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The asymptotic expression for the amplitude for the transformation of two particles into 
three at high energy, which has been derived previously[1•2] on the basis of the one-Regge­
pole approximation, is utilized here for the computation of the total cross section of this 
reaction and for the determination of the most likely values of the momenta of the gener­
ated particles. It is shown that in the high energy region s = Sab-- oo the total cross­
section of the reaction a + b -- c + d + e has an energy dependence of the form 
{ c 1 ln [ ln ( s/m2 )] + c 2} /ln ( s/m 2 ). An investigation of the differential cross section of 
the reaction a + b -- c + d + e has shown that the most probable situation is the case in 
which all outgoing particles are ultrarelativistic, with two of the particles emitted, in the 
c.m.s. of the reaction, within a narrow cone in one direction and the third particle emitted 
in the opposite direction. The largest contribution to the cross -section, of the order of 
{ ln [ ln ( s/m2 )] } /ln ( s/m2 ) corresponds to the case of so-called "genuine inelastic" col­
lisions, when all three invariants sec. Sed. and Sde are large compared to m 2 as s-- oo. 

In this case one of the two particles, which are emitted in the same direction, has its mo­
mentum considerably in excess of the momentum of the other particle. 

If the momenta of these particles are equal their energy in the c.m.s. will not be large. 
This corresponds to the case of the so -called "almost elastic" collisions; their contribu­
tion to the total cross section is of the order 1/ln ( s/m 2 ). If the energy is not extremely 
large, i.e., ln (s/m2 ) is not much larger than one, then the probability for the generation 
of the two fast particles and one slow particle, almost isotropically distributed in the 
c.m.s. angle, is relatively large (of the order of 1/ln ( s/m2 )). 

1. In the present paper an investigation of the dif­
ferential and total cross sections for the reaction 
a + b -- c + d + e is carried out in the region of 
very high energies on the basis of the results of 
the analysis [1, 2] of the asymptotic behavior of 
amplitudes for inelastic processes. In spite of 
the complicated nature of the problem, the results 
turn out to be extremely simple and intuitive. They 
reduce to the assertion that, taking into account 
the contribution of only one Regge pole-the one 
situated most to the right, the amplitudes for in­
elastic collisions (Fig. 1b) have their asymptotic 
behavior determined by contributions from simple 
diagrams, represented in Fig. 2b and very similar 
to Feynman graphs. However, in these diagrams 
the propagation line for a virtual particle (which 
we call a "reggeon") is associated to a quantity 
I0(t)sjo(t), depending not only on the square of the 
"reggeon" momentum q2 = t (as for usual Feyn­
man graphs), but also on the energy ( s) 1~ of the 
colliding particles. Here j 0 (t) is the position of 
the Regge pole situated most to the right and I0 

= i- cot (nj 0 (t)/2). 
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Similar results have been obtained subsequently 
also by other authors. Some have formulated such 
results in the form of assumptions [a], others have 
derived them on the basis of arguments [4] which 
in our opinion are not convincing. 

In the above-mentioned work[1•2J it has been 
shown that, in the same manner as for reactions 
of the type a + b-- c + d [5 ] (Fig. 1a) the asymp­
totic behavior of the amplitude is determined by 
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the contribution of the diagram in Fig. 2a: 

A (2 -<-- 2) = g (t) g (t) I 0 (t) {sfm2}i,(l), (1) 

the amplitude for the reaction a + b - c + d + e 
(Fig. lb), for sab » m2, is determined by the con­
tribution of the diagram represented in Fig. 2b: 

A (3-<-- 2) = G (k', t) g (t) 10 (t) {s/m2}i.U>. (2) 

Here k' is the momentum of the relative motion of 
the particles c and d in their center of mass sys­
tern (c.m.s.) (in what follows, all quantities defined 
in such a frame of reference will be denoted by one 
or two primes). This expression for the amplitude 
of the inelastic process (2) has been written under 
the assumption that the energy (Sed) 112 

= 2 ( m 2 + k' 2 ) 1/ 2 of the particles c and d is small 
in the c.m.s. 0 , i.e., sed~ s' ~ m 2. The vertex 
function g(t) in (2) corresponds to the absorption 
of a reggeon, and the vertex function G(k', t) cor­
responds to the emission of a reggeon in the tran­
sition from particle b to particles c and d. This 
vertex function is a "four-point function" and 
therefore, besides the square of the reggion four­
momentum, it also depends on the components of 
the momentum k' of the relative motion of the 
particles c and d. 

If the momenta of the particles c and d are 
such that the invariant sed= s' is not small, i.e., 
if s » m 2 and s' » m 2, then the amplitude of the 
process described by Fig. lb is determined by the 
contribut~on of the pole diagram of Fig. 3, with two 
reggeons and which in the asymptotic region can 
be represented in the form 

A (3 -<-- 2) = g (t1) r (t1 , t) g (t) I 0 (t1) (scd/m2)i·U·> 

(3) 

FIG 3 

Here y(t1, t) is the vertex function (Fig. 3) corre­
sponding to the emission of the particle d by the 
reggeon, t1 = ( Pb - Pc )2. 

In order for Eq. (3) to be true, it is necessary 
that as Sab = s- oo the inequalities sde » m 2 and 
sdc »m2 be satisfied and the squares of the mo-

1 >In order to simplify the exposition we consider the case 
when the masses of all particles are equal. The case of un­
equal masses leads to some complication in writing, which 
is in principle inessential. 

mentum transfers t 1 and t be small. When the 
magnitude of the invariant sed decreases Eq. (3) 
goes over into Eq. (2), since for small s' = sed 
the magnitudes of the invariants sab = s and Sde 
differ by a factor which depends only on k' (this 
follows from the kinematics which is described 
in detail below). 

The derivation of Eqs. (2) and (3) is based on 
the assumption that only one Regge pole, the one 
situated most to the right, is dominently contrib­
uting at high energy. If in reality the situation 
turns out to be more complicated[6J, e.g., if the 
right-most singularity of the partial wave ampli­
tudes is not an isolated pole, but a point of accu­
mulation of singularities [7 J, then the asymptotic 
expressions (2), (3) will be essentially modified. 
Nevertheless, apparently in all cases the asym­
ptotic behavior of the amplitudes of inelastic proc­
esses must correspond to the asymptotic behavior 
of the amplitude of elastic scattering in the same 
sense as (2) and (3) correspond to (1). 

Keeping this in mind, it seems interesting to us 
to carry out an investigation of the differential and 
total cross sections for the reaction a + b - c + d 
+ e on the basis of Eqs. (2) and (3) and to determine 
the most likely configurations of the momenta of 
the produced particles. In our opinion, the results 
of such an investigation have a quite general char­
acter and will hardly be modified in their essence, 
should it turn out that the assumption of the domi­
nance of a single Regge pole is incorrect. 

2. As is well known, the cross section for the 
reaction a + b - c + d + e is connected with the 
amplitude (2) or (3) A(3- 2) through the relation 

do (:~ -<-- 2) = ~F lA (:3 -<-- 2) 12 dT3 , (4) 
1Baeb o 

where F 0 = dW0 /dpa = Pa( s )112/EaEb is the flux of 
incoming particles a and b (all quantities are in 
the c.m.s. of the reaction), 

W0 = V m;, + p~ + V mg + pg = 211m2 + p~ 
is the total energy, W 0 = ( s ) 1/2, and 

(2:n:)• 4 d3pc d3pd d3p, 
dTa = -3! 0 (Po-P) (2:n:)• 2e,c (2;t)3 2ed (2:n:)• 2ee 

4 p; d3pddne 

3f (4:n:)5 -ecee (dw,dpe) ed 
(5) 

is the statistical weight of the final state of the 
particles c, d, e; P 0 = (W0, P0 ) is the total four­
momentum ( P0 = 0) of the initial state, similarly 
P = (W, P) is the total four-momentum of the final 
state, and 

W = 11 m2 + (pd + Pe)2 + V m2 + p~ + V m2 + p~. (6) 

The statistical weight (phase space factor) (5) con-
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tains the factor 1/3! since we assume that the 
particles are all identical. 

The c.m.s. momentum configuration of all five 
particles (i.e., in the c.m.s. of the particles a and 
b) is represented in Fig. 4. For large energies 
and large values of the invariants sed and sde the 
amplitude (3) is not small only for small absolute 
values of the squares of the momentum transfers 
t1= (pb-Pc)2 and t= (pa-Pe) 2• 

\ p~ Pa 

FIG. 4 

Indeed, in the asymptotic region the amplitude 
of the reaction a + b - c + d + e is proportional 
to the quantities exp [ j0 ( t 1 ) ln (sed /m 2 )] and 
exp [j 0 (t) ln (sdelm2 )]. We expand the functions 
h(t) and j0(t1) around the points t = 0 and t1 = 0: 

j 0 (t) = jo (0) + j~ (0) t, 

Here, as is well known, 

(dj 0 (t)/dt)t=·n• 

are quantities of the order 1/m2 and j0 ( O) = 1 
(the latter condition is a well known property of 
the vacuum trajectory j0(t ), which guarantees the 
constancy of the total cross section of the particle 
interaction at extremely high energies ) . 

Since in the physical region of the reaction a + b 
- c + d + e the quantities t 1 and t are negative, 
the exponent of the factors exp [ j0 ( t 1) ln (sed /m2)], 

exp [ j0(t) ln ( sde /m2 )] decreases as t and t 1 in­
crease. It can be seen from this, that at high en­
ergies and large values of sed and Sde the am­
plitude (2) and (3) is not small only in the region 
of small t and t 1. In order that t and t 1 be small 
it is necessary that the angles Jb and Jbc in 
Fig. 4 be very small, and the momenta Pc and Pd 
be large, i.e., of the same order of magnitude as 
the momenta Pa ~ Pb ~ ( s ) 112 I 2 of the colliding 
particles. 

Without loss of generality we can assume that 
among the momenta p0 , Pd· and Pe• the momen­
tum Pd is the small one, i.e., that the momenta 
Pc and Pd are almost parallel (if Pd is not very 
small) and are directed oppositely to Pe· 

The amplitude for the reaction a + b - c + d 
+ e consists of the contributions of six diagrams 
of the type represented in Fig. 3, and obtained by 
carrying out all possible permutations of the par­
ticles c, d, and e. To each of these diagrams 
correspond obviously six configurations of mo­
menta for the particles produced in the reaction, 
analogous to the configurations in Fig. 4, but dif­
fering from it by interchanges of the particles c, 
d, and e. However, only one of the configurations 
makes a noticeable contribution to the amplitude, 
since the momentum transfers in the other five 
will be large. Therefore the amplitude of the re­
action a + b - c + d + e will consist of six equal 
contributions, and thus the factor 1/3! in dT3 

will cancel out. 
The conservation laws for the energy and the 

projection of the total momentum on the direction 
of Pe yield 

(8) 

where kc and kd denote the projections of Pc and 
and Pd on the direction of Pe ( cf. Fig. 4). For the 
following it will be convenient to characterize the 
momenta Pc and Pd by their projections k0 , kd 
and the two-dimensional projection K on the plane 
perpendicular to Pe• i.e., Pc = (kc, K ), Pd 
= ( kct. - K ). In particular Pc • Pd = k0 kct- K 2• It 
will be shown below that the quantity K2 is always 
small, [of the order of m 2/ln (s/m2 )]. Therefore 
if Pc and Pd are ultrarelativistic, 

Ec = y m2 + x 2 + k~=kc, Ee = Vm2 + k~=ke. 
ed = V m2 + x2 + k~. 

Thus the conservation laws (8) can be put in the 
form 

P. + kc = v-s- Ed, P.- kc = kd. (9) 

Adding these equalities, we obtain 2pe = ( s ) 112 

- (Ed-kct). 
For ( s )112 » m, the difference Ed- kd is neg­

ligibly small compared to ( s )112. Indeed, if kd is 
of the order of m, this difference is a quantity of 
the order of m; if kct » m, Ed- kct ~ m 2/2kct. 
Thus, up to terms of the order m/ ( s) 1/ 2 we ob­
tain that Pe ~ (s )112/2, i.e., 

(10) 

After these remarks we proceed to compute dT3. 

Differentiating the energy (6) with respect to Pe, 
we obtain 

dW/dpe = (pe- Zdpd)lec + P/Ee, 

where zd =cos Jd (cf. Fig. 4), i.e., ZdPd = kct· 
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But Pe- kct = ke, therefore 

Thus 

This is the exact expression. For large ener­
gies, when the particles a, e, and c are ultra­
relativistic, one may set Pa ~ (s) 1/ 2/2, Pe ~ Ee 
~ (s )112/2, Ec ~ k0 , i.e., 

Substituting into (4) the expression for dr3 and 
the asymptotic expression (3) for the amplitude 
(since in the case s - oo both invariants s 1 = sed 
and s" = sde are large, this is the most interest­
ing case, and in fact, it will turn out to be the gen­
eral case), we obtain 

_ _1_ gz (t1) gz (t) 1z (tit) (_!'__)2i,(t,) (!.':__)2i, (tl Vs dn.dpd . 
dcr (3 ~2)- 4 4n 4n 4Jt m2 m2 2kc 4n•eds 

(11) 

As will be shown, for very large energies the 
values t 1 = 0 and t = 0 are essential, therefore 
in (11) the factor [ I0 (t )!0 ( t 1 ) ] 2, which is unity for 
t = 0 and t 1 = 0, has been omitted. 

The quantities g(t1 ), g(t ), and y(t1t) which 
have no singularities for t 1 = 0 and t = 0 will be 
replaced by their values in these points, i.e., g0 

=g(O), and y0 =y(OO). 
According to Fig. 4, the invariants S 1 = sed 

= (pc + Pd)2, s" = Sde = (pd + Pe)2 and tt 
= ( Pb - Pc )2, t = ( Pa- Pc )2 have the following 
values: 

s' ::::::::; 2pcpd = 2 (8c8d - kckd + x2) ::::::::; 2kc (ed- kd), 

s"::::::::; 2pdpe;:::::; 2 (edee + kdke) ;:::::;ys(ed + kd); (12) 

- t 1 = - 2m2 + 2eb8c- 2pbpczbc::::::::; 1:~ + Vskc{}~c/2, 
- t = p aPb {}g = s{}~j4. (13) 

In (12), terms of the order m 2 have been neglected 
(since the case s 1 » m 2, s" » m 2 has been kept in 
mind), and in (13) the quantity ( s )112 has been sub­
stituted for Pa = Pb and it has been taken into ac­
count that Ec ~ kc, Ee ~ Pe ~ (s) 112/2. The co­
sines of the angles ~be and ~b (Fig. 4) have been 
written in (13) in the form Zbc = 1 -~be /2, Zb = 1 
- ~b /2, since in what follows only the region of 
very small values of these angles will be of inter­
est. The part of ( - t 1 ) which does not depend on 
the directions of the momenta is denoted by T~: 

~ = 2(eb8c- PoPe- m2) = m2 (pblkc + kciPb- 2) 

::::::::; m2 CJfs/2kc + 2kc I Vs- 2). 

Introducing the notation y = 2kct /( s )112 and tak­
ing into account the equality (10) one can represent 
the quantity T~ in the form 

(14) 

We remark that the angles ~b. ~0 • and ~be• as 
can be seen from Fig. 4, are connected by the re­
lation 

z = z z + -.r(1- z2) (1 - z2) cos IP 
be b c Y b c ' 

where cp is the azimuthal angle between the planes 
which contain the vectors Pe• Pb and p0 , Pd• re­
spectively, and Zbc ~ 1-~bc/2, Zb ~ 1-~t/2, 
and z0 ~ 1 - ~b /2 are the cosines of the corre­
sponding angles. From here it follows for ~be 

(15) 

Taking into account these values of the invari­
ants, in particular that according to (12) 

and substituting (8) into (11) we write the cross 
section in the form 

de~ (3 ~ 2) = ( :! r ;~ exp (- 2j~m2 /~'y) ( ~cs r dkd dF, 

(16) 
where 

dF _ (1 + x2jm2)2 . {- ., t' ( 2k~ ) s{}gc _ 1., t" _:__ {}2\ 
- ed(2m)4 exp fo"' Vs; 2 o"' 2 bf 

X d ("~~) d ( s~;c) (~!), 

with 

(17) 

s" VS 
£"=In 2 = In - 2 (ed + kd). (18) m m 

In (16) and (17) it has been taken into account 
that the cross section (11) does not depend on the 
azimuthal angle of the vector ne = Pe /pe (since a 
variation of this angle corresponds to a rotation 
as a whole of the ensemble of vectors represented 
in Fig. 4), therefore the differential dne can be 
represented in the form 

dn. = 2nd (cos {}b) ::::::::; 2nd ( {}~/2). 

Besides, the differential dpd has been written in 
the form dpd = dkctdK, with dK = 1;2 dK2dcp = k2c x 
d ( ~b /2 )dcp. Since according to Fig. 4, K ~ ~0k0 , 
in the variables of Eq. (17) the quantity K2 can 
be rewritten in the form 

2 _ _1_ ( 2k~ )2 s{}~ 
X- 2 Vs. 2 · 
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In order to compute the total cross section we 
first integrate in (17) over Jb, Jc, and rp. To do 
this, we introduce two-dimensional vectors {3 and 
y, situated in a plane perpendicular to Pe• as is 
also K, and having the values {3 2 = sJf, /2 and y2 

= sJ~ /2. We assume that the vector y is parallel 
to K (its square differs from K2 only by the fac­
tor % ( 2kc /( s )112 ) 2 ) and {3 is situated in the plane 
in which the angle Jb is measured, i.e., y • {3 
= I y II {3 I cos rp. According to (15), we have sJ.bc /2 
= ( y- {3 )2, and (17) can be represented in the form 

In the expression (19), one has to consider that 
~' > 1, and ~" > 1, since the asymptotic expres­
sion (3) of the amplitude A ( 3-- 2) which has 
been used in (17) is valid only in this region ((18) 
implies that ~' > 1 only if kc » kct ) . For ~' > 1 
and ~" > 1 the integration over {3 and y which is 
used in the computation of the total cross section 
can be extended to infinity. Introducing in place 
of y the vector a = y - {3, we obtain 

~ 1 ( Vs) 1 
~ (8nj~m•)• \ 2kc . ~~~" V m• + k~ (20) 

In calculating the integral it has been taken into 
account that the values a 2 ~ 1/jQe ~ m 2/e (for 
2kc ~ (s) 112 ) and {3 2 ~ 1lj 0~" ·~ m21~" are essen­
tial. Therefore for e > 1 and ~" > 1 the values 
K2 = % ( 2kc I ( s ) 112 )2 x (a + {3 )2, which are essen­
tial in the integral, are also small compared to 
m 2, and one can neglect the quantity K21m2• 

According to (19) and (20) the distribution of 
the generated particles c and d in their momenta 
( kc + kct = ( s )1/ 212) has the form 

dkd 
d:; (3 <--- 2) = a0 (y) V , 

m• + kJ~'~" 
(21) 

where the quantity 
• 2 2 

oo(Y) =--.-1-.. -. I~) _t:_(l- y)2exp(-i~ 2m2y• £') 
(8nm• 1 )2 \ 4n. 4n 1- y 

0 (22) 

has in fact a constant value, corresponding to 
y = 0: 

(23) 

In the region where k~ ~ m 2, this assertion is 
obviously true, since the quantity y = 2kd I ( s ) 1/2 
is negligibly small in this region. We consider the 
region kZI » m 2. Since the value of the cross sec­
tion (16)-(17) has been obtained under the assump­
tion e > 1 and ~' = ln ( kc lkd) ~ ( 1ly - 1)' the 
inequality y « 1 must hold. Consequently, in both 
cases the quantity y2 ~' ~ - y 2 ln y in the exponent 
of (22) is negligibly small, and hence taking into 
account the dependence of u0 on y means going 
beyond the assumed approximation. In the region 
where kc ~ kct. i.e., y ~ 1 and s' "' m 2, one 
should use the asymptotic expression (2) for the 
amplitude A (3- 2 ). 

In integrating (21) with respect to kct (with 
kct « ( s ) 112/2) we will distinguish between two 
regions: (1) kct,... m, and (2) kd » m, or more 
precisely (1) 0 ::5 kct ::5 N'm and (2) N'm ::5 kct 
::5 si2N", where N' and N" are constants which 
are much larger than unity and do not depend on 
s (the result depends very weakly on the partic­
ular choice of the values of these numbers ) . The 
contribution from the first region to the total 
cross section is small. In this region 

where Ed= (m2 + ~) 112 and ~ = ln (slm2 ). We 
assume that the quantity ~ = ln (slm2 ) is so large 
that one can neglect ln 2N' compared to ~. 

In the first region both logarithms which enter 
into the expressions for ~' and ~" are smaller 
than ln N', and therefore 

kd=N'm N'm 

a = \ da (3 2) = 4::~o \ dkd ~ 4::;0 In 2N' 
1 .) <.-- ~· .) v ~ ~· 1<;~=0 o m•+ k~ (24) 

In the second region ( N'm ::5 kd ::5 ( s) t/212N") we 
have Ed - kd ~ m 2/2kd, therefore 

k • v- ) 
£' ::::::::: ln -f = In I 2/ - 1 . 

d \ d • 

The condition ~' > 1 will be satisfied in this whole 
region only if N" is sufficiently large, so that 
ln N" > 1. In this case we obtain from (18) and (21) 

kd= Vsf2N" 

a 2 = ~ do (3 <--- 2) 
ku=N'm 

t'"i;zN" dk 

= 00 jm kd In ( Y sf'2kd) [~ u_ In CV sj2kd)] 
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or, introducing the notation z = ln [(s )112/2kctl. 

~/2 

_ (' dz cro [ £ J 
02 -- Oo .l z (~- z) = TIn 2ln N" -1 . 

InN" 

In the region of very large energies, for ~ 

> 2 ln N", we obtain 

a2 = a 0 I~ e , £ = lu ~2 • (25) 

In this region u2 is much larger than the cross 
section (24), corresponding to the creation of one 
of the three particles with a small momentum. 

We note that if the cross section (11) is written 
(taking (7) into account ) in the form 

( 
2k ) (l+j~t) : f.' 

do (3 <- 2) = _41 • [':,go ,r~ (1 + ~) e lot' ]2 
n~ ·JJl f s m_2 

(26) 

it is easy to follow how the transition from the re­
gion of values of kct "' ( s) 112 /N' to the region of 
large values of kct. of the order ( s )1/ 2; 4, is 
effected. In the region where kct is small the 
value of the invariant s' = m 2kc /kct is small com­
pared to m 2, therefore the asymptotic behavior of 
the amplitude is determined by Eq. (2) and not by 
(3). Using (2) we obtain for the cross section the 
expression 

d (3 2) = _1_1 c (k', t) 1• ~ g~ 2i~~~ ( y8 ) d (s{}~), 
0 +--- 4m4 4n n y8 4n e 2kc 2 ' 

(27) 
which differs from (26) only by the fact, that in 
place of the term in square brackets in (26), here 
we have an unknown function G(k', t) (the quan­
tity dpd I Ed is an invariant with respect to a 
Lorentz transformation into the c.m.s. of the 
particles c and d, i.e., dpd/Ed = dk'/w', where 
s' = 4w'2, therefore dpd/27r = dk'1r(s' )112 ). 

Integrating (27) with respect to J.b and k', we 
obtain for u3 the value 

a3 =a~/£, 

where 

One can obtain an evaluation of this constant 
(i.e.~ its connection with the constant u0, which 
was defined above), by substituting for I G( k', 0) I 
the asymptotic value of this quantity for s' > m 2, 

i.e., the quantity in the square brackets in Eq. (26). 
3. Thus, for very large energies, when not only 

s » m 2 but also ~ = ln ( s/m2 ) > 1, the total cross 
section for the reaction a + b - c + d + e consists 

of the three terms (24), (25), and (28): 

i.e., 

(29) 

with c 0 = 4u0 ln N'. The first term determines the 
contribution to the cross section from small (in 
particular, nonrelativistic) momenta of the particle 
d ( cf. Fig. 4 ) . If the energy s is not super -high, 
i.e., ~ is only a little larger than unity, the angular 
distribution of the slow particles d is almost iso­
tropic (since their transverse momentum K is a 
quantity of the order of m/ ( ~ ) 112 ) • 

The second term in (29) makes a small contri­
bution to the cross section when the energy is very 
large and ~ » 1. This term corresponds to events 
having a "shower" character, when both ultrarela­
tivistic particles c and d are emitted in a narrow 
cone in the direction of the colliding particles and 
the momentum of particle c is much larger than 
the momentum of particle d. Finally, the last term 
in (29) corresponds to the case when the momenta 
of the particles c and d are almost parallel and 
their magnitudes are of the same order, i.e., the 
energy ( s ) 112 of the particles c and d is small 
in their c.m.s. These are "almost elastic" 
"shower" collisions, in which one of the colliding 
particles (in Fig. 4 -particle a) is excited, ob­
taining a not too large energy ( s' ) 1/.! "' 2m and 
subsequently decays, almost without changing its 
initial momentum. 

The collisions of the first two types are the 
"genuine inelastic" collisions, since the energies 
of any pair of generated particles in their c. m. s. 
are large. In these collisions the transverse mo­
mentum K2 of the generated particles decreases 
logarithmically with the increase of energy: K2 

"' m 2/ln (s/m2 ). 

In the case of almost elastic collisions the mag­
nitude of the square of the transverse momentum 
K2 is almost always of the order m 2. This follows 
from the fact that in the c.m.s. of the particles c 
and d the transverse momentum is always a quan­
tity of the same order as the longitudinal momen­
tum (since the angular distribution of the mom en­
tum k' is determined in this system by the form 
of the function G ( k', 0 ) , which does not depend on 
the energy of the incident particles), i.e., is a 
quantity of the order of m 2. But the transverse 
momentum does not change under a Lorentz trans­
formation from the c.m.s. of the particles c and d 
to the c.m.s. of the reaction. Therefore it remains 
a quantity of the order of m 2 in the c. m. s. of the 
reaction. 
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