t) is assumed to be an analytic func­
tion in the strip (9). In such an integral the first 
term of formula (A.6) can be neglected if t is 
sufficiently large. Reversing in the second term 
the order of integration with respect to v and t, 
we obtain an expression of the form 

t 

~ exp {i'!Jl:\t)} ~ ~ exp { - ikv (t - t')} 
I,+-. 

X 'A (t', v) 8 (t, v) 

X exp {i [\j)l;) (t') - '!Jt> (t)]} cflvdt' = J, (A. 7) 

where A (t', v) is a slowly varying function of t' . 
Owing to the analyticity, the integrand will attenuate 
rapidly with increasing t - t', and therefore, 
neglecting the exponentially small terms, we can 
replace t 1 by -oo and put A (t' , v) = A (t, v) 
+ (t' - t) oA (t, v)/8t. In the resultant integral 
we can again reverse the order of integration and 
integrate with respect to t' by adding a factor 
eD.(t'- t), which ensures convergence, and con­
sider the limit as D.- +0. We thus obtain 

1 = ~Iimexp{i¢/:>(t)}fl~~t .. v)e(t:v> 
r 6--+0 L !(J)k T !kV ~- !'. 

- il'A~8 (t v)(1 1 . \ 2 ld3 v, ~-. + 0. 
ilt ' iw'· + ikv --'-- !'. i J k ' J 

We see that in considering different integrals 
with respect to v, we can assume that at large t 

'k oF e [ 1 Ia=] exp {itt> (t)} exp {~l;) (t)} _:___,___a 2 ----:--.---
r k2 ilv ma iw~ + ikv + !'. 

~~ J [aRe e~: (w, k) 
1
1 ]- 1 

(iw~ + ikv + fl)2 W=-u{. i="': 

X~ 4;-rnueb ~iw~--! :kv ~- !'. fu ( v') j t~-~ d3 v', ~ -· + 0 

(A.8) 
The second term with yk_ in the square bracket is, 
generally speaking, small compared with the pre­
ceding term. However, this term may be signifi­
cant in the calculation of some integral expres­
sions. It must be noted that formula (A.8) does not 
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yield in the narrow region I v.:k: + k · v I ~ y a cor­
rect expression for fa itself. Formula (A.8) gives 
an asymptotic representation for the Green's func­
tion R~~ , and is in the form of an expansion in 
''eigenfunctions'' 

ea ik 8F a [ 1 ~~ --~ , 
Q~k = m~ k2 7iV iw~ + ikv + tl - (iw~"+ ikv + L'l)2 

6.-->- + 0. (A.9) 

APPENDIX B 

We consider the inhomogeneous equation 

ati:~, a. , (2) a. , (2) 

~ + ~ La,a,/a,a, + ~ La,a, /a,a, = <Da,a,, (B.1) 
as=l 

where <I> a 1 a2 is a slowly varying function 
( 8<1>a1ad8t ~ y), which is analytic in the strip 
(9) with respect to each of the components of the 
velocities v1 and v2. The solution of (B.1) can be 
obtained with the aid of the Duhamel integral: 

(B.2) 

We leave out the terms that depend only on the 
initial data. We are interested in the asymptotic 
behavior of the solution (B.2) at large values 
t ~ 1/ywp. The Green's function R~1'a2a3a4 
= R~\la3 R~1;a4 breaks up into a sum of products 
corresponding to different terms of formula (A.8), 
except that the initial instant of time T is replaced 
by t' . In accordance with the different time be­
haviors of these terms, they will make different 
contributions to the integral (B.2). 

The product R£_2la R~1;a4 contains non-oscillat­
ing terms (corresp1o~ding to v.:[{t) and w~r2) which 
are of opposite sign), and which 1can give i~ formula 
(B.2) terms of the order of I <l>a 1a2 1 I y for arbi­
trary v 1 and v2. All the remaining terms, outside 
of narrow regions of width on the order of y in the 
v 1 , v2 space, are of the order of I <1>a 1a2 1 or 
smaller. This is connected with the fact that these 
terms either oscillate or are themselves of the 
order of y. Within the narrow bands with width 
of the order of y, indicated above, the contribution 
of these terms in (B.2) does not exceed I <1>a 1a21 /y 
in order of magnitude. Therefore the value of any 
integral of f£_21'a2 is determined by the non-oscillat­
ing terms. Thus, the condition under which f~21la2 
has for t ~ 1/y the same order of magnitude as 
<1>a 1a2 in a wide region of v 1 , v2 is the satisfaction 

of the equalities 
0. 

'V (' ;:;o(r,) ;:;o(r,) <D ( t) d3 d3v - 0 
~ J '-'a 1k1o....~a 2k2 a1a2 V1, V2, Vl 2 - ' 

at. a2=l 

(B.3) 

for each pair w~rR: = - v..,~rt). The number of such 
equalities corresponds to the number of non-os­
cillating terms. 

These conditions are essentially the conditions 
for the orthogonality of the right half of (B.1) to 
the "eigenfunctions" of the homogeneous operator 
conjugate to (B.1) (with 8/8t = 0), namely 
B~~,B~U,. The "eigenfunctions" of the homogeneous 
operator (with 8/Bt = 0) (D.1) will be [(see (A.8)l 

Q~i]t Q~~2· 

If <l>a1a 2 is not a slowly varying quantity and 
contains oscillating terms, then in order for the 
non-oscillating part of f~21la 2 to be of the same 
order as the right side, it is necessary to satisfy 
condition (B.3) with <I>a1a2 replaced by the time 
average, taken over the interval 1/v.:p « .6-t 
« 1/ywp. 
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