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A generalization of the formula of Landau for the probabilities w of nonadiabatic transitions 
in a system of two atoms is obtained for the case where the energy of the system in the initial 
state, E, can be close to total value of the potential energy U0 at the point where the terms of 
the initial and final states intersect, and the interaction energy V between the terms is suffi­
ciently large. 

As is well known, the probability of nonadiabatic 
transition in a system of two particles which inter­
act in a centrally-symmetrical manner is given, in 
the case when the terms of the initial and final 
states (U1 and U2) intersect (Fig. 1) and the ma­
trix element of the nonadiabatic interaction V is 
sufficiently large, by the Landau formula[l]: 

(1) 

where v is the velocity at the point of term cross­
ing r 0, t.F = F 1- F2, and F1 2 =dU1 ddr for r = r 0• 

' ' However, this formula cannot be used if the turn-
ing points r 1 and r 2 are sufficiently close to r 0, 

for in this case the velocity of the particles cannot 
be regarded as constant in the vicinity of r 0, as is 
assumed in the derivation of (1). A similar situa­
tion is possible, for example, upon collision of two 
atoms with kinetic energy E, slightly exceeding U0, 

and also in the case of predissociation from a state 
corresponding to a vibrational level close to U0• 

In the present paper we present a derivation of 
a formula for w, valid for any distance between 
the turning points r 1, 2 and r 0, that is, for any en­
ergy excess E = E- U0• This derivation is based 
on replacing in the first approximation the cross­
ing terms U1,2 by "regular" noncrossing terms, 

FIG. 1 

constructed with allowance for the interactions 
that cause the transitions (see [2J, page 356 ). 

Namely, let the wave equation of the system of 
two atoms be 

( hZ ') - - ~r+ H + V '¥ ~-" EW, 2m 
(2) 

where L!.r -operator of relative motion of the two 
atoms, r -distance between them, H - Hamilto­
nian of electron motion in the system of the two 
atoms, in which the interaction that leads to the 
nonadiabatic tran~ition has not been turned on, 
E -kinetic energy of relative motion of the atoms, 
and m -their reduced mass. Let, further, cp 1,2 
be orthonormal electron functions corresponding 
to the crossing terms U1,2, that is, Hcp1,2 = U1,2(r) 
cp 1 2. We introduce along with cp 1 2 wave functions 
<r<2 satisfying the equation ( H + 1) <I>1, 2 = W 1,2 ( r) 
<I> 1,2, the eigenvalues of which W 1,2( r) represent 
regular non -crossing terms W 1 ( r) and W 2 ( r ) . 
The approximate construction (see [2], page 305) 
leads, as is well known, to the following formulas: 

(3) 

,._, J *A • where Ui = Ui + Vu, Vik = (/Ji VcpkdL 1, k = 1, 2; 
~ -aggregate of electron coordinates, 

Cl> 1 = - cp1 cos g(r) + cp2 sin g(r), 

Cl>2 = cp 1 sin g(r) + cp2 cos g(r), tg g = 2V12/(U\- U2). 

(4) * 
We write the complete wave function >It in the 

form >It= F 1(r)<I>1 + F2(r)<I>2, and assume that all 
the interactions are centrally symmetrical, that is, 
the functions F 1,2 of the relative motion of the 
atoms can be expanded in spherical functions 

*tg = tan. 
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1 F1 2 = - ~ fU> (r) P (cos 6) ' r ~ 1,2 l • 

Then for each pair of radial functions Fl~~ we ob­
tain a system of equations [3] (the prime denotes 
differentiation with respect to r ) : 

!~ + 2mh- 2 (E - W1) /1 = 2g'f~ + g"fz, 

t; + 2mh- 2 (E - W2) / 2 = - 2g'j~ - g"/1 (5) 

(here W1 2 includes the centrifugal energy h2Z2/ 

2mr2 ). The final-state wave function satisfies 
the additional condit,i.on 

k2 = V2m (E - w2 ( oc))/h. 
r-->oo 

The quantity wz = I YJzl 2 is the probability of non­
adiabatic transition. If we assume that it is small, 
then the right half in the first equation of (5) can 
be set equal to zero and then we write, after ele­
mentary transformation, the following expression 
for w (C3J, page 386) 

w = J; ~ lfa2 +1Jl2 fJ2 arc tg; drr. (6)* 
0 

where 

'¢ = m ( [j 1 - fJ2)/h2, a 2 = 2m i v12 l2/h2 

and ~. 2 -solution of the equation 

k12 2 = 2m (E- W (r))fh2, 
' 1,2 

which are normalized to a o function in k1 2 and 
for which the following quasiclassical appr~xima­
tion is valid: 

(7) 

The integral in (6) can be calculated by the 
stationary-phase method, for which it is necessary 
to employ analytic continuations of (7) in those 
parts of the plane of complex variable r, where 
there are located the points of the stationary phase 
rc, defined by the relations k1 = k2, that is, 1/hrc) 
+ a 2(rc) = 0. In other words, we must assume 

where C1, 2 are numerical coefficients which take 
into account the Stokes phenomenon. 

On the basis of the general method ( [2], page 
212) we have 

r c r c 

w = Ce-", x =21m(~ (k1 dr- ~ k2 dr). 
r, 

*arctg = tan:' 

(8) 

The coefficient C, as shown by the investigation 
(see the appendix) turns out to be a numerical con­
stant which does not depend on the dimensional pa­
rameters and consequently is equal to 2, since (8) 
goes over into (1) at large energy excess E [see 
formula (13) ]. 

It must be noted that the use of the WBK approx­
imation (7) for the wave functions f1, 2 in calculating 
the transition probability calls for some justifica­
tion, since the approximation (7) does not hold in 
the vicinity of the turning points r 1, 2• This justi­
fication, from which follow some limitations on 
the region of applicability of the main formula (8), 
consists in the following. 

The condition for the validity of the analytic con­
tinuation of the function (7) 

in the upper half-plane of the complex variable r 
coincides with the ordinary quasiclassical condition 

I mh d:~· 2 I (2m (E - w1,z))'1•1 ~ 1. 

We use here and throughout a linear approxi­
mation for the terms u1,2 in the vicinity of the 
point r 0 where the terms cross: U1, 2 = U0 + F 1, 2x, 
x = r - r 0, that is, 

2m (E- W1 , 2) = 2m[e + Fx ± fV2 ++ (x,1.F) 2 J, 

Inasmuch as the principal role in the calculation 
of the integral in (6) is assumed by the region of 
values of r close to rc, the condition for the ap­
plicability of the linear approximation 

d2 U1,zldr2 lr, X2 ~ dU1,2/dr lr,X 

can be written in the form of the inequality 

i.e. V ~ r 0 /).F, 

which, roughly speaking, reduces to the usually 
satisfied requirement that the splitting of the terms 
V be small compared with the quantity U0F-1D.F. 

On the other hand, using the linear approxima­
tion U 1 2 = U 0 + F 1 2x we can write the quasiclas­
sical c~ndition, under the most unfavorable case 
E- 0 with r ~ rc, in the form 

I dW I j hF mh -d1 ' 2 (2m (E- W 12))'1• ~ V ~1. 
r ' V 2mV 

This inequality, which is satisfied in many cases 
(for example, v,; 2mV/hF ~ 10 for the transition 
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Li + H - Li + + H- which is considered at the end 
of this article ) , signifies in fact that the probabil­
ity w is exponentially small [see formula (11) ]. 

We emphasize that in the other limiting case 
hFIV.../ 2mV » 1, that is, for sufficiently small 
term splittings V, the transition probability near 
the turning points is given by a known formula 
( [2J, page 360, problem 3 ), according to which 
w "' ( V .../2m V lh.6.F )4/3, that is, is not exponen­
tially small. For hF IV.../ 2m V » 1, the method 
which we employ to calculate the integral (6), and 
which leads to formula (8), is obviously not a_eplic­
able and we must express the functions f 1, 2 in this 
case in terms of Airy functions (see [2], page 360). 
Thus, depending on the value of the parameter 
hFIV.../2mV, the probabilities of the transitions 
near the turning points are given either by the 
formula on page 360 of [2] when hf/V.../ 2mV » 1, 
or by our formula (8). In the intermediate case 
hFIV.../ 2mV ~ 1, it is apparently necessary to solve 
the system (5) rigorously in order to obtain w. 

Let us investigate the exponent K, which deter­
mines (8), using the linear approximation U 1 2 
= U0 + F 1 2x, x = r- r 0• Then K is written ir{ the 
form ' 

x, 

- ~ [e + Fx- YV2 + ~ (x~F)2f'dx), x1 = r1 -r0 ; 

~ W) 

x0 = 2V!~F. (10) 

Introducing the dimensionless parameters v = VIE 
and a = 2F I .6.F, we represent K in the form 

V2mV V 
x = 4 -h- !J.F X (v, a), 

i 

X (v, a) = v-'f, Im (~ [1 + va£ + Y£2 + 1]'/•d£ 
0 

- ~· [1 + va£-JI12+il''• d£ ). (11) 
~. 

We make a change of variable ~ = i sin t, such 
that* 

a£ ± Jf£2 + 1 = A sin (t ± 6) , t ± 6 = T; 

A= ivYa2 - 1, 6 = - i Ar th __!_ 
a for a> 1, 

A= v V1- a2 , 

6 = ~ + i Ar ch 1 for a < 1. 
2 f1- az 

*Arth =tanh-', Arch = cosh:' 

We can then express the function x( v, a) in terms 
of hypergeometric functions, which also reduce to 
elliptic intergrals with real moduli and limits. The 
results of such a reduction, and consequently the 
behavior of the function x. turns out to be essen­
tially different in two regions of variation of the 
parameters v and a, defined by the inequalities 
a §: 1. 

1) Region a~ 1: 

X = v'l•f (A.), A. = v Y a2 - 1, 
rt/2 

f (A.) = ~ Im ~ ( 1 + it.. sin T)'f• sin 't d't 
0 

0 

F (a, f3, y; k2 ) - hypergeometric function. 
The expansion of f( A.) in powers of A. takes, 

in accordance with (12), the form 

00 

:n: ~ n (4n-1)!! 2n 

f (A.) = 4 .L.J ( - 1) 24n (n + 1)! A. 
n=O 

(12) 

(13) 

From (12) and (13) follows the interesting con­
elusion that f(A.) = 11"14 when a= 1 and A.= 0, 
that is, in this case (a = 1, v ~ 1 ) the Landau 
formula (1) is rigorously correct. 

The function f( A.) can be represented also in 
the form of an expansion in powers of the par am­
eter p ;:; 11.../ 1 + A.2 or 1IA. 

j (A.) = ~ _j!_ ~ ( -1)n dn F (3/z, -112, 2, x) lxc'f, (-2p )n 
2 1 + p n=O dxn = 

= 1.,-'/z ( 1.23 - 0.88 ~ + ... ) . (14) 

2) Region a ~ 1: 1> 

X (v, a) = v'l•j(A.), 
rt/2 

j(A.} = ~ ~ (1 + A. sin T}'f, sin 't d't 
-rt/2 

1 >The condition a-(: 1 corresponds to Fig. 1, that is, in 
this case w has the meaning of a probability of predissocia­
tion from the state characterized by the term W2 • Therefore 
in formula (15) the only physically meaningful quantities are 
E ~· V, i.e., v-(: 1, i.e., ,\ < 1. 
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3 1 )] - F ( 2 ' - 2 ' 2; k2 ' (15) 

The expansion of (15) in powers of A. is of the form 

_ n ~ (4n-1)!! 2n 
/('A) - T LJ 24n (n + 1)! 'A ' 

n=o 
(16) 

It is of interest in principle to investigate the 
behavior of K as a-- oo, since the condition 
a = 2F I ~F » 1 signifies that the forces acting on 
the particles which move over different terms are 
approximately the same, that is, in this case it be­
comes possible to introduce the concept of the par­
ticle trajectory and to use nonstationary perturba­
tion theory for the calculation of w [3J. 

Let us see first how we can simplify our for­
mulas (12) and (17), which correspond to a > 1 
as a-- oo. According to ( 12), in the case a » 1 
we can replace the parameter A. = v (a - 1) 112 by 
the parameter A. = va, and ( a 2 - 1) t/2 can be re­
placed by a. 

We compare these formulas with the results of 
the nonstationary perturbation theory, which can 
be obtained by expanding the roots in (11) in pow­
ers of v-) ~ 2 + 11(1 + av~ ). We have 2> 

'X = v'i•f('A), 
i 

/('A) = Im ~ V~ d£, 
0 -v 1 + ~..~ 

'A = av. (17) 

.The function f(A.) in (17) can be readily reduced 
to an expression which coincides exactly with (12), 
in which we must put A. = a. 

We thus arrive at the following deduction: the 
probability of the transition, determined by intro­
ducing a classical trajectory in accordance with 
(17), coincides with the exact quantum mechanical 
probability, determined from (12), if we assume 
for the average force which sets the classical 
theory not F = ( F 1 + F 2 ) I 2, but F = V F 1 F 2 (the 
replacement of ( F 1 + F 2 )12 by V F 1F 2 in (17) is 
equivalent to replacing a by ( a2 - 1) 1/2, which 
indeed yields the exact formula (12)). 

In conclusion we note that the energy depend­
ence of K = K ( E ) , given by (12) and differing es­
sentially from that given by the Landau formula 
(1), can be quite pronounced, for example, for the 
process Li + H-- H-1 + Li + (the transition X'~+ 
--A'~+), for in this case V is quite large, V ~ 1 

2 >It must be noted that the expansion off(,\) in powers of 
,\ = av obtained by Nikitin[•] on the basis of (17) (formula 
(10) int•1) differs from our expansion (13). According to a pri­
vate communication from Nikitin, this discrepancy is a con­
sequence of a computational error on his part, 

e V (see the term scheme of the LiH system in [5 J). 
I am grateful to A. S. Kompaneets and M. Ya. 

Ovchinnikova for a discussion of this work and 
for many useful indications. 

APPENDIX 3 > 

The integral contained in (6) can be represented 
in the form 

00 

J = 2C 1C 2 ~ 7c;'1•1f;'1• V a 2 + '¢2e8 <r> arc tg ~ dr, 
-co 

r r 

S (r) = i (~ k1 dr- ~ k2 dr). (A.1) 

In the plane of complex r, the situation is that 
shown in Fig. 2. 

Here rc -point of the stationary phase, deter­
mined by the equation lj!2 + a 2 = 0. The lines Zt> 12, 

and 13 are the level lines Re S( r) = Re S( rc). In 
the shaded region between the abscissa axis and 
the lines 11 and 13, we have Re S(r) < 0. On the 
lines 11 and 12, which are the lines of steepest 
descent, we have 

r 

Re S0 (r) < 0, S0 = i~ (k1 - k2) dr. 
rc 

We replace J by an integral along a contour 
consisting of the lines 11 and 12• We can do this 
by virtue of the regularity of the integrand of (A .1) 
in the shaded region. The main contribution is 
made to J by the vicinity of the point rc where 
the contour of integration can be deformed along 
the steepest descent lines Zf and 12. We denote 
this part of the contour in the vicinity of rc by 
C. Then (A.1) can be rewritten in the form 

J = iC1C2e8•<rc>p ~ exp ( f ipz'lo) Vz In z dz, 
c 

'¢ (r) - ia (r) = \jl' (rc) z, 

p = [ia (r.) \jl' (rc)/cp (rc) ]'/•, 

cp (rc) = h-1 V m (U 1 + U 2) lr=rc· (A.2) 

Since ipz312 < 0 on ZJ. and 12, and since the 
angle between these lines is 47rl3, we obtain, 
putting % ipz312 = - T and recognizing that the 
angle 47rl3 rotates in this case through 21r, 

J =--} C1C2e8'<rc>~ e-T In 't' d't', (A.3) 
C' 

3 >This investigation was made by M. I. Fedoryuk, to 
whom I am deeply grateful for his help. 
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c 

where the integral is taken along the contour C', 
that is, on both edges of the cut (formed by the 
positive part of the real axis) of length E (Fig. 2). 
It is equal to 

s s 

~ e-' In ,; d,; - ~ e-~ (In,; + 2ni) d,; = - 2ni. 
0 0 

We ultimately get 

That is, as already indicated, the factor preceding 
the exponent in J does not depend on the dim en­
sional constants. 
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(A.4) Translated by J. G. Adashko 
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