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A number of problems in the theory of two-quantum processes, particularly stimulated com­
bination radiation (stimulated Raman effect), are considered. Fluctuation-dissipation 
theorems are derived which relate the stimulated two-quantum emission with fluctuations 
when an external sinusoidal signal is present. With the aid of these theorems it is possible 
to relate the spectral intensities of the spontaneous and induced Raman emission. The theory 
developed is applied to study the interaction of electromagnetic waves, taking into account 
stimulated Raman emission, and to derive the conditions for self-excitation of a Raman 
laser. The relation between Raman and parametric systems is considered. 

1. INTRODUCTION 

WITH the development of the technology of co­
herent optical generators (lasers), the experi­
mental observation of various multi-quantum 
processes of optical emission and absorption has 
become possible. In particular double absorption 
of light from a laser Lt,zJ, and stimulated Raman 
emission in organic liquids [3], have been observed. 
Spontaneous Raman emission (also called com­
bination scattering or combination radiation) was 
first observed by Mandelstam and Landsberg [4] 

in solids and by Raman and Krishnan [5] in liquids 
as early as 1928. 

Of the numerous works devoted to two-quan­
tum processes we cite only the book by Placzek [sJ 
and the work of Goppert-Mayer. [7] These authors 
calculate the probability of two-quantum processes 
assuming discrete atomic (or molecular) spectra 
and a continuous spectrum for the radiation field. 

In the present work (Sec. 2) a theory of two­
quantum processes is constructed without these 
limitations (suitable in particular for coherent 
electromagnetic signals); a general treatment is 
given of the behavior when external forces are 
present in an arbitrary quantum system having 
resonant absorption (Sec. 3). An analogue of the 
fluctuation-dissipation theorem is derived which 
relates the noise when an external force is pres­
ent to the susceptibility of the system in the 
presence of the same force (Sec. 4). Further (Sec. 
6), the interaction of electromagnetic waves taking 
into account stimulated Raman radiation is con­
sidered, and the conditions of self-excitation are 

derived (Sec. 7) for a Raman laser (the functioning 
of such a laser is based on the phenomenon of 
stimulated Raman emission). A comparison of 
Raman and parametric systems is made in Sec. 
8. 

2. TWO-QUANTUM PROCESSES 

The following elementary two-quantum proc­
esses are possible:[6•7J 

a) Double emission and absorption: a molecule 
goes from a lower state E 1 to an upper E 2 with 
the absorption of two photons, or from an upper 
to a lower state with emission (spontaneous and 
stimulated) of two photons. The frequencies of 
the photons w1 and w2 here satisfy the relation 
(expressing the law of conservation of energy) 

b) Raman emission and absorption; a molecule 
goes from a lower state to an upper with emission 
(spontaneous or stimulated) of one photon (fre­
quency w 2 ) and absorption of another photon of 
frequency w1 > w 2-a Stokes process. If the mole­
cule was originally in the upper state, then the 
photon of larger frequency w1 is emitted-an 
anti-Stokes process. The frequencies of the sig­
nals w 1 and w2 satisfy the relation 

E2 - E1 = nw1 - nw2. 

In order to find the intensity of the emission 
from processes of types a) and b) we consider 
the stimulated and spontaneous emission of a 
system which is under the influence of an external 

474 
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field whose energy of interaction with the system 
has the form 1 l 

VA -..,.., v'l -ioozt 1-.LJ e . 
l 

The radiation field of the other signal will be 
described quantum-mechanically. Then the com­
plete Hamiltonian of the system is 

fi = fin+ ¥1 (t) + i- 2J (pe + roeqe)- 2J Bvqv, (1) 
v 

where H0 is the Hamiltonian of the unperturbed 
molecular system and the quantity B v has the 
form 

es, ms, Ps are the charge, mass and momentum 
of the s-th particle of the molecule, and Av ( s) 
is the value of the eigen vector Av of the v-th 
mode of the radiation field at the site of the s-th 
particle. We neglect terms quadratic in the parti­
cle charge, since these terms are not essential 
for the processes considered. 

The intensity of the radiation of the v-th mode 
of the radiation field is determined by the oper­
ator 

dH~ d{1 '2 2'2' i'' A ' ' 

&=lit z(Pv + rovqv)} = n [H, Hvl = BvPv• (2) 

We average this expression with respect to the 
density matrix of the entire system (with Hamil­
tonian H). The equation for the density matrix in 
the interaction representation, with the interac­
tion as v2 = -I::Bv&v. has the form 

v 

The mean value of the emission intensity accurate 
to terms of second order in v2 assumes the form 
(see [ 8] ) 2l 

dii --·-­Tt = Bv (t) Pv (f) 

. t 

+ T 2J ~ {Bv (t) Br.. (tl) Pv (t) q,.. (tl) 
0 

( 3) 

1lThus we describe one of the fields acting on the sys -
tern classically. If we have in mind the powerful field of a 
laser this can always be done, since, for sufficiently strong 
fields, quantum effects can be neglected. 

2>Just as in ["], the assumption is made that at the time 
t = 0 the density matrix of the system has the form p = PmPr• 
where Pm is t_!le density matrix of the molecular system with 
Ha111iltonia.n H0 , and fir is the density matrix of the radiation 
field. 

In distinction from the corresponding expression 
in a paper by one of the authors, [s] the variation 
of Bv ( t) with time is also determined by the ex­
ternal field V1 (t). 

We shall in what follows be interested in the 
second term in (3) which gives the spontaneous 
and stimulated emission (or absorption) which 
does not depend on the phase relation between the 
unperturbed radiation field ( p v• qv) and B v ( t). 
After averaging over a time much larger than the 
period of the radiation, and remembering that the 
correlation function Pl\ ( t 1 ) qv ( t) satisfies the 
conditions taken in L8], we obtain the radiation in­
tensity as 

t 

- i (nv +{)~sin ffiv (t- t1) Wv (t), Bv (t1)] dt1, (4) 
0 

where B v ( t) B v ( ti) is the part of this correla­
tion function which depends only on the difference 

i; -t- ti, and ( Nv + ; 2)t:iwv = Hv· A 

It now remains to calculate B v ( t). Since we 
assume that the field Vi ( t) is small enough, we 
limit ourselves to the first order approximation 
in vi ( t): 

B (l) (f) _ ~ i("'mn-"'l) tbl 
v nm- £..,). e vnm, 

l 
(5) 

l { Bvnk vLm y~kBvkm } 
bvnm = 2J li ~ (roz - ffikm) - li ~ (roz - Wnk) , 

k,l 6 
. ( ) 

where the function 1;: ( x) has the form !;: ( x) 
= P/x- irro(x) (P/x is the principal value of 
1/x). From the definition (5) and the fact that 
B~1) is Hermitian it follows that bLnm = ( b~inn )*. 

Under the assumption that the density matrix 
of the unperturbed molecule is diagonal, the part 
of the correlation that depends only on the differ­
ence t- ti, B~l(t)BUl(tj) has the form 

B (l) (t) B(l) (t) - '\.1 P bl b-l e'<"'ak-"'l )(t-t,) (7) 
v v 1 - ..LJ n vnk vkn ,_ 

n,k,l 

where the Pn are the populations of the levels in 
the unperturbed molecule. Substituting (7) in (4) 
and considering a time interval t » Tc = 1/ow 
(where ow characterizes the spectrum of the 
molecule or the field) we obtain the required 
formula for the radiation intensity for two-quan­
tum and Raman processes ;3l 

3lThe remaining terms of the type B~,0>(t)B~1 >(t,) and B~0 ) 
(t)B~2 >(t,) give no contribution to the time-averaged radiation 
intensity (3), if wv =f wnm' which we further assume. 
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Iv = 1t ~ I b~nk !2 (I (ronk + rov - rot) {P + nv (p - pk)}. 
n,k,l n n 

(8) 

In the particular case of a field of one frequency 
w1 acting on a molecular system, we have V 1 

= vf exp (- iw 1t) + Vj" 1 exp ( iw1t) ( l assumes the 
values ± 1). It follows from (8) that the radiation 
frequencies w 11 can assume the values w11 = wkn 
± w1• The upper sign refers to double and the 
lower to Raman emission or absorption. 

3. GENERAL CONSIDERATION OF THE BE­
HAVIOR OF SYSTEMS IN EXTERNAL FIELDS 

We consider an arbitrary molecular system 
with Hamiltonian H0 in the presence of external 
forces whose effect is taken into account by the 
interaction energy 

V = ~ vte-i"'t t. 
t 

The steady-state response of the system as the 
mean value of the quantity < xa ( t) ) = xa ( t) can 
in the general case be written as 

Xa(t) = ~Xab (rot) f~e-i"'t 1 + ~Xabc(ro., rot) ftf~e-i<ros+"'t)t 

(where the summation is made over all indices 
except a), if f!l is of the form 

Here Xab ( wz) is the usual susceptibility of 

(9) 

( 10) 

the system. The processes of parametric inter­
action of three electromagnetic vibrations and of 
frequency doubling [9-ttJ are associated with the 
third rank tensor Xabc ( ws, w z) (we shall call it 
the cross-susceptibility tensor). The processes 
of parametric interaction of four vibrations, of 
frequency tripling, and, as we shall see below, of 
two-quantum processes, are associated with the 
fourth rank cross-susceptibility tensor Xabcd ( ws, 
wz,wr). 

The tensors Xabc and Xabcd can be expressed 
in terms of the density matrix of the unperturbed 
molecular system. To do this we solve the equa­
tion for the density matrix in the interaction 
representation to terms of third order in V. This 
solution has the form 

p(t) = p (-oo) + p(l) + p(2) + p(3) + ... , 

where, under the assumption that p ( - oo) is 
diagonal, 

P(l) _ n,-1 ~Vt (p _ p ) r ( _ ) i<"'mn-"'t )t 
mn- L..J mn n m ~:, Wz ffimn e , 

P~~ = n,-2~V~Vkn [(pn- Pk) ~(rot- rokn) 

- (pk - Pm) ~ (ros- romk)J 

(11) 

X ~(rot+ ros- romn) exp [i (romn- rot- ro.) t], (12) 

P~~ = n,- 3 {V~~pV~kVLn [(pn- Pk) ~(rot - rokn) 

- (pk- Pp) ~ (ros- ropk)J ~(rot+ ros- ropn) 

- v:nkvLpv;n f(pp - pk) ~ (rot - rokp) 

- (pk- Pm) ~ (ros- romk)J 

The summation is carried out over all indices 
except m and n. 

Hence, under condition (10) we find explicit 
expressions for the quantities4 ) Xabc and Xabcd: 

Xabc (ro., rot) 

pl ~ 
= 1i,-2 2f L..J XanmXbmkXckn [(pn - pk) ~ (rot - rokn) 

n,m,k 

- (pk-pm) ~ (ros- romk)J ~(rot+ ros-romn), (14) 

p2 ~ 
Xabcd (ro., rot. ror) = -n -3 3f L..J ~ (ros +rot + ror - romn) 

m,p,k,n 

X {XampXbpkXcknXanm [(pn - pk) ~ (rot - rokn) 

- (pk- Pp) ~ (ros- ropk)J ~(rot+ ros- ropn) 

-XamkXckpXdpnXanm [(pp - Pk) ~ (roz - rokp) 

- (Pk -Pm) ~ (ros - rom;)] ~ (rot + ro, - romp)}, ( 15) 

where P 1 and P 2 denote the operations of sum­
ming the permutations of, respectively, ( s, b), 
( l, c ) and ( s , b ) , ( l, c ) , ( r, d ) . 

A number of symmetry properties of the ten­
sors Xabc and Xabcd follow from these expres­
sions. We shall not deal with these at present, 
but proceed to the relation between the tensor 
Xabcd and two-quantum processes. It is possible 
to associate with the tensor Xabcd the suscepti­
bility at a frequency w2 under the influence of 
fields of frequency wz. This susceptibility (its 
imaginary part) determines the absorption (posi­
tive or negative) of a weak field of frequency w2 

when other fields of frequencies wz are present 
(for the latter we take into account the squares of 
the amplitudes). 

The response at frequency w2, as is seen from 
(9), is obtained under the condition 

( 16) 

(the analogous condition in the second term of (9) 
can be satisfied only in the degenerate case 5) 

Ws = -w2, wz = 2u.• 2). Using directly (13) and con­
dition ( 16), we find the response at the frequency 
w2 to be 

4lWe use the fact that <xa(t)> = Sp PXa· 
5lThis case will be discussed in Sec. 8. 
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Xa (t) = lJ p~~Xanmei"'mnt = n,-a ~ e-ioo,t~ (w2- Wmn) Xanm 

X {V:;.pV~kVkn [(pn - Pk) ~ (wz - Wkn) - (pk - Pp) 

X ~ (ws- Wpk)] ~ (wz + Ws -Wpn) 

- v:,kvLpv;n [(pp- pk) ~ (wz - Wkp) - (pk - Pm) 

x ~ (ws- Wmk)l ~ (wz + w.- Wmp)} + comp. conj 

where the summation is made over all indices. 
We shall be further interested in the imaginary 

part of the susceptibility at the frequency w 2• We 
retain only the resonance terms which satisfy the 
condition for two-quantum processes 

(17) 

The molecular levels satisfying ( 17) can be numer­
ous in the system; it is, therefore, necessary to 
retain the summation over 1 and 2. If the disposi­
tion of the levels is such that the indices l and s 
in ( 17) assume the values -1 and 2, then Raman 
emission (absorption) occurs; double emission 
(absorption) will take place if l and s are differ­
ent but of the same sign. 

Using the definition of the susceptibility 

Xaa ( W2) 

condition (10) for the weak field of frequency w 2 

and condition (17), we obtain, after straightfor­
ward manipulation, the imaginary part of the sus­
ceptibility as 

x:a (w2) = - : 2] (pl - P2) I A~d2 ~ (wz + (1)2 - w12}, 
1,2 

( 18) 

We have used the assumption (see the third foot­
note) that w z and Ws do not coincide with reso­
nance frequencies of the system. 

In Raman em iss ion ( l = -1) the susceptibility 
at frequency w2, as is easily seen from (18), will 
be negative if w2 < w1, and if the molecular 
system in its initial state is not excited ( w12 < 0 
and P2 < Pt)· If w2 > Wt, then Xa(u.,2) > 0 (Wj2 
> 0 and p 1 < p2 ). If, on the other hand, the sys­
tem is excited, the susceptibility at the smaller 
frequency ( w 2 < w1) is positive, but is negative 
at the larger ( w 2 > ""'t). It is clear that the first 
and second cases consist of stimulated Stokes 
and anti-Stokes emission. 

The sign of the susceptibility for double 
( l = 1) emission (absorption) does not depend on 
the ratio between w 1 and w 2; in the case of an 

excited molecular system ( u., 12 > 0 and p2 < Pt) 
the susceptibility is negative (stimulated double 
emission); in the case of an unexcited molecular 
system double absorption occurs. 

The intensity of the two-quantum process is 
essentially determined, as is seen from formula 
( 18), by the matrix elements of the dipole moment 
Xatk and Xak2, and is not determined by the 
matrix element of the transition between the 
initial and final states. For molecular systems 
possessing central symmetry this means that 
only levels having equal parity (levels between 
which transitions are forbidden) participate in a 
two-quantum transition. Levels with parity differ­
ent from the parity of the initial and final states 
are the intermediate levels k (so-called alterna­
tive restriction [s]). 

It is interesting to note that (18) is of a com­
pletely general character, since we made in es­
sence no assumptions of any sort about the char­
acter of the "molecular system" or about the 
forces acting on it. The conclusions derived about 
the sign of Xaa are also valid for classical but 
non-linear systems. It can be shown directly that 
an anharmonic oscillator with characteristic fre­
quency w 0 has, under the influence of an external 
field at frequency w1 > w0, a negative suscepti­
bility at the frequency w1 - w0, i.e., under such 
conditions it is unstable with respect to external 
excitations (see Sec. 8). 

In concluding this section we note that the ef­
ficiency of a two-quantum process increases 
greatly if there is the additional resonance w z 
- wk2 = 0 or wz - w1k = 0. These conditions sig­
nify that for double absorption (emission) the 
"intermediate" level k lies between the initial 
and final levels, and for the Raman process that 
the level k lies either above or below levels 1 
and 2. The latter case corresponds to the situa­
tion occurring in the resonant interaction of two 
coherent signals on a three-level quantum system 
(maser). 

We note an important relation stemming from 
formula ( 18). With equal amplitudes at frequen­
cies w 1 - w 0 and w 1 + c.; 0 (where w 0 is a reso­
nance frequency of the system) 

X" (Wr- Wo) = -X" (WI+ Wo). (19) 

The other important relation stemming from (18) 
has the form 

P1/<•l1 + P2/w2 = 0; 
P1 = + WrX" (wi) I j<I> 12, P2 = + W2X" (w2) I j<2> !2, (20) 

where P 1, P2 are the mean powers absorbed at 
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the frequencies "-' 1 and w2 when fields of these 
frequencies are present (and there are no other 
sources of absorption at these frequencies). 

4. THE FLUCTUATION-DISSIPATION THEOREM 
IN THE PRESENCE OF EXTERNAL FORCES 

We shall relate the steady-state fluctuations 
in our system, when an external force is present, 
with the susceptibility (18) in the presence of the 
same force. The spectrum of the steady-state 
fluctuations of the quantities described by the 
operator xa ( t) is, according to [12], defined in 
the following way: 

(21) 

On the left-hand side of (21) we retain only those 
terms which appear in the presence of the inter­
action and are proportional to o ( w + w') (the 
steady-state part of the fluctuations). We use ( 5) 
applied to the operator xa ( t) and take the Fourier 
transform of the matrix elements 

00 

(x~~)nm = -21 \ x~~m (t) eiwtdt = lJA~m<'l (Wnm - Wz + w), 
1t •. 

-00 l (22) 

A~m = n,-1 ~ {XankVim~ (wz - Wkm) - v~k Xakm~ (wz - Wnk)} 

~ (2~ 

Substituting (22) into the left-hand side of (21) 
and retaining only terms proportional to o ( w 
+ w'), we obtain for the spectral density of the 
fluctuations when forces with frequencies wz are 
present 

(x~1) 2)w ={ 2J (p1 + P2) fA;If 2<'1 (wz + W- W12). (24) 
1,2,1 

Comparing this with (18) we find that, if the 
molecular system without the external force is 
in a state of thermodynamic equilibrium (at tem­
perature T), then the following fluctuation-dissi­
pation theorems apply: 

(x(1)2) _ .!!_ 1 + exp [li (w1- w2) I kT] " ( ) 
a "'•- 21t 1- exp (li (w1- ffi2) I ~T] Xaa (J)2 

for Raman processes ( l = -1) and 

(25) 

(1) 2 1i 1+exp[li(wl+w2)lkT] " (26) 
(xa )oo, = 21t 1- exp (li (w1 + ffi2) I kT] Xaa (w2) 

for double absorption ( l = 1). 
These theorems and their derivation are ana­

logous to the usual Callen-Welton fluctuation­
dissipation theorem (see L13 • 12]). It is seen from 
(25) that when u: 1 > w2 the susceptibility is nega­
tive, as also follows from the results of the pre­
ceding section (molecular system not excited). 

With the aid of the fluctuation-dissipation 
theorems here established, it is possible as a 

particular case to relate the spectral intensity of 
the spontaneous emission to the imaginary part 
of the susceptibility Xaa ( w2 ). To do this we 
rewrite the spectral intensity of the spontaneous 
emission ( niJ= 0) (8) as 

/~P = T 2J I b;nk 12 <'I (wnk + Wv - Wz) 

n,k,l 

(27) 

We eliminate ( Pn + Pk) and ( Pn - Pk) from (27), 
( 18) and (24), taking as xa the projection of the 
dipole moment (dipole approximation Bv 
= d · Av/c). We then obtain 

1:P = (Aewe/c2){n (£fa)"'v - f nx:a (wv)}, 

where Av is the projection of A on the direction 
da· The spontaneous emission thus consists of 
two parts. One part is related to the fluctuations 
of the dipole moment and the other to the emis­
sion or absorption of the vacuum fluctuations (for 
more details see [Bj ) . 

Using the fluctuation-dissipation theorem (25) 
we find a relation between the spontaneous emis­
sion and the susceptibility X~a ( U..' 2 ) (for Raman 
emission): 

rvp = (Aewejc2)x~a(wv){exp[ -n(w1-w2)/kTJ-1r1 • 

Thus, by using experimental data on the Raman 
effect we can determine X~a ( w v), which charac­
terizes the stimulated Raman emission (or ab­
sorption). 

5. STIMULATED RAMAN EMISSION IN THE 
VIBRATIONAL SPECTRUM 

To calculate the Raman emission susceptibility 
X~a ( w2 ) specifically it is necessary to use the 
kinetic equations which determine the behavior of 
a molecular system, taking into account dissipa­
tive processes in the molecular system. Such a 
kinetic equation has been derived in the works of 
one of us [13], and under the assumptions defined 
has the form 

0 • i .... "' 
O'mn + lWmn O'mn + -it (V, cr lmn 

(28) 

where Wkm = Wmk exp ( -tiwmk/kT) is the proba­
bility of a transition in unit time from the state 
k to the state m, and Tmn is in a number of 
cases defined by the relation T !Jn = ~ ( Wmk + 
+ Wnk-) = T iiin· In particular dissipative processes 
can arise from spontaneous emission; in this case 
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wkm is the probability of spontaneous emission 
( T = 0). Equation (28) can also include dissipa­
tive processes such as spin-lattice relaxation in 
the molecular system itself. 

It can be shown that using the kinetic equation 
leads to the conclusion that it is necessary, in the 
formulae given above for X~a· to replace the 
corresponding ?; ( U.'Z - Wkn) by the function6 ) 

(29) 

and the o function by 

tn't'kn [(wl- Wkn) 2 + -r;.:~]}- 1 . (30) 

We consider the particular but important case 
when the eigen frequencies of the molecular sys­
tem u.: 21 = w0, which satisfy the resonance condi­
tions ( 17), are much smaller than the frequencies 
for the virtual transitions '""'kt and wk2 and the 
corresponding frequency differences ( wz - wk2 ) 

and ( wz - u.: 1k). Such a spectrum is possessed, 
for example, by the molecule of a liquid (or an 
ion in a crystal), when the vibrations of the mole­
cule (ion) are taken into consideration. We note 
that the Raman effect was in fact first observed 
in the vibrational levels of molecules of liquids 
and of solids. [4•5] The theory of this phenomenon 
(the so-called theory of polarizability) was de­
veloped by Placzek. [s] In this section we calculate 
the polarizability7 ) of a molecular system under 
the assumptions of this theory: 

Wo ~ Wk1, Wk2; Wo ~ Wi- Wk2• ( 31) 

For convenience we replace the indices 1 and 
2 by Os and O,s + 1, and k by ks'. The polariza­
bility of the system (18) using (29) and (30) we 
write as ( s, s' are the vibrational sub-levels of 
the electronic levels 0 and k 8 )) 

Because of the large frequency differences [see 
(31)1 we omit the corresponding relaxation time 

( 33) 

6lHere the matrix elements xamn will be taken with re­
spect to the unperturbed molecular functions ignoring dissi­
pative processes. 

7lUp till now we have taken X to mean the susceptibility 
in the generalized sense, since no specific properties of the 
molecular system were used. The latter could be paramagnetic, 
dielectric, or even mechanical. In this section we shall take 
X to mean the polarizability of a dielectric. 

S)The system is in the electronic ground state 0. 

in the function ?; . In the case considered the in­
teraction energy with the external field has the 
form 

Vl = - E1d ==: - ~ Etdb, b = x, y, z, 
b 

where EZ is the electric field of frequency w z, 
and d is the dipole moment of the molecule. 

We make a series of transformations (taking 
( 31) into account) and introduce the molecular 
polarizability ( X~a• which is the usual one and 
not that in the presence of the field of frequency 

· w z) due to the electrons with the nuclear pos i­
tions fixed. We expand the matrix element for 
this polarizability, taken with respect to the vi­
brational states s and s + 1, in terms of the 
normal vibrations of the nuclei, and limit our­
selves to the first derivative only (just as was 
done by Placzek rsJ). Finally, we obtain for the 
Raman emission polarizability ( l = -1) for one 
molecule at thermodynamic equilibrium the fol­
lowing formula: 

" (w ) - - - ~ E(-1) --~!J' -"- -r 1 I i)rx, 12 "' -1 

Xaa 2 - 1t .LJ b i)q i 2wo -:-(w_l ___ W_z ___ W_o"")2-+,---r""""2 
I 8 I ( 34) 

(here T-t is the line width corresponding to the 
vibrational transitions). 

6. THE INTERACTION OF ELECTROMAGNETIC 
WAVES TAKING INDUCED RAMAN EMISSION 
INTO ACCOUNT 

As has been established above, negative ab­
sorption arises at the frequency w2 = u.: 1 - w 0 

when a signal with frequency w1 > w0 acts on a 
molecular system in a state of thermodynamic 
equilibrium. Thus, the electromagnetic wave of 
frequency w2 will be amplified as it passes 
through the medium due to the attenuation of the 
wave of frequency w1 > w2. We consider this proc­
ess in more detail. 

Let two plane travelling waves propagate along 
the z axis and let them have identical polariza­
tions (along the x axis). Maxwell's equations, 
after eliminating the magnetic field from them, 
give the wave equation 

rot Fot E + _!_ 02 (s E) = - 4n °2pNL • ( 35)* 
c2 i)t2 c2 i)tZ 

Here pNL is the non-linear part of the polariza­
tion [see (9)] where the xa become the components 
of the polarization and the fa become the com­
ponents of the electric field. We have taken the 
linear part of the polarization into account in the 
definition of the dielectric permittivity. At pres­
ent we shall include only that part of pNL that is 

*rot = curl. 



480 V. M. FAIN and E. G. YASHCHIN 

associated with the induced Raman emission and 
absorption. 

In the steady-state case for an isotropic 
medium (the latter assumption is made for sim­
plicity), Eq. (30) for the field of frequency w2 

assumes the form 

a2£,;<2> ew2 4nw2 6 
_x_ + _2 E(2) + _2 pNL ( ) = O· (3 ) a z2 c2 X c2 X (1)2 ' 

E~) = Re {A 2 (z) ei(k,z-ro,t}, k2 = ew2/c; (37) 

p~L (w2) = Re {X (w2, E~1) (z)) A 2ei(k,z-ro,t>}. ( 38) 

We introduce the notation 

where o is defined by (18), and At is the com­
plex amplitude of the wave E~!) ( Z). Substituting 
(37)-(39) in (36), assuming that A2 ( z) changes 
slowly compared with eikz (in view of the small­
ness of the non-linear effects), and putting x' ( w2 ) 

= 0 (we consider the case of exact resonance), we 
obtain the equation for the amplitude: 

aAz 2nwi A ( 40) Tz - kzc• 6 I 1 12A2 = 0. 

Here o > 0 ( since Wt > w2 ). Similarly we obtain 
(using (19)) for the amplitude At: 

aAl 2nwi 2 -
-a +-k 2 6IA 2 !A1-0. 

Z !C 

We further introduce the energy flux densities 
along the z axis: 

S = c2kl I A 12 
1 8nw1 1 ' 

S = c2kz I A 12 
2 Snwz 2 ' 

for which we obtain from ( 39) and ( 40) the equa­
tions 

Q = . 32n2wzwl 
1-' klk.zc4 • ( 41) 

From ( 41) follows the integral of motion: 

I = S1 (z) + Sz (z) = S1 (0) + S2 (0) . 
WI Wz W1 Wz 

(42) 

This equality is a consequence of the general 
property (20). Eliminating St from (41) and (42) 
we obtain for S2 a solution of the form 

s2 (z) 

s. (0) [1 + w1S2 (0) I wzS1 (0)] exp {13 [wzS1 (0) + w1S2 (0)] z} 
1 + [w1S1 (0) 1 wzSz (0)] exp {13 [S1 (0) wz + w1S2 (0)] z} 

( 43) 

Thus, the energy flux in the wave with fre­
quency w2 grows monotonically from the limiting 
value S2 ( 0) to S2 ( 00 ) = w2 St ( 0)/wt + S2 ( 0 ). 
Meanwhile, as follows from ( 42), the energy flux 
in the wave with frequency Wt decreases to zero. 
It is interesting to note that the energy from wave 

At is not transferred completely to wave A2 but 
only the fraction w2lwt; the remaining fraction 
of the energy 1- w2lwt = w0lwt is spent in 
losses in the medium, and particularly in spon­
taneous emission of frequency w0 . We might add 
that ( 42) can be interpreted as a law of conserva­
tion of the total number of quanta of frequencies 
wt and w2: all the quanta tiwt are transformed 
into quanta nw 2; at each such transition part of 
the energy tiwt - tiu:z is dissipated in absorption 
in the molecular system. 

We estimate the characteristic length l along 
the z axis within which there is a significant 
transformation of energy. It follows from (43), 
( 42), and ( 39) that 

z-1 = 4n:w2c-16J A1 \2 = 4n:w2c-1 \ x" (w2, I A1!2) J. (44) 

Numerical estimates, and a comparison with the 
characteristic length for parametric interaction, 
will be made below. 

7. RAMAN LASER 

The phenomenon of stimulated Raman emission 
may be used to construct quantum amplifiers and 
generators. The first attempt to realize an optical 
quantum generator based on stimulated Raman 
emission was made by Eckhard, Hellwarth, 
McClung, Schwarz, Weiner, and Woodbury. [3] The 
results of the preceding section provide in es­
sence the theory of a travelling wave quantum 
amplifier. In this section we consider the condi­
tion of self-excitation for a Raman laser. We shall 
here neglect the reverse reaction of the excited 
field of frequency w2 on the pump field of fre­
quency U:'t > w2• 

We expand the electromagnetic field inside the 
cavity in terms of the complex eigenfunctions of 
the cavity Ev and H 11 : 

E = ""a E e-irovt H - "Q a H e-irovt ~ v v ' - .L.J v v ' ( 45) 

with the normalization condition 

( 46) 

the quantities a 11a 11* signify the mean numbers of 
photons of energy tiw 11 • Substituting the series 
(45) into Maxwell's equation (for simplicity we 
consider the isotropic case and ignore dispersion 
in the medium), we obtain equations for the am­
plitudes a 11 

(47) 

into which we have introduced attenuation in a 
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phenomenological way (by means of the quality 
factor Qv ). 

We substitute into (47) an expression for the 
non-linear part of the polarization pNL in the 
form 

pNL = 2J ')( (wv, I A 1 12) avEve-i"'v 1 , ( 48) 

where I A1 1 2 is the square of the complex ampli­
tude of the field with frequency w 1; this quantity 
does not depend on z and t in our approximation. 
From ( 46) -( 48) it is not difficult to obtain the 
condition for self-excitation of a Raman laser in 
the form 

of all the frequencies wv ~ w2 = w 1 - w0, that one 
is excited for which the quality factor Qv is a 
maximum. 

To estimate the quantity x" we use formula 
(18), taking into account (29) and (30); as a result 
we find 

(49) 

where d, T 2, and w are, respectively, character­
istic values of the matrix element of the dipole 
moment, of the relaxation time of the molecular 
system Tmn' and of the frequency differences in 
formula ( 18), and N is the corresponding differ­
ence of populations. If we put d ~ 10- 18 cgs esu, 
T 2 = 10- 11 sec, N ~ 1022 cm- 3, w ~ 10 15 sec- 1 and 
Qv = 107, then the self-excitation condition is 
satisfied under a pump field of order 3 kV /em. 

We estimate the pump field for a Raman laser 
working in benzene ( 99 2 em -t line). To do this we 
use formula ( 34) for x" applied to the vibrational 
spectrum. Experimental data on the intensity of 
the Raman effect, taken, for example, from the 
work of Savin and Sobel 'man, [t4J allow us to 
estimate the quantity ( 8 aab/8 qs )fi/2w 0 which 
appears to be of order 0.5 x 10- 50 cgs esu (the 
scattering cross section at "A= 0.5fJ is 0.7 x 10- 25 

em 2). The self-excitation condition for a Raman 
laser in benzene ( N = 10 22 cm- 3, T 2 = 0.2 x 10- 11 

sec) will be satisfied if the pump field attains the 
value E ~ 6 kV /em. In practice this field might 
be larger-the approximate nature of the estimate 
must be remembered. 

8. CONCLUSION. COMPARISON WITH 
PARAMETRIC SYSTEMS 

In Sees. 3 and 4 of the present paper a number 
of general relations were obtained referring to an 
arbitrary system on which external forces act. It 

was shown in particular that if the system con­
sidered has an eigen frequency w0 and if a force 

with frequency w1 > w0 acts on the system, then 
negative absorption arises at the frequency w2 

= w1 - w0 < w1, i.e., instability of the system 
relative to the effect of a force at a frequency w2 

is possible. In particular such an instability can 
occur in a plasma on which an electromagnetic 
field acts. In Sec. 4 fluctuation-dissipation 
theorems were derived which relate the noise 
arising in the system when an external field is 
present with the susceptibility of the system. A 
fluctuation-dissipation theorem can be used to 
calculate the noise properties of a Raman laser. 

It is of interest to compare the Raman excita­
tion of a system, as considered above, with para­
metric excitations. The qualitative features of 
such a comparison can be understood most easily 
in a discrete (point) model. To begin with we 
consider a typical situation corresponding to a 
parametric pump. [15] A pump field of frequency 
w1 acts on a non-linear element. Associated with 
this non-linear element are two RLC circuits: 
the "signal" and "idler" frequencies of which 
w2 and w0 satisfy the relation w1 = w2 + w0• Un­
der the conditions defined self-excitation occurs 
(or additional negative resistance appears) simul­
taneously in both circuits. The occurrence of 
negative resistances or the corresponding insta­
bilities is a consequence of the parametric inter­
action of the fields in both circuits. In particular, 
if one of the circuits, for example the "idler," 
is removed from the system, then the other cir­
cuit will not be excited. Thus, parametric excita­
tion is associated not with the non-linear element 
alone, but is a property of the electromagnetic 
system also, i.e., the system of circuits. 

We now consider Raman excitation of a system. 
Here a field w1 also acts on a non-linear element 
(possessing a resonance frequency w0 ). Negative 
resistance then appears at the frequency w2 = w1 

- w0; however, this is the resistance of the non­
linear element itself in the presence of the pump. 
This resistance can now be connected to any cir­
cuit with frequency w2 and instability will arise 
there. Thus, in the case of Raman excitation, the 
appearance of negative resistance is a property 
of the non-linear element itself in the presence of 
the pump. 

It is easy to establish the relation between 
parametric and Raman excitations. To do this it 
is sufficient in the first case to consider as a 
non-linear system a molecular system together 
with an idler circuit of frequency w0• In such a 
system the pump field with frequency w1 causes 
negative resistance, which appears if we connect 
a trial circuit of frequency w2 = w 1 - w0. Para-
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metric excitation can be considered as stimulated 
Raman emission in the "idler" circuit w0• 

In fact, parametric interaction is associated, 
as has been remarked already, with the second 
term in expansion (9). The responses at the fre­
quencies w 0 and w 1 have the forms 

x ( ro0) = 'X ( ro11 -ro2) j(l) j(-2)e-iw,t, 

The field at frequency w0 is in the steady-state 
condition 

where a is some coefficient determined in partic­
ular by the electrodynamics of the circuits. Sub­
stituting (51) in the second equality of (50) we ob­
tain 

where the quantity 

+ax (rol, -roo) x* (rol, -(1)2) lf(l) 12 

signifies the susceptibility at the frequency w2 

and, according to the general theory, the imagi­
nary part of this quantity should be negative when 
w1 > w2. It can be shown that specific calculation 
leads to the correct value of the negative resist­
ance which arises in parametric systems. 

It is clear that one can also say that Raman 
excitation coincides with parametric if as "idler" 
circuit one takes the "circuit'' of the molecular 
system. From this point of view one can under­
stand why equation (20), which is one of the pos­
sible Manley-Rowe [16] relations, is satisfied. As 
an example of such a molecular system circuit 
one can take the anharmonic oscillator on which 
a force with frequency w1 acts. Negative resist­
ance should then appear at frequency w2• Let x 
be the coordinate of the anharmonic oscillator; 
then 

X+ (!)~X+ ax- AX2 = /1 cos (!)lt + /2 cos (ro2t + 6); 

It is not difficult to satisfy oneself that the solu­
tion of this equation, accurate up to fi f2, has at 
frequency w2 the form 

Hence we obtain the susceptibility at frequency 
w2 as 

As one would expect, the imaginary part of this 
susceptibility is negative. For more detail on the 
classical interpretation of stimulated Raman 
emission, see the work of Platonenko and Khok­
hlov. [17] 

We now compare parametric interaction of 
electromagnetic waves in a non-linear dielectric, 
discussed by Khokhlov[s] and by Bloembergen 
and co-workers, [1o] with Raman interaction, 
treated in Sec. 6 of the present paper. While ef­
ficient parametric interaction requires the phase­
matching condition k ( w1 ) + k ( w2 ) = k ( w1 + w2 ) 

to be satisfied, spatial synchronism is not neces­
sary for the accomplishment of Raman interac­
tion, as follows from Sec. 6. It is interesting to 
compare the lengths in which significant trans­
formation of energy takes place for Raman inter­
action ( Zk) [see (49) and (44)] and parametric 
( l P) interaction (see [1o]). It is not difficult to 
obtain the ratio of the lengths in order of magni­
tude as 

(52) 

Here we took the dipole moments of the molecular 
system and the molecular concentrations to be 
equal for both interaction cases. It is seen from 
(52) that, although Raman interaction is an effect 
of higher order (see formula (9)) than parametric, 
for a sufficiently strong field A1 ~ Ii T2 1 d - 1 the 
characteristic lengths become equal. A field of 
the appropriate magnitude ( 30 kV /em) can be ob­
tained with the aid of lasers. 

We dwell briefly on the properties of the sus­
ceptibility in the degenerate case when w2 = w 1/2. 
As follows from formula (9), a response at fre­
quency w1/2 appears even in the second order of 
perturbation theory. However, in this case the 
susceptibility of the system depends essentially 
on the phase· relations between the pump field 
( w1 ) and the signal field ( w2 ). In other words, 
the second term in (9) cannot give a negative re­
sistance which is independent of the phase rela­
tion. Such a situation is typical of the parametric 
phase-matched amplifier. In distinction from this 
the third term in expression (9) (the Raman sus­
ceptibility) defines a negative resistance which 
does not depend on the phase relation of the pump 
field ( w1) and the signal field at frequency w/2. 
Such a difference is associated with the fact that 
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for the Raman interaction the idler circuit (the 
molecular system) and the signal frequency cir­
cuit are by no means identical, as they are in the 
case of phase-matched parametric amplifiers. 

In conclusion we note that using stimulated 
Raman emission at frequency w2 = 2w 1 (the anti­
Stokes component) we can perform frequency 
doubling inside the laser itself, since in the latter 
the molecular system finds itself in an inverted 
state. 
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