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The thermal conductivity of dielectrics is studied in the low temperature region when colli
sions between quasiparticles (phonons or spin waves) accompanied by Umklapp processes 
are much less probable than collisions without Umklapps. It is shown that these normal col
lisions, which by themselves do not lead to thermal resistance, can significantly impede the 
transfer of momentum from the gas of quasiparticles to the boundaries of the sample or to 
other macroscopic distortions (for example, to dislocations or to the faces of single crystals) 
in sufficiently large and pure samples. Taking this fact into account leads to a significant 
change both in the magnitude of the coefficient of thermal conductivity and in its dependence 
on temperature and on the dimensions of the sample. 

As is well-known, thermal resistance appears in 
an ideal single crystal of infinite dimensions only 
because of those collisions between quasiparticles 
which are accompanied by Umklapp processes. In 
the region of low temperatures the corresponding 
effective mean free path zU increases exponen
tially with decrease of temperature: zU ~ eY®/T, 
where @ is the Debye temperature if the problem 
involves phonons or the Curie temperature for the 
case of spin waves, T is the temperature, and 
y ~ 1. It is clear that with a lowering of the tem
perature in a sufficiently pure sample, collisions 
of the quasiparticles with the boundaries begin to 
play a dominant role, and the effective mean free 
path zeff turns out to be the order of the trans
verse dimension d of the sample.CiJ 

For a rough estimate of the coefficient of 
thermal conductivity, one can use the formula 

X~ Cleff V, ( 1) 

where C is the heat capacity per unit volume, v is 
the average velocity of the quasiparticles. In the 
very low temperature region zeff ~ d and K in
creases with temperature. At higher temperatures, 
(but for T « ®) K decreases exponentially. 
Therefore the temperature dependence of the co
efficient of thermal conductivity is bell-shaped 
(see Fig. 1 ). If we disregard details, then these 
qualitative considerations are well-confirmed by 
experiment (see, for example, the article by 
Berman [ 2] ) • 

However, the validity of these ideas from a 
theoretical point of view was placed in doubt by 
Pomeranchuk.[3J He noted that if only three-

FIG. 1 

phonon processes are considered, then it follows 
from the appropriate conservation laws that long 
wavelength longitudinal phonons can only collide 
with phonons of comparatively long wavelengths. 
As a result the scattering probability for longi
tudinal phonons goes to zero so rapidly that the 
coefficient of thermal conductivity diverges. But 
this difficulty turns out to be connected to a con
siderable extent with the assumption made by 
Pomeranchuk[ 3] about the isotropy of the phonon 
spectrum. As Herring showed,C 4J if anisotropy 
and degeneracy of the phonon spectra are con
sidered, then for the majority of crystals this di
vergence is not present, or it leads to unimportant 
dimensional effects in real crystals. We note that 
in general similar questions do not arise for the 
case of spin waves having a quadratic dispersion 
law. 

Another difficulty with the theory of the thermal 
conductivity of dielectrics is related to the fact 
that one is not able to solve the kinetic equation in 
this case (even for T « @). In order to obtain 
qualitative results a relaxation time (see, for 
example, [ 3]) is usually introduced by one method 
or another. In this connection, the normal colli-
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sions between quasiparticles which are not accom
panied by Umklapp processes ( N -processes) are, 
as a rule, not taken into consideration (see, how
ever, the article by Klemens [ 5]). Such an approach 
is possibly reasonable at not too low temperatures, 
when the probabilities for N -processes and Umk
lapps ( U-processes) are of the same order 
(ZN ~ l U), since the N -processes by themselves 
do not lead to thermal resistance. However, in the 
region of sufficiently low temperatures where zN 
« zU, N-processes obviously can be important. 
But it is just in this case that one can systemati
cally solve the kinetic equation (see the book by 
Peierls [s]). As the calculations show, the consid
eration of N -processes does not lead to a qualita
tive change in the results associated with volume 
collisions ( U -processes [ 7] and scattering by im
purities [B]). 

The situation is different in the case when the 
thermal resistance is due to the scattering of 
quasiparticles by the boundaries of the sample 
(or by any kind of macroscopic distortions). It is 
clear that the following inequality will hold in a 
sufficiently massive and pure sample at sufficiently 
low temperatures: 

(2) 

where zV is the effective mean free path which 
characterizes the volume collisions with loss of 
momentum. Here a situation arises which is com
pletely analogous to that investigated earlier by 
the author for the case of electrons in a metal.[ s] 

Moving like a particle undergoing Brownian motion, 
the phonon (or spin wave) travels between two 
collisions with path limits of order d2/zN »d. 
Therefore, according to (1), 

x ~ Cvd2flN, 

i.e., the order of magnitude of the thermal conduc
tivity coefficient and its dependence on the param
eters T, d, and so forth are significantly altered 
by the N -collisions. 

For a quantitative investigation of this mecha
nism it is natural to use a hydrodynamical ap
proach, as was also done in [s]. The fact is that 
the N -processes only lead to internal equilibrium 
inside each volume element (large in comparison 
with zN) which may move as a whole with arbi
trary velocity u. Therefore it is clear in advance 
that with fulfillment of inequality (2) the distribu
tion function will have the form 

/ 0 (e- pu) = {[exp ((e- pu)/T) -1W\ 

where E ( p) is the energy of the quasiparticle, 
p is the quasimomentum. 

The velocity u ( r) of the ordered motion as a 
function of coordinates must satisfy a hydrody
namic equation of the Navier-Stokes type. Such 
an equation is derived below and is then used to 
investigate the thermal conductivity of dielectrics 
(see Sec. 2) and ferrodielectrics (see Sec. 3). 

1. The hydrodynamic equation can be obtained 
starting from the kinetic equation in analogy to the 
way this is done for ordinary gases (see, for 
example, [to]). In the case of interest to us, it is 
convenient to write the linear kinetic equation for 
the distribution function f ( p, r) in the form 

V ~~ + (vVT) a;;~= )Nj + Jvj, 

where v = BE/Op, the first term on the right side 
describes N -processes, and the second describes 
collisions accompanied by losses of quasi
momentum. 

For an approximate solution of this equation it 
is natural to take advantage of the fact that the 
term J-Nf is large in comparison with the terms 
v • af/ar and JVf. In fact the solution is sought 
in the form of a series in the small parameters 
zN /d and zNjzV. The method of successive ap
proximations leads, as one can easily show, to the 
following system of equations: 

)N/o) = 0, vfJ/0)/fJr = JN/1), 

v ~rt<l)_ (vVT) ,J, f~ (e)- JVp> = )Nf<2 >; 

f = /0) + /1) + p> + ... 
It follows from the first equation that f< 0> 

= f0 ( E - p · u). The second equation, which now 
takes the form ViPkf0(E) Buk/Bxi = J-Nf<1l cannot 
be solved in general. One can only prove that 
f< 1> contains the derivatives Buk/Bxi linearly. 

Since we are interested in the region of very 
low temperatures, and in the equation under inves
tigation it is obvious that only energies E :S T are 
important, we can assume that the dispersion 
law of the quasiparticles is a power law [ E ( p) 
=s(n)p forphononsand E(p)=a(n)p2 forspin 
waves, n is a unit vector in the direction of p]. 
In this connection f< 1> = 1/Jik ( E/T, n) Aaui/Bxk, as 
is easy to prove. The functions 1/Jik of dimension
less variables satisfy equations which do not con
tain small parameters; in the isotropic case 
1/Jik = nink 1/J ( E/T). The temperature-dependent 
coefficient A can be easily found in any specific 
case. 

We then multiply the third equation by p and 
integrate. Since the integral on the right side is 
identically equal to zero, the sought-for equation 
for u ( r) appears as a result. In the isotropic 
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case it is convenient to write this equation in the 
form 

(3) 

1 \ ' y =[3T.) dp pvef0 (e), v = vTzN =f ~ dp pnp, 

U 11 Ay o 

..:v= 13 .\dppJ (up) / 0 (e), ~ = ~ dp p2 f~(e). (4) 

In analogy with an ordinary gas, the kinematic vis
cosity v is written in the form of the product of 
the average velocity VT of the quasiparticles 
(VT ~ ( BE/8p)p=pT' E (pT) = T) times the quan-

tity zN, having the meaning of mean free path for 
N -processes. To this equation one must add the 
boundary condition: u = 0 on the boundaries of the 
sample and on macroscopic distortions, which 
corresponds to diffusion scattering. 

As is clear from the derivation, the hydrody
namic equation retains the same structure in the 
case of an anisotropic dispersion law. But, of 
course, all coefficients will now be tensors. Thus, 
for example, the term v~ui is replaced by 
Viklm82uk/8xz8xm; however, it is essential that 
all "iklm ~ v. Therefore in what follows we shall 
start from Eq. (3), claiming in this connection only 
correct orders of magnitude of quantities and their 
correct dependence on the basic parameters. 

The heat current density 

Q =is~ dp vef0(e - pu) ~ 3~3 ~ dp pvef~(e) 

depends on the coordinates, and in order to deter
mine the thermal conductivity coefficient K it is 
necessary to average the vector Q over the trans
verse cross section of the sample: Q = KVT. As 
an example we give the result of solving Eq. (3) 
in two elementary cases: a plate and a circular 
cylinder. 

Let us represent the coefficient of thermal con
ductivity in the form K = czeff VT, where 

1 ~ ' C = - 3 - dp e2/ 0(e) 
h T. 

is the heat capacity. Then for the plate* 

zeff = zY (1 - z-1 th z) 

and for the cylinder 

zeCf = zV [1 - /1 (z) I zlo (z)], v v 
l = T VT, 

z = dl2 }1 z"~'zN. 

Here I1 and I0 are Bessel functions of imaginary 
argument while d is the thickness of the plate or 
the diameter of the cylinder. 

*th ~tanh. 

In limiting cases both formulas lead, correct to 
within an unimportant numerical factor, to one and 
the same result: For z » 1, zeff ~ zV and for 
z « 1, zeff ~ zV z 2 ::::: d2 /ZN. This is natural since 
z 2 ~ d2/ZNzV and the quantity d2/zN, as proved, 
has the meaning of effective mean free path for 
collisions with the boundaries. It is clear that the 
small difference of the results for plate and cylin
der is not accidental in the hydrodynamical region. 
In what follows, by d we shall understand some 
characteristic transverse dimension of the sample 
(or the distance between macroscopic distortions). 

2. Now we go on to concrete results for the 
phonon thermal conductivity of dielectrics. At low 
temperatures the interaction of phonons with each 
other occurs principally by means of three-phonon 
processes. Starting from the appropriate collision 
integral (see, for example, Peierls [ 6]) and the 
relations (4), one can prove that in order of magni
tude Z~P ~ a(Ms 2/en) (en/T) 5 where a is the 
lattice constant, M is the atomic mass, s is the 
velocity of sound, en is the nebye temperature, 
en~ hs/a. 

For three-phonon U -processes, analogously to 
the way this was done in [ 7], one can easily show 
that 

l~P = sT~p ~a (Ms2 IE>n) (T IE>n)'1' exp (rE>n IT), r = 1. 

The numerical value of the parameter y depends 
on the behavior of the phonon spectrum inside the 
boundaries of the whole Brillouin zone. 1 l It is 
curious that in other respects the results given, 
also including the pre-exponential factor 
( T/en) 512, do not depend on the nature of the dis
persion law. 

In not very pure samples scattering by impuri
ties may also turn out to be important. The corre
sponding mean free path Zpi ~ (a/c) ( en/T )4, c 
is the concentration of impurity atoms; here 
( zv )-1 = (l~P) -1 + Upi )-1. 

An approximate curve of the temperature de
pendence of the thermal conductivity coefficient 
for a dielectric is shown in Fig. 1. In the region 
of very low temperatures, as long as Z~P » d it 
is obvious that zeff ~ d and K ~ Cpds ~ da-3s 
( T /en) 3• Then, beginning with the temperature 
T 1 at which l~P ~ d up to the temperature T 2 at 
which d2/zN ~ zV, the diffusion mechanism plays 
the major role and 

1>y8 denotes the smallest possible value of the energy of 
the colliding phonons, E(P,) + E(p2 ), allowable by the conser
vation laws: E(P,) + E(p,) ~ E(p3), p1 + p2 - p3 ~ b, b is a re
ciprocal lattice vector. 
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Then the usual decrease of the thermal conduc
tivity begins according to either an exponential 
law (if U -processes dominate) or according to a 
1/T law (if scattering by impurities plays the 
major role). The usual temperature dependence 
K ( T) is also shown in Fig. 1 (the dotted curve) 
for comparison. 

As follows from inequality (2) the diffusion 
mechanism can appear only in a sufficiently 
massive sample of dielectric. It is difficult to 
obtain any reliable estimate for the thickness d, 
but apparently it would be sufficient if d were 
~1 em. 

3. Spin waves are basically responsible for 
heat transport in ferrites at low temperatures. 
Actually the heat capacity of a spin wave gas, 
Cs ~ a-3(T/ec)312 >> Cp if T « eb/ec. In addi
tion, N-collisions between spin waves are consid
erably more probable than N -collisions of spin 
waves with phonons (see the review article by 
Akhiezer et al.[ 11]). Therefore for the investiga
tion of this temperature region, in which the diffu
sion mechanism dominates, one can disregard the 
presence of phonons. 

Collisions between spin waves are connected 
with relativistic and exchange interactions. The 
mean free path for the corresponding N-processes 
in order of magnitude equals (see [ 11]) 

~~~)~a (E>c/f1M0) 2 [1 + exp (~ftM0/T)], ~~~)~a (E>c!T)'h, 

where JJ- is the Bohr magneton, M0 is the satura
tion magnetic moment per unit volume, {3 is the 
anisotropy constant. The external magnetic field 
is assumed to be weak (J.J-H « T). 

From the expressions given, it follows that the 
diffusion mechanism must appear even in rela
tively thin samples of ferrite. In particular, it is 
sufficient if d » a(®c/J.J-Mo) ~ 10-3 to 10-4 em. 
If this inequality is satisfied, then the coefficient 
of thermal conductivity behaves as follows (see 
Fig. 2). At very low temperatures, as long as 
d « l~~' zeff ~ d'and K ~ CsdVT ~ (ecd/ha2 )x 
( T /®c) 2• Then in the interval from 

Tdl~~ (T 1 ) ~d) to T 2 [d2/Z~~ (T2 ) ~ l~ (T 2)] 

the thermal conductivity is determined by the dif
fusion mechanism and 

( (ftlVlo I 8 0 )2 exp (- i3f.1Mo IT), 

X i (ftMo I Elc)2 , 

l (T I ec)'\ 

FIG. 2 

T1~T ~ ftMo, 

ftMo ~ T ~ 8 0 (ftMo I Elc)'l•, 

ec (ftMo 1 8c)'f, ~ T ~ T2. 

For T > T 2 in a sufficiently pure sample K 

decreases exponentially. The impurity thermal 
resistance essentially depends on the magnetic 
properties of the impurity atoms (see the article 
by Bar'yakhtar and Urushadze [ 12]). 
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