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A set of algebraic equations which is equivalent to the Low equations is derived. The set is 
derived by conformally transforming the physical plane into a circle and by expanding the 
scattering amplitude in a power series. The set of algebraic equations also expresses those 
relations between the coefficients of the series which guarantee that the unitarity conditions 
and the cross relations are satisfied. 

1. INTRODUCTION 

Low•s integral equations [1] have until now been 
solved either by the method described in the 
paper by Salzman and Salzman [2] or by the so
called N/D method [3]. The essence of both methods 
consists of the regularization of Low's singular 
equations. 

In applying the N/D method the regularization 
can be equivalent or nonequivalent depending on 
whether the denominator D does or does not have 
zeros. Since the location of zeros of D in the 
complex plane is tedious and inaccurate, the N/D 
method often leads to false or, at best, to unre
liable solutions. The same also occurs in the 
case of the method of Salzman and Salzman [2]. 

In the present paper a set of algebraic equations 
is derived which, being equivalent to Low's inte
gral equations, does not lead to false solutions. 
Equivalence is understood in the sense that there 
exists a one-to-one correspondence between the 
solutions of the set of algebraic equations and 
those of the integral equations, if solutions are 
sought on a class of functions having the asymp
totic behavior h ( x) :S 1/x at infinity. 

A set of algebraic equations can also be de
rived for the determination of 1rN scattering in 
Mandelstam 's formulation [4]. Here the scattering 
amplitude is a function of two complex variables, 
and although the algebraic treatment has great 
advantages compared to Mandelstam 's integral 
equations [5], it is nevertheless still complicated. 
Therefore, a preliminary study of a model prob
lem of the same type is required. Such a model 
problem is the set of algebraic equations derived 
in our paper. 

In some cases the set of algebraic equations is 
very advantageous for theoretical investigations 

of the solutions of Low's equations. It also has 
advantages for numerical computation, since it 
does not contain any Cauchy integrals. The set of 
equations can be derived by starting either with 
the integral equations [s], or from the correspond
ing boundary value problem [1]. We shall adopt the 
latter method. 

2. FORMULATION OF THE BOUNDARY VALUE 
PROBLEM 

Low's integral equations are equivalent to the 
following boundary value problem [1, 2J. 

It is required to find the functions ha ( z') of 
the complex variable z' = x' + iy', a= 1, 2, ... N 
(N= 1[7], N= 2[7•8J, N= 3[1•9•3], N= 4[10]), 

satisfying conditions (I'), ( II'), (III'). 
(I') ha ( z') are analytic functions of the com

plex variable z' in the z' plane with cuts (- oo, 
- 1 ) and ( + 1, + oo), with the exception of the 
point z' = 0, where they have simple poles with 
residues A.a. The functions ha ( x') are smooth 
and at infinity fall off not slower than 1/x. 

(II') ha ( x' + i£) satisfy the unitarity relations: 

Im h~ (x' + ie) = p'" (x') v' 2 (p') 1 h~ (x' + ie) J 2 • 

1<;;x<oc:, ( 1) 

where n = 1 [7•9J, or n = 3 [1•3•8 •10J, p' = (x'2 - 1 )112 

is the momentum of the meson in the center of 
mass system, x' is the total energy of the meson 
in the same system, v' = v' ( p') is the "cut- off" 
function [1' 11 •8]. 

( III') ha ( x') satisfy the cross relations 
N 

h~ (- x' - ie) = .2; Aa0h~ (.x' + ie), 
{3=1 

N 
where 6 Aaf3 Af3y = Oay· 

{3=1 

1<;; x' < oc. 
(2) 
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We consider the function 

z' ~. I (z) = 2z/(1 + z2). ( 3) 

It performs a conformal mapping of the z' plane 
on the z plane, which transforms the unit circle 
I z I < 1 into a plane with the cuts (- oo, - 1) and 
(+1, +OG). 

In ( I' ) we replace the variable z' by z. Then 
the function h~ ( z' ) goes over into the function 
ha ( z) which has the following property: ( I) 
ha ( z) is analytic inside the unit circle I z I < 1 
with the exception of the point z = 0, where it 
has a pole with the residue Aa/2, while the func
tion ha ( z) is piecewise smooth at I z I = 1. 

Conformal transformation [1o] transforms the 
cuts in the z' plane into the unit circumference 
I z I = 1 in accordance with the formula 

cos cp = 1jx'. 

In future we shall use the notation 

F (cp) = p'4 (cos-1cp) v'2 (p') = p'4 (x') v'2 (p'). 

We shall assume that the function F ( cp) is 
piecewise smooth. 

(4) 

The representation of a function of a complex 
variable by means of two conjugate harmonic 
functions is invariant with respect to a conformal 
transformation. Consequently, if there exists 
some sort of a relationship between the real and 
the imaginary parts of a given function of a com
plex variable, it retains its form also after the 
conformal transformation. From this it follows 
that property (II') will not be altered: 
(II) ha ( cp) satisfies the unitarity conditions 

-:rt/2 < cp < :rt/2. (5) 

After the conformal transformation (III') goes 
over into (III): (III) ha ( cp) satisfies the cross 
relations 

N 

ha. (cp + :n) = ~ Aa.ilhil (cp). (6) 
ll=l 

As a result of this the problem is reduced to 
finding the function ha ( cp). Our goal is the solu
tion of the problem formulated by conditions (I), 
( II ) , and ( III ) . 

3. DERIVATION OF THE ALGEBRAIC SET OF 
EQUATIONS 

It follows from (I) that ha ( z) can be repre
sented in the form 

(7) 

where all the coefficients are real, as follows 
from the condition 

h; (z') = h~ (z'\ 

On the unit circle I z I = 1 we obtain from (7) 

two Fourier series: 
00 

Re ha. (cp) IJzl=I =a~"-)+ ("Aa./2 + ai">) cos cp+ ~ a~"-) cos n cp, 
n=2 (8) 

co 

Im ha. (cp) [tzJ=I = (- "Aa./2 + ai">) sin cp + ~ a~"-) sin ncp. (9) 
n=2 

As concerns the function F ( cp), we must keep 
the following in mind: the symmetries inherent in 
F ( cp) are obtained from symmetries in the func
tions p' 4 and v 2• It is well known that the function 
p' = ( z' 2 - 1 )1/ 2 has the property p' ( +x' + i£) 
= p' ( -x' -i£). From this it follows that p ( cp) 
= p( cp + rr). Moreover, p'(x' + i£) = -p'(x'- ic,), 
i.e., p ( cp) = - p ( - cp) . The function v2 depends 
on p2, and, therefore, it has identical values at 
all corresponding points of the four quadrants. 
Consequently, F ( cp ) has the properties: 

F(cp)=-F(-cp), F (cp) = F (cp + :n). 

The first of these equations shows that F ( cp) 
can be expanded in a series of sines, while the 
latter equation shows that terms with an odd 
value of the index n should not occur in the ex
pansion: 

00 

F (cp) = ~ F2n sin 2ncp, ( 10) 
n=l 

where F2n are known numbers. 
The function 

Da. (cp) = Im ha. (cp) [Jz[=I- F (cp) [ ha. (cp) [2 [Jzl=l (11) 

is periodic of period 2rr, and can be represented 
by means of a Fourier series 

co 

Da. (cp) = ~ D~"> sin ncp. 
n=l 

It can be seen from (5), that Da ( cp) = 0 for all 
values of cp in the range -rr/2 < cp < rr/2. 

( 12) 

In order that the series (12) should vanish in 
the range -rr /2 < cp < rr /2 it is necessary and 
sufficient that the coefficients D~al, n;al, 
D~ a), ... should satisfy the equations 

(n = 1, 2, 3, ... ). ( 13) 

We substitute ( 8), (9) and ( 10) into ( 11) and 
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compare the resultant expression with the expan
sion (12). Then for D~a) we obtain 

( 14) 
m m,n 

where the coefficients ckCal and Dk(a) contain n mn 
F2n to a power not higher than the first. 

Substitution of ( 14) into ( 13) leads to the set of 
algebraic equations: 

co 00 

m=O m, n=O 

(a =1, 2, ... , N; k = 1, 2, ... ,oo), ( 15) 

for the unknowns ai{?' 0 which is equivalent to the 
unitarity relation (II). 

The set of algebraic equations corresponding 
to the cross relations is obtained either by the 
substitution of (8) into (6), or by the substitution 
of (9) into ( 6) : 

N 

~ !Aafl- (-1tlla/31 a~>= 0 
/3=1 

(a= 1, 2, ... , N; n =0, 1, 2, ... ,oo). (16) 

This reduces the boundary value problem (I'), 
( II' ) , and ( III') to the sets of algebraic equations 
(15) and (16). 

Expressing the coefficients Akm and Bkmn 
in (15) in terms of F 2k we obtain 

A i+1 co 

- T p (F2i-2i+2 + F2i+2i) a~~~2] + p (F2i+4k- F2;) S~~!2k 
t=l 1=1 

k 

+ ~ (F2k-2i + F2k+2i) S~~> + F2kS~a.> 
i=1 

co . co 

k sk ~ <- t)l [~ ) s<"> 
- (- 1) n p (Zk)z _ (Zf + t)z p (F2i+4i+2- F2; 2i+2i+t 

J=O t=1 

i+l 

+ .~ (F2Hi+2 + F2i+2i) S~~~1] = 0; 
t=1 

co 

s(<l) = ~a(<>) a(<>) 
m ..LJ n n+m' 

n=O 

m=O, 1, 2, ... ; 

{ 
ai") - Aa/2, if j = 0, 

a•(a)-
2i+l- a<<>.> 1·f ,. - 1 2 3 

2J+l' - ' , ' ••• (17) 

In particular, the equations of cross symmetry 
(16) for the matrix from the paper by Salzman 
and Salzman [2] have the form: 

a~>= 2a~>- a}t> for n = 0, 2, 4, 6, ... , 

a}tl =- 2a~> for n = 1, 3, 5, ... , 

a(2) = - 2.. a(s) for n = 1, 3, 5, .. . 
n 2 n 

4. THE METHOD OF SOLVING THE SET OF 
EQUATIONS 

The set ( 15) and ( 16) is not convenient for ob
taining the adiabatic solutions by the usual method, 
since the determinant Det (A~~) = 0, where 
Ak~ is the coefficient in (15). Adiabatic solutions 
can be obtained with the aid of the sets of algebraic 
equations given in [12]. 

The set (15) and (16) is suitable for finding 
resonance solutions. 

We assume that the solution depends on S 
parameters, i.e., that under certain assumptions 
each curve Im ha ( cp) passes through S points 
with the abscissas cp 1, cp 2, ••• , CfJs and with 
ordinates given respectively by H~a l 
H~al, ... H~al. Consequently we shall have 

Im ha (cp8 ) = (- "Aa/2 + ai">) sin <p8 + ~ a~> sin n<p. = H~a.> 
n=2 

(s = 1, 2, ... , S; a= 1, 2, ... , N). (18) 

The simultaneous solution of the system (15), 
( 16) and (18) can be conveniently found by 
Newton's method [13]. We substitute aital = b~a l 
+ x~al, where b~a l are approximate values of 

a~al, while Xhal are small corrections. 

If the linearized sets (15), (16) and (18) are 
broken off at the K-th term they can be respec
tively written in the following form 

K K 

~ A (a) x(a.) + ~ B<<>> (b(<>) x<<>J + b(<>) x<<>l) .Ll kmm .::...J kmmn n m 
m=o m,n=O 

K K 
=- ~ A<<>lb<a.>- ~ B<a> b(<>lb(<>l 

.LJ km 'm .L! kmn m n 
m=O m, n=O 

(a= 1, 2, ... , N, k = 1, 2, ... , K 1 (K1 <K)), (19) 
N N 

~ !Aail- (-1tllalll x~> =- ~ !Aail- (-1tlla.J31 b~> 
/3=1 /3=1 

(a= 1, 2, ... , N, n = 1, 2, ... , K), (20) 



452 BYRNEV, MESHCHERYAKOV and NEDYALKOV 

K K R h ( ) R h ( ) 1 + fl. sin 2<p cos <p 
~ x~a> sin ncp8 = H~a> - (- f..cx/2 + bicx>) sin <p.- ~ b~a> sin n<p. r z 1,: 1 = e <p = 1- fl. [(1 + f!.)/(1- !!.)12 cos2 2<p_+ sin2 2<p 

n=l n=2 

(a. = 1, 2, ... , N, s = 1, 2, ... , S). (21) 

We note that in the set (20) there exist L < NK 
independent equations. Therefore, the parameter 
K1 which determines the number of equations in 
( 19) is so chosen that the total number N ( K + 1) 
of unknowns is equal to the total number NK1 + L 
+ NS equations in the set (19)-(21). 

Given the initial approximate values b~0!), on 
solving the system (19)-(21) we obtain the cor
rections x~al. We then determine the first ap
proximations b~cd + x~a) etc. The initial ap-

proximate values b~al, n = 1, 2, ... , S, 
a = 1, 2, ... , N are determined as the solution of 
the set (21) with x~a) = 0, a= 1, 2, ... , N, 
n = 1, 2, ... , K and b~~~ = ... = bk_al = 0, 
a= 1, 2, ... , N. Because of this, it is possible to 
replace the set (21) by a simpler one: 

K 

" x<al sin nm = 0 ~ n ~s ' 
n=1 

a.= 1, 2, ... , N, 

s = 1, 2, ... , s, (22) 

since the right-hand sides of (21) will always be 
equal to zero. 

As an example we consider the case with 
N = 1, A a = 0 and p' 4 ( x') v' 2 ( p') = 1, i.e., the 
equation 

Im h' (z') = J h' (z') J2. 

We also add the cross relation 

h' (~ z') = h' (z') 

(23) 

(24) 

and demand that h' ( z') should be analytic in the 
plane with the cuts (-oo, -1), (+1, +oo). 

Equations (23) and (24) and the requirement of 
analyticity are satisfied by the function 

h' (z') = - V z' 2 - 1 j [2 ~1 ~fl. fl.) (z' 2 - 2) + i Y z' 2 - 1 J, 

which in going over to the z plane takes on the 
form 

1-fl. 1-z4 h(z) = - 2 - i, 
1 + fJ.z4 

from which it follows that 

00 

= L] a4n cos 4ncp, 
n=O 

(25) 

(26) 

00 

= ~ a4n sin 4ncp; (27) 
n=1 

1-fl. 
ao = -2-, 

n1-fl.2 
a4n = (- 1) - 2-J.tn-1 (n = 1, 2, 3, ... ). 

(28) 

The problem which we are considering as an 
example satisfies conditions ( I'), ( II'), ( III' ) , 
corresponding to ( I), (II), (III), with the one 
difference that in ( I) n is an even number. 
Therefore, Im h is expanded in a Fourier cosine 
series, while Re h is expanded into a Fourier 
sine series. This difference, without altering the 
structure of the set of algebraic equations, leads 
to an example which is not trivial and, at the 
same time, is sufficiently simple for calculations 
and convenient for checking the effectiveness of 
different methods of nonlinear analysis. 

An example of the application of algebraic 
equations to the solution of problem ( I'), ( II'), 
(III') without any simplifications is given in [t2J 

The function defined by formulas (26) and (27) 
describes a resonance solution. The position of 
the resonance is fixed and corresponds to 
cp = 7T/4. The parameter f.l determines the width 
of the resonance, and the fact that it depends on 
one parameter enables us to study the effect of 
the width of the resonance on the numerical 
methods of solution. 

We shall solve the boundary value problem 
(23) and (24) with the aid of a set of algebraic 
equations analogous to (15) and (16). The equa
tions of cross symmetry are not satisfied in this 
case. As regards the set of equations (15), in 
place of it we can utilize the equivalent system 

00 00 

a0 = L] a~, +ak = ~ anan+ko k = 1, 2, 3, ... , (29) 
n=O n=O 

which is obtained by the substitution of (26) and 
(27) into (23). 

It can be verified that the exact solutions of 
the system (29) are given by formulas (28). 

We now go on to the description of the solu
tions of (29) by means of Newton's method. 

From the symmetry of the curve Im h ( cp) and 
from the existence of a resonance it follows that 
it necessarily passes through the points with the 
abscissas cp 1 = 0 and cp 3 = 7T/4, and the corre
sponding ordinates H 1 = 0 and H3 = 1. In (26) we 
can select f.l in such a manner that for a given 
cp = cp2 the function Im h ( cp) has the given value 
H2, which can vary arbitrarily over a certain 
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ll. n a4n 

0 +0.25000 
1 -0.37500 

IJz 2 +0.18750 
3 -0.09375 
4 +0.04687 
5 -0.02344 

0 +0.33333 
1 -0.44444 

1 ;. 
2 +0.14815 
3 -0.04938 
4 +0.01646 
5 -0.00549 

0 +0.37500 
1 -0.46875 

1 ;, 2 +0.11719 
3 -0.02930 
4 +0.00732 
5 -0.00183 

range. We choose cp 2 = n/8. Then H2 = ( 1- /1) 2/ 

2 ( 1 + f.1 2 ). 

We set K = 20. Since cp1 = 0, cp2 = n/8 and 
cp3 = n/4, then (22) goes over into the system 1) 

Xo - Xs + XI a = 0, 

b4n X4n b4n I a4n- b4nl 
a4n 

+0.300 -0.0320 +0.2680 0.072 
-0.500 +0.0928 -0.4072 0.086 
+0.200 0 +0.2000 0.067 

0 -0.0800 -0.0800 0.147 
0 +0.0320 +0.0320 0.318 
0 -0.0128 -0.0128 0.454 

+0.350 -0.0135 +0.3365 0.010 
-0.500 +0.0491 -0.4509 0.015 
+0.150 0 +0.1500 0.013 

0 -0.0450 -0.0450 0.089 
0 +0.0135 +0.0135 0.180 
0 -0.0040 -0.0040 0.271 

+0.382 -0.0065 +0.3755 0.002 
-0.500 +0.0294 -0.4706 0.004 
+0.118 0 +0:1180 0.007 

0 -0.0276 -0.0276 0.058 
0 +0.0065 +0.0065 0.111 
0 -0.0018 -0.0018 0.017 

is necessary to obtain also the zero order ap
proximations b 0, b4, b8, b 12 , b 16 , b 20 • As has been 
stated earlier, b0, b4, b8 are obtained as the 
solutions of the set of equations: 

(30) 

In (29) we retain only the first three equations 
and the first six unknowns. After linearization it 
goes over into the set of equations: 

(b0 - +> x0 + b4x4 + b8x 8 + bi2X12 + biaXIa + b2oX2o = AI, 

b4x0 + (b0 + b8 - +> X4 + (b4 + bi2) Xs + (bs +hie) XI2 

+ (b12 + b20) xi6 + b16x 20 = A 2 , 

b8x0 + b12x4 + (b0 + b16 - +> X 8 + (b4 + b2o) Xa 

(31) 

where 
6 4 

AI=+ ( bo + ~ b~n ), A 2 = + b4 - ~ b,nb4n+4, 
n=O n=O 

3 

A 3 = + b8 - ~ b,nb4n+S . 
n=O 

The simultaneous solution of the sets (30) and 
(31) yields the desired corrections x 0, x 4, x8, x 12 , 

x 16 , x 20 . In order to begin the iteration process it 

1>Formula (22) is written for the case when Im ha is ex
panded in a cosine series. In the example under consideration 
Imha is expanded in a cosine series utilizing formulas (22) 
and assumes the form 

K 
~ x<"'> sinnm = 0 
~ n Tl ' 
n=o 

cx=1,2, ... ,N, s= 1, 2, . •. ,S. 

while b 12 , b 16 , b 20 are set equal to zero. 
The exact values am of the Fourier coeffi

cients, the initial approximate values b 4n, the 
corrections xm and the first order approxima
tions b4n for f.1 = 1/ 2, 11 = 1/ 3 and f.1 = % are given 
in the table. 

5. CONCLUSION 

The problem of determining the scattering 
amplitude is, instead of solving Low's integral 
equations, reduced to finding such solutions 
an ( n = 0, 1, 2, ... ) of the algebraic set of equa
tions (15), (16), which, as n- 00 , fall off not 
slower than const-n- 2. This corresponds to the 
scattering amplitudes h ( z) which as z - oo fall 
off not slower than const z -t. 

The numerical example investigated in this 
paper shows that the algebraic sets of equations 
have significant advantages compared with the 
integral equations. 
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