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The effect of anharmonicity on the intensity of the Mossbauer line is treated for the case when 
local modes are present. Even a weak anharmonicity produces a qualitative change in the 
time dependence of the correlation function and results in the disappearance from the expres
sion for the intensity of the product of Bessel functions A defined in formula (2). The corre
sponding intensity difference is distributed around the Mossbauer line over a band of width 
r K, where r K is the level width of the local mode. The effect of anharmonicity on the De bye
Waller factor is discussed. Including anharmonicity changes, the dependence of the Moss
bauer line intensity on the temperature and wave vector and, in particular, gives an aniso
tropy of the effect in cubic crystals. Similar effects can occur in solid solutions in the 
harmonic approximation. The effect of anharmonicity on the one-phonon spectrum is con
sidered. 

1. In ideal crystals the intensity of the Mossbauer 
line for no-phonon emission or absorption of pho
tons is given by the familiar Debye-Waller factor: 

e-2w =I <exp (iku)) 12 = exp [- < (ku)2 ) ]. (1) 

Here k is the photon wave vector, u, is the 
thermal displacement of the atom, (: .. ) denotes 
a statistical average. In nonideal crystals, e.g., 
in the case of a Mossbauer effect on impurity 
nuclei, local modes may occur. The intensity of 
the Mossbauer line when local modes are present 
was considered in [t,zJ, where it was found to be 
given by the factor 

e-2WA = e-2W fi /0 (2Wx sh-1 ~00" T). (2)* 
)( 8 

Here K numbers the normal modes, 2WK is the 
contribution to 2W from normal mode number 
K, wK is the frequency of this vibration, kB is 
the Boltzmann constant, T is the temperature, 
and 10 is a Bessel function of zero order and 
imaginary argument; this factor differs from 
unity when N - oo only in the terms correspond
ing to local modes. This factor also determines 
the intensity of elastic neutron scattering when 
local modes are present. [3] 

Formula (2) and the approximate expression 
in formula (1) are derived in the harmonic ap
proximation of the theory of lattice vibrations, 
and are rigorous within this approximation. How
ever, as we shall show, including anharmonicity 

*sh =sinh. 

causes an essential change in the expression for 
the intensity of the Mossbauer line when local 
modes are present. Even for weak anharmonicity, 
when E2 « 1 (the order of magnitude of E2 is the 
ratio of the frequency shift due to anharmonicity 
to the frequency itself), the intensity of the Moss
bauer line is changed not by an amount ~ E2 but 
by a finite factor independent of E2. The conse
quence of this change is that when the anharmon
icity is taken into account the product of Bessel 
functions drops out of the factor giving the inten
sity of the Mossbauer line, the factor decreases 
by A, and, when local modes are present, is 
given not by (2) but by ( 1), just as for the case 
when there are no local modes. The difference in 
intensity of the Moss bauer line, calculated with 
and without anharmonicity, is proportional to 
(A- 1) exp ( -2W), and is distributed around the 
Mossbauer line within a band of width ~r K ( r K 

is the level width for the local mode) which is 
much greater than the width of the Mossbauer line 
but much less than the widths of the spectral dis
tributions corresponding to one- or multiphonon 
processes. 

Inclusion of the anharmonicity also changes 
the temperature dependence of the mean square 
atomic displacement and gives rise to a more 
complicated dependence of W on k than in the 
last approximate expression ( 1). As a result, 
when anharmonicity is included (and also in the 
harmonic approximation for the case of solid 
solutions) the intensity of the Mossbauer line is 
anisotropic even in cubic crystals. These effects, 

432 



.. 
THE INTENSITY OF THE MOSSBAUER LINE 433 

as well as the peculiarities of the spectrum of 
nucleus-phonon emission that are caused by the 
anharmonicity, will be discussed. 

2. We shall start from the formulas of [4, 5], 

which express the (normalized) probability J ( w) 

for emission of photons of frequency w in terms 
of the correlation function 

00 

1 \ [ 1 J J(w)= 21t. exp- i(w-w0)t- 2 rJtJ g 8 (k,t)dt. 

-00 (3) 

Here nw0 is the difference in energy of the nuclear 
levels, and gs ( k, t) is the Fourier component of 
the autocorrelation function introduced by Van 
Hove [B] and defined by the expression 

gs (k, t) = (exp [iku (t)l exp [- iku (0)]), (4) 

where u ( t) is the operator for the thermal dis
placements in the Heisenberg representation. 

A simpler approximate expression for the 
function gs ( k, t) was proposed by Baym. [5J As
suming that displacements caused by forces in
volving the photon are proportional to those 
forces, it was shown in [5] that 

g8 (k, t) = exp {- ((ku (0))2) + ((ku (t)) (ku (0)))}. (5) 

As we show in the Appendix, the difference be
tween (4) and (5) is proportional to E2 for all t. 

At first in carrying out the calculation we shall 
not consider terms ~ E2 but shall include terms 
~ E2/wK. We can then use (5) for gs ( k, t) and the 
problem reduces to calculating the correlation 
function ( ( k · u ( t)) ( k · u ( 0))). To carry out the 
computation we expand the displacements in the 
normal coordinates of the nonideal crystal (which 
in general does not give plane waves). The scalar 
product k · u can be written in the form 

ku = ~ (a,.a,. + a:a~), (6) 

" 
where a; and aK are the phonon creation and an
nihilation operators (corresponding to the contin
uous or the local spectrum), and the a.K are co
efficients proportional to k, whose detailed form 
is unimportant for the sequel. 

The computation of ( ( k · u ( t)) ( k · u ( 0))) thus 
reduces to calculating the phonon correlation 
functions. These functions were determined in [7 •8] 

in the course of investigating the energy distribu
tion of inelastically scattered neutrons. It was 
found that the correlation functions for K ;,< K' and 
also (aK(t)aK(O)) and (a;(t)a;(o)) are of 
order E2• Therefore 

((ku (t)) (ku (0))) 

=~I ax /2 [(a~ (t) ax (0)) + (ax (t) a~ (0)) ]. (7) 
X 

In [7 •8] they also determined the spectral repre
sentations cp~ ( w) and cp~ ( w) of the functions 
< aK ( t) a; ( 0)) and ( a; ( t) aK ( 0) ) : 

00 

(ax (t) a~ (0)) = ~ !jl~ (m) eiwt dt; 
-00 

00 

(a~ (t)ax (0)) = ~ !jl: (w) eiwt dl (8) 
-co 

and it was found that 

' 1 rx(w) 
!jl X (- UJ) = Jt [ (t) - (t)X ___ p_X_((t)_)_J2_+_r~::--( (t)-) [ n ( UJ) + 1 ], 

(9) 

where n(w) = [exp (nw/kBT) -1]- 1, rK(w) and 
P K ( w) are the damping and shift of the phonon 
frequency due to anharmonicity (since the selected 
normal coordinates of the nonideal crystal are 
exact in the harmonic approximation, the broad
ening of these phonons corresponding to local 
modes or to distortion of waves by crystal defects 
is related only to the anharmonicity and not to 
static defects). 

The damping r K of the local mode was deter
mined in [7] [ cf. formula ( 37) in [7], in which, how
ever, one must add a factor 1;2; in formula ( 37) 
for the frequency shift PK of the local phonon, 
terms were omitted corresponding to virtual 
processes of creation or annihilation of three or 
two phonons; PK and r K are correctly defined by 
formulas (15) and (14) in [8] or by formula (A.18)]. 
In the case where processes of decay of a local 
phonon into two crystal phonons are possible, at 
high temperatures rK and PK are proportional 
to T, while for T = 0 they tend toward a nonzero 
limit. In order of magnitude, rK and PK may be 
~ ( 10- 1-10- 2 ) wK. In the case of weak anharmon
icity, one can neglect the dependence of rK and 
PK on w in the region w f':j ± ( wK + PK) andre
gard r K and PK as constants. Carrying out the 
integration for this case in formulas (7), (8), we 
find from ( 3)-( 8) the following integral repre
sentation for J ( w): 

1 J (w) = ;-;-:--- exp [- ( (ku) 2)] 
t<1t 

00 

X ~ exp [- i (w - wo) t - 4- r It 1] 
-oo 
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X exp {~I O:x \2 [(nx + 1) exp {- i (wx + P,,) t 

- fx\tl} + nx exp {i (wx + Px)t 

- rx It 1} 1} dt. 

Here nK = n(wK + PK). 

( 10) 

The broadening rK of the local phonon is much 
larger than the natural width of the Mossbauer 
line. For example, for Fe 57 , tir = 4.5 x 10- 9 eV, 
whereas nr K is of order 10- 2-10- 4 eV. Thus for 
frequencies \ w - w0 I :s r, one can neglect the 
contribution of the integration region I t I ~ ri( 1 

in the integral (10) compared to that from the 
region r~ 1 « It I ~ r- 1. But for It I » ri{ 1 the 
quantity exp ( -r K I t I) and the exponent of the 
last exponential in the integrand of (10) become 
exponentially small, and this exponential can be 
replaced by unity. Thus neglecting terms 
~ r /r K and ~ E2, the intensity of the Moss bauer 
line is given, whether local modes are present or 
not, by the express ion 

J( ) - -2w 1 r 
m - e -,-----) ( )2 , I""" . -1t m- mo -, "i" 

(11) 

Thus in accordance with our remarks the in
tensity of the Mossbauer line is actually given by 
the factor e- 2W without the multiplier A which 
is a product of Bessel functions [it is easy to see 
that this factor appears immediately if we set 
r K = 0 in formula (10)]. To get a change of the 
line intensity by a finite factor (factor A) it is 
sufficient to include a very small anharmonicity. 
This amount is limited below only by the very 
mild requirement that r K » r, Which iS prac
tically always satisfied. Essentially the role of 
the anharmonicity reduces simply to a change in 
the behavior of the autocorrelation function 
gs ( k, t) at long times. In the absence of local 
modes this function, even in the harmonic approx
imation, after a time ~ wrJ (where wm is the 
maximum vibration frequency) tends toward the 
constant limiting value gs ( k, oo). [6] If there are 
local modes present, then in the harmonic ap
proximation at large t the function gs ( k, t) 
does not approach a constant limiting value but 
oscillates around it, which causes the appearance 
of the Bessel functions in formula (2). [2] But 
when anharmonicity is present, even for the case 
of crystals with local modes, gs ( k, t) attains 
the constant limiting value gs (k, 00 ). True this 
occurs after a time ~ wrJ and not ~ wci E- 2. But 
just as when there are no local modes, the inten
sity of the Mossbauer line is determined by the 
limiting value gs ( k, oo) = e - 2W. 

The last exponential factor in (10) does not 
affect the intensity of the Mossbauer line, but 
when local modes are present it results in the 
appearance of a peak of width ~r K around the 
line. Remembering that for not too weak Moss
bauer lines I aK 12 < 1, the intensity of this peak 
can be found by expanding (10) in powers of 
I Cl'K 12 and stopping at the quadratic terms 
( ~ a~). Then in addition to the peaks with fre
quencies u.) ~ w 0 ± m(wK + PK) (m = 1, 2), cor
responding to processes involving excitation or 
absorption of local phonons, which were treated 
in [1], there should also be a peak near the fre
quency w = w 0, whose intensity is given by the 
expression 

(If the local modes are degenerate, I aK 12 is 
given by a sum over the degenerate vibrations 
with frequency wK.) The width of this peak is 
actually ~ r K, and its integral intensity is 
(A - 1) e- 2W ( if we include the higher terms in 
the expansion in powers of I aK 12 in ( 12)]. 

3. So far we have considered only the effect of 
anharmonicity in changing the behavior of the 
correlation function at long times and have 
dropped terms of order E2. Including these terms 
enables us to see the effect of anharmonicity on 
the Debye-Waller factor and on the intensity of 
the Mossbauer line which, as we have shown above, 
is determined by the Debye-Waller factor alone. 
When anharmonicity is included, there is a change 
in the value of the mean square thermal displace
ments and in their temperature behavior. For ex
ample, at temperatures large compared to the 
Debye temperature, in the harmonic approxima
tion ((k·u) 2) is proportional toT, whereas 
when anharmonicity is taken into account there is 
also a term proportional to T2 . Moreover, since 
when anharmonicity is included the probability 
distribution for thermal displacements is not 
Gaussian, the passage from the second to the third 
expression in formula (1) is no longer rigorous. 
W will not be given solely by the mean square 
thermal displacements and will not be a quadratic 
function of the wave vector k; it will also contain 
terms corresponding to averages of higher 
powers of the displacements and proportional to 
the fourth or higher powers of k. 

The effect of anharmonicity on the Debye
Waller factor in an ideal crystal has been 
treated in [9 , 10 • 16] in connection with the determin
ation of the ,intensity of regular x-ray reflections 
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(cf. also [11J, where a one-dimensional model is 
discussed). According to [1o], when the anhar
monicity is small and when one can stop at the 
quadratic terms in the cubic anharmonicity con
stant and the linear terms in the fourth order 
constant, the expression for W can be written as 

VV= Wo+ W' + W". (13) 

Here W0 + W' = 1/ 2 ((k·u)) 2; W0 is calculated 
from the usual formula for the De bye-Waller 
factor in the harmonic vibration theory (for an 
arbitrary dispersion law). Because of thermal 
broadening the vibration frequencies depend on 
temperature, and in this sense the anharmonicity 
is partially included in W0• W' is determined by 
the corrections to the mean square displacements 
caused by the third and fourth order terms in the 
expansion of the Hamiltonian in powers of the 
deviations of the atoms from their equilibrium 
positions (at a given temperature). Like w0, W' 
is a quadratic function of k. Unlike w0 and W', 
W" is a biquadratic function of the wave vector k. 
Thus even in a cubic crystal W should depend not 
only on the magnitude but also on the direction of 
the vector k, and one should observe an aniso
tropy in the intensity of the Mossbauer line in 
cubic crystals. 

At high temperatures, larger than the Debye 
temperature ®, according to [1o], W' is propor
tional to T 2 and can be written in the form 

W' I W 0 =a (~2 I w-2 ) C' I Co. 

Here ~- 2 ~ w- 2 are the mean values of the in
verse square vibration frequency, taken from 
some of the sums in [1o]; C' results from the 
anharmonicity of the high temperature correction 
to the crystal specific heat C0 = Cv calculated in 
the harmonic approximation; a is a dimension
less factor of order unity ( a = 2 if the main 
contribution comes from the fourth order anhar
monicity, and a = 3 if it comes from the third 
order anharmonic term; in the general case a 
may be less than 2 or greater than 3). Estimates 
based on this formula show that the ratio W' /W0 

may be several times ten. At low temperatures 
W' /W0 may be ~ 10- 2. For T > e the term W" 
is proportional to T 3 and appears more clearly 
at high temperatures and for large energies of 
the Moss bauer photons. 

The temperature dependence of W has been 
studied experimentally over a wide temperature 
range for Sn [11]. The observed deviations from a 
linear dependence of W on· T are caused by 
anharmonicity. The dependence found could be 

described quantiatively by setting a::- 2 ( ~- 2 ) -1 

= 4.5 in the expression for W' /W0, which is in 
good agreement with the semiquantitative theo
retical estimate. 

4. A nonquadratic dependence of W on k 
should also occur, even in the absence of anhar
monicity, in solid solutions. In solid solutions the 
mean square thermal displacements depend on 
which atoms surround a given atom, and are not 
the same even for atoms of a definite sort. The 
probability distribution for the thermal displace
ments of an atom whose type is not preassigned 
is then not Gaussian (through the probability dis
tribution for a given atom is of course Gaussian 
in the harmonic approximation). Thus in this 
case also the last expression in (1) is not exact. 

The De bye-Waller factor for non ideal crystals 
was determined in [12] by looking at the intensity 
of regular x-ray reflections. These results can 
be applied to the problem of the intensity of the 
Moss bauer line, if we consider that in the ab
sence of coherent effects the static defects do not 
affect the intensity and we set the static shifts 
equal to zero in the formulas of[12J. Then, for 
example, for the case of dilute binary solutions 
A-B with one atom per unit cell, the value of W a 
for atoms a (a =A, B) is given by the following 
formula: 

W a= + <(kua)2 ) + c ~ [1 - exp {- + .-1 (kYsa)2} 

8 

- +11(kvsa)2 ] =+<(ku")2 ) -{-c~[.-1(kv8")2 j2. 
s 

( 13') 

Here c is the concentration of impurity atoms, 
( ( k · Ua) 2 ) is determined by the mean square 
thermal displacements of the atoms a, f:::J ( k · v sa ) 2 

determines the average (over the vibrations but 
not over the atom configurations) of the scalar 
product (( k · Ua ) 2 ) for the thermal displacements 
of the atom of type a (A or B) at a given site 
(the origin) when an impurity atom A is introduced 
at position s (a site or an interstitial position). 
The second, approximate, formula in (13') is ob
tained by expanding in powers of .t. ( k · v sa) 2• 

The last term in ( 13) is proportional to k4, and 
obviously leads to an anisotropy of the intensity of 
the Moss bauer line in cubic crystals, even when 
there is no anharmonicity. At high temperatures 
.t.(k·vsa) 2 ~ T, i.e., this term is proportional 
to T 2• Obviously the anisotropy should show up 
more clearly for harder radiation (large k), con
centrated solutions (large c) and when there is a 
marked difference between the force constants 
and the masses of the different sorts of atoms. 
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Then at high temperatures the mean square 
thermal displacements (and .6 ( k · Vsa )2; cf. [12]) 

do not depend on the masses of the atoms, and 
only the difference between the force constants is 
important. At low temperatures the quantities 
~(k·vsa) 2 are determined by both factors. 

5. Anharmonicity may not only affect the in
tensity of the Mossbauer line, but also the broad 
distribution of intensity of nucleus-phonon emis
sion or absorption of photons. In particular, in
cluding anharmonicity should result in a smearing 
out of the singularities of this distribution which 
are caused by the presence of critical points in 
the vibration spectrum (maxima, minima, and 
saddle points), which, according to [13J, should 
occur for each vibration branch. This effect is 
analogous to the smearing out of singularities in 
the energy distribution of incoherently scattered 
neutrons, which was treated in [7 ,a] . 

The singularities in the spectrum of one-pho
non emission or absorption of photons which ap
pear most clearly are those corresponding to 
processes in which the nuclear transition is ac
companied by emission or absorption of one 
phonon. The emission probability for these proc
esses, taking anharmonicity into account in an 
ideal crystal, is given, using (3), (5), (7) and (8), 
by the expression 

Here, instead of using K, we characterize the 
phonon in the ideal crystal by giving the wave 
vector k and the vibration branch j. In ( 14) we 
have dropped terms of order E2 (and ~ r /r K) in 
the expression for the emission probability, but 
these terms can be kept in the expressions for 
the correlation functions (9). 

Neglecting anharmonicity, the functions cpkj 
and cpkj are 6-functions: 

cp~i (w) = 6 (w + u\) [n (wkj) + 1], 

cp~i (w) = 6 (w - wkj) n (wkj). 

Then as is easily seen from (14) the appearance of 
a critical point in any vibration branch j' at the 
frequency w1 ( vk Wkjl = 0 for Wkjl = w1) leads 
to the appearance of a singularity in the function 
J 1 ( w) of the type I w - w0 - w1 1112 , just as in 
the case of incoherent scattering of neutrons. [14] 

A term proportional to I w - w0 - w1 1112 appears 
for frequencies w lying only on that side of the 
point w0 + w1 for which new poles appear on the 
surface Sy ( w) with wj' ( k) = w - w0• For ex
ample, for a minimum critical point, the term 

describing the singularity, for the case where the 
emission of a photon is accompanied by the ab
sorption of a phonon, has the form 

1111 (w) = B {(w- Wo- w,)'f,, w- Wo >WI , 

0 w- wo<wi 

( 15) 

Here B may be assumed independent of w. 
The singularity in the dependence of J 1 on w 

is smeared out if the anharmonicity of the vibra
tions is taken into account. In fact, when anhar
monicity is included the phonon correlation func
tion is given by (9). Except for cases where other 
branches have no vibrations with frequency w1, 

we can neglect the dependence of rkj on w over 
the narrow frequency range w - w0 - Wkj ~ rkj. 
If on the surface Sj' in the neighborhood of the 
minimum point of the j 1 branch we can neglect 
the dependence of rk1 jl = r ( w) and Gkljl on k 1 ' 

then carrying out the integration in (14) with the 
correlation function (9) we get 

00 

111 ( ) = B \ r (w) (w'- WI)'/, d ' 
1 w n .l (w- w')2 + f2 (w) w 

"'• 
Br (w) 

= 2 ((W- Wt)2 + f2 (w)]'f, sin (6/2) ; 

t 0=~· g (J)-(J)I ' 
( 16)* 

Thus the singularity in 4J 1 ( w) has been smeared 
over a frequency interval ~ r ( w) according to 
the same law as in the case of incoherent scatter
ing of neutrons (cf. formula (34) in [7]) which also 
treated the case where one can neglect the de
pendence Of rkl j I On k 1 ) • 

If the dependence rklj I ( W) on the position of 
the point k 1 on the surface sj' ( w) is important, 
a similar treatment gives the following formula 
for ~J 1 ( w): 

1 (' Bk'i'rk'i' (w) 
/11t(w) =-.-- \ dQ , , 

2 " [(w- wl)2 + rL- (w)] ;. sin (6k'j'/2) 

r k'i' (w) 
tg ok'j' = -- . 

(J)-(J)l 
( 17) 

Here the integration extends over the solid angle 
with its vertex at the minimum point, while 

V dSi' 
Bk'i' = e-zw 8n3 I ak'i' [2£Ef ' ( 18) 

I Vk,wk'i' i (w- WI) 1• 

may be assumed to be independent of w. It is ob
vious that (18) gives qualitatively the same de
pendence of .L\J1(w) on was does (16). 

*tg =tan. 
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The author is grateful to Yu. Kagan for valu
able discuss ions. 

APPENDIX 

We shall calculate the correlation function 
( a; ( t) aK ( t) a; ( 0) aK ( 0) ) and show that the 
approximate expression (5) proposed by Baym [sJ 
for the function gs ( k, t) is valid for all t up to 
terms ~ E2• 

Let us consider the difference between the 
exact and approximate expressions (4) and (5) for 
the correlation function: 

K (t) = (exp (iku (t)) exp (- iku (0))) 

- exp [- ((ku (0))2) + ((ku (t)) (ku (O)))l. (A.1) 

For simplicity we restrict ourselves to the case 
where each atom is a center of symmetry and the 
radiation is not too hard, so that in the expansion 
of (A.1) in powers of k we can stop with terms 
~ k4 (an assumption which is satisfied in all cases 
where the Mossbauer effect has been established 
experimentally). Then 

K (t) = d- ((ku)4) - ~ ((ku (t))3 (ku (0))) 

- + (ku (t)) (ku (0))3) + ~ < (ku (t))2 (ku (0))2) 

- f [((ku)2)J2+ ((ku)2) ({ku (t)) (ku (0))) 

- f [((ku(t)) (ku(0)))] 2. (A.2) 

We carry out the computation of K ( t) neg
lecting terms ~ E2• As an example we consider 
the terms K0 ( t) in K ( t) which do not contain 
oscillating factors of the type exp ( ± iwK t), exp 
[(±wK ± WK 1 )it], etc. (which determine the inten
sity of the Moss bauer line), and not the smooth 
spectral distribution in its wings. Considering 
the expansion (6) and the commutation rules 
[ aK, a; 1] = OK K 1, and neglecting terms ~ E2, we 
can write K0 ( t) in the form 

K 0 (t) = ~ Jcx" [4 [(n" (t) n")- n~ 
>< 

-(ax (t) a~ (0)) (a~ (t)a>< (0))], (A.3) 

where nK ( t) = a; ( t) aK ( t), nK = nK ( 0), while 
nK is the average occupation number. In obtaining 
(A.3) it was assumed that the local modes are not 
degenerate (though it is not difficult to carry 
through the treatment without this assumption). 
In the harmonic approximation K0 ( t) = 0. But 
the fact that when we include anharmonicity 
K0 ( t) ~ E2 at all times requires separate proof 
since the time dependence of the differnce of the 
first two terms in (A.3) and the last term can be 
different, in general. It is therefore necessary 

to calculate the correlation functions appearing 
in (A.3) for a vibration Hamiltonian which in
cludes the anharmonicity: 

H - 'V + ] 'V ( + + 1 ' 
- .LJ Wx a"a" + 2 .LJ V ><><'><" pa"a"·a><" + 3 V ><><'><"axa,eax" 

x xx'x" 

+ berm. conj.) . (A.4) 

Here 11 = 1, the anharmonicity constants V and 
V 1 are proportional to the small parameter E 

d + + - 1; ( + + + + an paKaK 1aK, - ; 3 aKaK1aK" + aK 1aKaK, 
+ a; 1 a;" aK ) . 

When anharmonicity is taken into account, the 
last term in (A.3) is given by formulas (8) and (9). 
To determine the difference of the first two terms 
one must find the correlation function ( nK ( t), 
nK - nK). The calculation of this correlation 
function can be done by the method of retarded 
and advanced temperature Green's functions.[ts] 
We introduce the retarded Green's function gK ( t) 
for the operators nK: 

g" (t) = < (n" (t); (A.5) 

n"- nx)) = - iS (t) ({n" (t), nx- nx}), 

where the curly brackets denote the anticommu
tator, and e ( t) = 1 for t > 0 and e ( t) = 0 for 
t < 0. For the advanced Green's function e ( t) 
is replaced by -e ( -t). In this definition of the 
Green's function we take the anticommutator in
stead of the commutator in order that the equa
tion of motion will be inhomogeneous. 

From (A.4) and (A.5) it follows that the equa
tion of motion for the function gK ( t) has the 
form 

(A.6) 

Following the method for truncating the chain 
of equations for the Green's function Lis], we con
struct the equation of motion for the functions on 
the right of (A.6), and truncate them in an ap
proximation corresponding to the second order 
perturbation theory for the inverse Green's func
tion. For example, the equations for the first two 
Green's functions on the right of (A.6) have the 
form: 
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x, 

.d/ +. - --"(){+ -l dt \ (pa ... a ... ·ax", nx- n,)) - u t ( pa ... ax· ax", nx - nx}) 

- ( Wx - Wx• - Wx") ((pa~ ax·ax"; nx - nx)) 

+ l'xx'x" (1 + li .... + nx")gx + 
+-+ ~ (6xxYx,x,x" + 6xx"Vx,x,x') (1 + 2n ... ,) g .... (A.8) 

x, 

We note that the other terms on the right of (A. 7) 
and (A.8), for example terms containing the 
Green's functions « a;'aK'a~"aK"; nK - nK))' 
are proportional to E2 and can be dropped only 
when the Green's functions are suitably chosen 
(with anticommutators); when the quantity to the 
right Of the semicolon iS nK - UK, whose average 
is zero (and not nK, for example). 

The averages for a single time in the first 
terms of (A.7) and (A.8) can be calculated to 
terms ~ E using the wellknown expansion of the 
exponential operator: 

1 

e-A. (H,+H,) = e-i,H0 _ ')., \'due-A. (1-u) H0H e-A.uH0 + j 1 • " • ' 

0 

(A.9) 

applied to the operator exp ( -A.H) (A. = ( kBT) - 1 ). 

The averages appearing in (A. 7) and (A. 8) are 
equal to 

({axa~-a~"; nx- nx}) =- ({a~ax·a ... "; nx- n ... }*) 
= 2l':x'x" ( Wx - Wx• - Wx"f1 

X [1- exp{- A (wx- Wx•- Wx")}] 

X (1 + nx) (1 + 2nx) nx•nx"· 
Here K ;r. K' ;r. K" and we use the fact that n2 

K 

= nK ( 1 + 2n). 

(A.lO) 

Next proceeding as usual from the Green's 
functions to their Fourier transforms, we find 
that, for example, the Fourier transform of « aKa;,a;"; nK - IlK)) is a linear function of the 
Fourier transform gK ( w). After substituting 
these linear functions on the right of the Fourier 
transform equation (A.6), we see from (A.lO) and 
similar expressions for other averages that the 
free terms under the summation sign cancel one 
another and the sum will be proportional to 
gK ( w ). From the linear equation found for gK ( w) 

it follows that 

(A.ll) 

21 V x'xx" 12 (nx'- n ... ") _ I V~x'x" 12 (1 + n .... + nx"l] . 
(I)- (t)x + 00x~- (l)x" W- (l)x- (t)x,- (t)x" 

(A.12) 

The Fourier component vK ( w) of the correla
tion function ( nK ( t), nK - IlK ) is related to the 
Fourier component of the Green's function 
gK ( ""') by the relation (cf. [15]) 

'Vx (w) = i (e'-"' + 1t1 [g ... (w + i£)- g ... (w- i£)1 

(A.13) 

( ~- + 0). Remembering that (x + i~ )- 1 = Px- 1 

- iwo ( x) (where P denotes the principal value), 
we find from (A.ll)-(A.13) the following expres
sion for vK(w): 

1 r ... (w)+r ... (-w) 

'Vx (w) = n [w-nx (w) + n ... (- w)] 2 + [Yx (w) + Yx (- w)]" 

(A.14) 

Here wK ( w) and YK ( w) are gotten from (A.12) 
by replacing the factor ( w - a )- 1 in each of the 
terms by P( w- a)- 1 and wo (""'-a), respec
tively. The functions wK ( w) and yK ( w) are pro
portional to E 2 • Neglecting their variation over 
the region of small I w I ~ yK, we can set 
wK(w)=wK(-w) andreplace yK(w) and yK(-w) 
by the constant quantity 

Yx (0} = ~ ~ JVxx'x" [2 (1 + nx' + nx") 6 (wx- Wx•- (J)x"). 
x'x" 

(A.15) 

Transforming from the Fourier component 
vK ( w) to the correlation function, we get the 
following expression for the difference of the first 
two terms in the square bracket in (A. 3): 

<n" (t), n ... - 11 ... > = nx (nx + 1) exp {- 2r ... (O) 1 t [}. 

(A.16) 

It follows from (8) and (9) that for small E the 
last term is equal to 

(A.17) 

The damping r K ( w) and shift PK ( w) of the 
phonons for the anharmonic Hamiltonian in a 
nonideal crystal (A.4) are determined by the re
lation ( cf .c: ,B]): 
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Px (w)- ifx (m) = Rx (w + i£), 

where 

21 v x'xx'' 12 (nx'- n:x,) 

w-wx' + wx" 

X ( w- w~- wx" - w- w~ + wx" ) } · (A.18) 

From (A.15) and (A.18) 'YK ( 0) = rK ( WK ). 

Therefore neglecting terms ~ E 2 (but not as
suming that E2 twK is small) the expression in 
square brackets in (A.3) goes to zero. It then 
follows that K0 ( t) is of order E 2. 

By similar arguments one can also show that 
the other oscillating part of K ( t) is of order E2 . 

Note added in proof (Jan. 14, 1964). Recently it has been 
shown (M. A. Krivoglaz, FTT, in press) that inclusion of an
harmonicity not only gives the effect considered here of a re
duction in the intensity of the Mossbauer line by a finite 
factor (when local modes are present), but can also cause a 
reduction by several orders of magnitude of the effect pre
dicted by Snyder and Wick [H. S. Snyder and G. C. Wick, Phys. 
Phys. Rev. 120, 128 (1960)], which is a broadening of the line 
line through interaction with the local vibrations. 
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