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The hypothetical shape of the nuclear magnetic resonance signal from type II conductors near 
the second critical field is determined along with its first four central moments. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

ABRIKOSOV [2] has examined the behavior of a 
superconducting alloy (a type II superconductor) 
in an external magnetic field on the basis of the 
Ginzburg- Landau theory. [tJ When a long cylinder 
(with a negligibly small demagnetization factor) is 
placed in a longitudinal field H0, the field begins 
to penetrate the sample when the first critical 
field Hc 1 is reached and completes its penetration 
at the second critical field strength Hc 2· [2] For 
H0 > Hc 2 the sample is in a normal state with 
complete penetration by the field. 

The foregoing pertains to type II superconduc­
tors, i.e. to metals and alloys having the Ginzburg­
Landau parameter value K > 1/fi. A mixed state 
exists for any magnetic field H0 ;s Hc 2, which 
penetrates the sample with a magnitude that is a 
periodic function (with a period ~ 10-6 em) of the 
coordinates x and y; the magnetic field is taken 
to be parallel to the z axis. If the field H0 is 
close to Hc 2 the absolute magnitude of these 
spatial variations of the internal field is much 
smaller than Hc 2· 

Since the period of spatial variations of the 
internal magnetic field is much larger than the 
alloy lattice constant, the shape of the NMR 
(nuclear magnetic resonance) signal of any alloy 
component reflects to some degree the nuclear 
distribution in the magnetic field. 

It is our present problem to determine the 
NMR line shape for any alloy component and to 
compute the second, third, and fourth central 
moments of this line for a long cylindrical sample 
placed in a longitudinal magnetic field H0 > Hc 2, 

It is assumed that we know the shape of the NMR 
signal from the same sample in fields H0 > H i> 
when all atoms of the alloy are in a homogeneous 
magnetic field H0• 

2. CALCULATION OF CENTRAL MOMENTS OF 
THE SIGNAL 

Let a long cylinder located in a longitudinal 
magnetic field H0 > Hc2 (i.e. in the normal state) 
give a NMR signal represented by a function 
g ( v - v0 ), where v0 is the resonance frequency 
in the field H0; the function g ( v - v0 ) is defined 
only for v > 0. Since this function of the frequency 
v differs from zero only in a certain range ~v 
about the resonance frequency v0, with ~v « v0, 

we can supply a convenient formal definition of 
the function for v < 0. We now require that 
g ( x) be a continuous, integrable, and infinitely 
differentiable function that vanishes along with all 
its derivatives at x = ± 00 • It is also assumed that 
x = 0 at the center of gravity of the distribution 
g(x), i.e. 

()() ()() 

~ xg (x) dx = 0, ~ g (x) dx = 1. 
-co -co 

The magnitude of v0 is proportional to the 
strength of the external magnetic field in which 
the nuclei are located; therefore the field can 
replace the frequency as the argument of g. We 
now express the function as g ( H - H0 ). 

Reducing the external field H0 somewhat be­
low the second critical field Hc 2, we now have an 
inhomogeneous magnetic field Ho - ~ ( r) ins ide 
the sample. Here 1::!. ( r) denotes the part of the 
internal field which depends on the coordinates. 

The shape of the NMR signal will be given by 

f (H) = ~ g (H - H 0 + Li (r)) d,r:. ( 1) 

The integration extends over the entire volume 
of the sample, which can be taken as unity. Using 
the aforementioned properties of g ( x), we easily 
obtain 

440 

f (H) = ~ 8~ g<nl (H- H 0), n, 
n=O 

(2) 
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11" = ~sn (r) dT. (3) 

In order to calculate the central moments of the 
curve f ( H) we must determine the center of 
gravity H* of the distribution f (H): 

00 

H* = ~ HI (H) dH. 
-00 

Substituting (2) into (4), we obtain H* = H- ~-

The coordinate origin is now transferred to 
the point H*, i.e., we introduce the new coordi­
nate h = H - H*. The NMR signal will then be 
given by 

(4) 

I (H)= I (h + H*) = F (h), (5) 

00-

F (h) = ~ tl~ g<n) (h- LS:). (6) 
n. 

n=O 

Expanding g (n l ( h - 2.) in powers of 2. and col­
lecting terms, we finally obtain 

00 

F (h) = ~ :! ~-= "6.)"g(n) (h). (7) 
n=O 

This form of F (h) is convenient for calculating 
its central moments. 

By definition the m-th central moment is 
00 

ftm == \ h"1F (h) dh. 
-00 

Integrating by parts and using (7), we obtain the 
first four central moments of the NMR signal: 

00 

H in the superconductor will be 

H = H 0 -I 'l'l2/2x; 

I '1'12 =I c J2111 (x, y). 

We have here introduced the notation 
00 

111 (x, y) = exp (- x2x2) ~ exp [- n2 (m2 + n2) 
n, n1=-00 

(9) 

+ l/2nx (n + m) x + i V2nx (n- m) y]. ( 10) 

The constant I C 12 can be expressed in terms of 
the magnetic induction B. Indeed, it can easily be 
shown that I""W 12 = I C l2/..f2. Also, B = H = H0 

-I >V I2/2K; therefore I C 12 = 2/2K (H0 - B). 
Eq. (9) can now be rewritten as 

H = H 0 - V2 (H0 - B) 111 (x, y). (11) 

However, the internal magnetic field was ex­
pressed in the preceding section as H = H0 - 2. I r), 
so that 

11 (x, y) = V2 (H0 -B) 111 (x, y). ( 12) 

We shall now determine ( 2.- 2.) 2, ( 2.- 2.) 3, 

and ( 2. - L5. )4• According to L2J, 2.1 ( x, y) is 
periodic in the ( x, y) plane with the period 
..J 2rr/K along the x and y axes. The Fourier 
series expansion of this function is 

00 

111 (x, y) = ~ Amn cosm}~"2nxxcos nV2nxy. (13) 
1n,n=O 

Utilizing the rapid convergence of ( 10), we obtain 
the first few Fourier coefficients Amn: 

A 00 = 0,707, A10 = A01 = 0.294, 

A11 = - 0,122, A20 = A02 = 0.00243, 

ftno = ~ h"g (h) dh, (8) A 12 = A21 = 0,00137, A22 =- 0.0001. 
-00 

i.e., the corresponding central moments of the 
signal g in a field H0 > Hc2· 

Equation ( 8) shows that by investigating the 
experimental shape of the NMR signal from any 
one of the components of a superconducting alloy 
in an external field H0 < Hc 2, we can obtain in­
formation regarding the spatial variations ~ ( r) 
of the magnetic field ins ide the superconducting 
alloy. 

3. ON THE MEAN SPATIAL VARIATIONS OF A 
MAGNETIC FIELD IN A TYPE II SUPER­
CONDUCTOR 

Let us now consider the mixed-state region, 
with the external field H0 (along the z axis) close 
to He 2. Then, according to [2], the magnetic field 

It is obvious that the remaining coefficients Amn 
are not needed to calculate the desired mean 
values. After some elementary but laborious 
computations we finally obtain 

(11- 11)2 = 0,180 {H0 - B)2 , (14) 

(11- 11)3 =- 4,38 ·10-2 (H0 - 8)3 , (15) 

(11- 11)4 = 7,88-10-2 (H0 - B)4 • (16) 

We now introduce the density distribution of 
nuclei in the magnetic field: p ( H) = dN I dH, 
where dN is the number of nuclei in the magnetic 
field between the strengths H and H + dH. For 
H( r) as represented by (11), this function was 
obtained by graphic integration and is shown in 
the accompanying figure. 

The quantitative characteristics of this func-
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p 

tion can be determined by using Eqs. (14)-(16). 
We note, to begin with, that the function is 
asymmetric with an asymmetry coefficient de­
fined by L3] 

where u =((b.- 6) 2 ] 112 . Substituting (14) and 
(15) into (17), we obtain y 1 = -0.57. 

(17) 

The sharpness of the distribution near the 
center of gravitt is characterized by the coeffi­
cient of excess: 3] 

( 18) 

If the distribution is normal (Gaussian), we have 
y2 = 0. When y2 > 0 the distribution has a 
sharper maximum than a Gaussian curve. When 
y2 < 0 the distribution is flatter than a Gaussian 
curve or can even have a minimum (a bimodal 
distribution) near the center of gravity. The 
substitution of (14) and (16) into (18) gives 
y 2 = -0.57. 

When the width of the NMR signal for H 0 > Hc 2 

( i.e., the width of the g ( H - Ho) curve) is much 
smaller than b.max• the shape of the NMR signal 
in a field H0 < Hc 2 will be close to that of the 
nuclear distribution p (H) in the magnetic field. 

4. CONCLUSION 

If the Ginzburg- Landau theory [Z] is valid the 
nuclear distribution p ( H) in a magnetic field 

close to Hc 2 is represented by an asymmetric 
function with asymmetry and excess coefficients 
both equal to -0.57. The function p( H) is char-

acterized by the values of(~_ "3.)2 (b._ ~)3, 

and (b.- ~) 4 , which can be determined through 
the second, third, and fourth central moments of 
the NMR signal from a type II superconductor in 
a magnetic field H0 ::S Hc 2• It would be highly de­
sirable to conduct a corresponding experiment for 
the purpose of testing the theory of L2]. 

It must be understood, to begin with, that the 
theory of [2} was developed for homogeneous 
superconductors containing no macroscopic dis­
tortions or mechanical strains. The magnetic field 
distribution in macroscopically inhomogeneous 
samples will evidently have a more random char­
acter, and the nuclear distribution p ( H) in a 
magnetic field will begin to approximate a Gaus­
sian curve. The coefficients of asymmetry and 
excess, y 1 and y2, will accordingly approach 
zero. 

The proposed investigation could therefore 
be valuable for studying the magnetic properties 
of superconducting alloys. 
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