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A classical analysis of forced combination (Raman) scattering is presented. A non-linear 
theory of a traveling wave amplifier based on this phenomenon is developed, and the condi
tion for self-excitation of a Raman laser is derived. 

THERE has been observed recently the phenome
non of self-excitation of light in a number of or
ganic liquids placed under the influence of a pump 
-intense light waves of another frequency. [i, 2] 

The frequency of the self -excited waves Ws is 
connected with the frequency of the pump Wp by 
the relation Wp = Ws + w0, where w0 is one of the 
molecular vibration frequencies. An intimate con
nection between this phenomenon and the phenome
non of Raman scattering has been discovered, and 
it has been called forced Raman scattering. The 
generator itself has been called the Raman laser. 

Hellwarth [3] has presented a simplified quan
tum -mechanical treatment of the phenomenon of 
forced Raman scattering based on the general 
structure of the relation between spontaneous and 
induced emission. A more complete theory based 
on a quantum kinetic equation was developed re
cently by Fa'in and Yashchin. [4] 

In the quantum -mechanical description of the 
phenomenon of stimulated combination (Raman) 
scattering, molecular parameters (e.g., the ef
fective cross section of a process) enter, which, 
as a rule, are determined either from experiment 
or by means of a classical analysis. This analysis 
in the theory of multi-atomic molecules is ex
tremely fruitful and permits a large amount of 
data to be obtained about the structure of mole
cules. [5] Hence, in joining the classical theory 
of molecules with the theory of operation of the 
Raman laser a classical description of the phe
nomenon of stimulated Raman scattering would 
also be of interest. 

This paper is devoted, first, to the classical 
description of the phenomenon of stimulated Raman 
scattering, and, second, to the theory of the Raman 
laser. It should be mentioned that since the struc
ture of the classical and quantum expressions that 
are obtained for the polarization of a substance 
are the same (which indicates the validity of the 
classical approach), the theory of the laser is 
independent of the character of the description 

of the phenomenon of stimulated Raman scatter
ing. 

We shall consider the amplifying properties of 
a substance at a signal frequency Ws, subjected 
to irradiation by intense light waves of another 
frequency wp being propagated in the same direc
tion. If light waves are propagated through a sub
stance with a nonlinear dependence of polarization 
on field, their behavior is described by the equa-
tion 

where E is the electric field and P is the polari
zation. Let these waves have the form 

where ks and kp are wave vectors parallel to 
each other and the complex amplitudes Ep and 
Es are in general slowly varying functions of the 
coordinates and time. 

If the substance is homogeneous and fills the 
half-space z > 0, the amplitudes of the waves Es 
and Ep in the established regime depend only on 
the coordinate z. In case of weak non-linearity 
of the polarization, the behavior of the amplitude 
is described by the equations 

where y is the angle between the wave vector k 
and the z axis, and Pm is the amplitude of the 
wave of polarization of frequency wm: 

Thus, in order to describe the behavior of the 
waves Es and Ep it is necessary to determine 
the components of polarization Ps and Pp. 

Proceeding to this determination, we symbol
ize by x the normal coordinate of the vibrations 
of the atoms in a molecule of the substance and 

*rot = curl 
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by y the coordinate of electron vibrations. The 
frequency of the vibrations x correspond to the 
infrared region, and the electron vibration fre
quencies to the ultraviolet. 

The phenomenon of Raman scattering is due to 
the presence of anharmonic terms in the expres
sion U for the potential energy, which has the 
form 

U = + Fx2 + -i- jy2 + ~lx3 + ~2x2y + ~xy2 + ~3y3. (3) 

Here F and f are the "elasticities" of the bonds 
in the molecule; the coefficient {31 determines the 
nonlinearity of the quasi-elastic vibrations x, {32 

the process of parametric excitation of the vibra
tions x by virtue of the excitation of the electronic 
motions, {33 the nonlinearity of the electronic vi
brations, which are responsible, in particular for 
the generation of optical harmonics, and finally, 
{3 determines the process of Raman scattering. 
We are interest only in this last process and shall 
retain only the anharmonic term proportional to {3 
in Eq. (3). 

In its purest form the Raman scattering phe
nomenon appears for fully symmetric vibrations 
x, which are absent in the absorption spectra. We 
limit ourselves to a consideration of only these 
vibrations. For simplicity, we also assume that 
the molecule is isotropic, so that the coordinate 
y is a vector. 

Because of its symmetry, the vibration x is 
not coupled directly to the field of the light waves, 
and so the equation describing this vibration has 
the form 

(4) 

Here M is the effective mass, H is a "friction" 
coefficient. If the frequencies Wp and Ws are 
lower by far than the frequencies of the electronic 
vibrations and correspond to the infrared region, 
then the equation of motion for the electronic vi
bration is "quasi-static" and has the form 

fy + 2~xy = eE. (5) 

Adding the relation P = eNy to Eqs. (4) and (5), 
where e is the electronic charge and N is the 
number of molecules in unit volume, we obtain a 
closed system of equations for determining the 
amplitudes of Ps and Pn. 

Being interested only in stationary forced vi
brations of the molecule, we shall seek solutions 
for the coordinates x and y in the form 

x = Xei("'p-"'s)t + c.c., 

where it is not assumed in general that wp - Ws 
= w0 = -./ F /M . From Eqs. (4) and (5) follow the 
relations 

w0o (ll + i) X+ (~/M) Y!Yp = 0, (6) 

where 

o =HIM. 

From (6) are easily obtained relations for the am
plitudes of Ys and Yp. which when multiplied by 
eN become expressions for the amplitudes of the 
polarization Ps and Pp: 

(7) 

where r = 27rN{3 2e 4/Mf4w0o. The lengths of the wave 
vectors ks and kp have not been specified yet. We 
choose these lengths such that the terms with a lin
ear part of the polarization in Eq. (2) vanish. 

Let us consider the interaction of the amplitudes 
of the waves Es and Ep in the amplifier. The fol
lowing equations can be obtained for these from 
Eqs. (2) and (7): 

dEs(dz = CX 9 (1- ill) (EtEs) Ep, 

dEp(dz = - ap(1 +ill) (EpE,n Es, (8) 

where a= kr/cos y(l + ~2 ). From Eqs. (8) it 
follows at once that if Es and Ep are perpendicu
lar to one another, there is no interaction of the 
waves. 1> We introduce new coordinates zit z2, z3, 

choosing the z3 axis along the direction of propa
gation of the waves. The vector differential equa
tions (8) admit several first integrals of the form 

Here Esi and Epi are projections of Es and Ep 
on the Zi axis, Vij and B are scalar and vector 
constants. 

The first of the relations in (9) can be inter
preted as a law of conservation of the number of 
quanta. For example, in the case of linear polari
zation of the waves and i = j the first relation of 
(9) acquires the form 

(10) 

where ni is the number of light quanta of the cor
responding frequency, polarized along the zi axis, 

1 lThis is valid only for liquids consisting of isotropic 
molecules. 

*[EsEp] = Es X E p. 



380 V. T. PLATONENKO and R. V. KHOKHLOV 

which pass through a unit area perpendicular to 
the z3 axis. 

Analysis of Eqs. (8) shows that if .6. ~ 0 and 
Es and Ep are not parallel to one another, the 
linearly polarized light becomes elliptically
polarized. In this the rotation of the vectors Es 
and Ep proceeds to different sides. And when 
.6. = 0 the linearly polarized light entering into 
the system remains the same, even if Es and Ep 
are not parallel. 

If the waves are linearly polarized, the value 
of the angle 1/J between the vectors Es and Ep 
is determined by the expression 

sin2'1jJ = /BI2// Es12 I Ep[2. 

The law for the change of the moduli of the am
plitudes Es and Ep can be obtained if use is made 
of the relation 

We have 

~z/ Esl2 = 2ctc (I Ep 12 I [Esl2 - I B 12), 

! I Ep 12 = - 2ctp (/ Ep 12 I Es 12 - I B 12). (12) 

The solution of these equations has the form 
-2ctpAZ 

J Es 12 = V + A 1-Ce 
1 + Ce-2"pAz ' (13) 

Here 

The solutions (13), if considered for all values 
of z (not only positive ones), determine the tran
sitions in energy from the state with z = -co, 
when I Es 12 = v -A, I Ep 12 = (aplas )(v +A) to 
the state at z =+co, when I Es 12 = v + i\., I Ep 12 
= (aplas)(v-i\.). 

From this it is seen, first, that in the process 
of interactic!l of the waves energy passes from a 
wave at a higher frequency (the pump) to a wave 
with a lower frequency (signal). This explains 
why the amplifying properties appear only in a 
Stokes component of the Raman scattering and 
not in the anti-Stokes component. Second, in the 
general case not all the energy goes out from the 
pump wave to the signal wave. This is easy to 

understand, if one considers that the quanta of 
the signal field which have a polarization perpen
dicular to the polarization Ep do not take part in 
the interaction. It follows from the conservation 
law (10) that just as many quanta of the pump field 
will not take part in the interaction. Third, not all 
the energy going out from the pump wave passes 
into the signal wave since part of it is dissipated 
in exciting molecular vibrations. The maximum 
effectiveness of the energy transformation, cor
responding to the case B = 0, equals E~ ( + oo )I 
Eb(- oo) = ( Ws I Wp ). It can be seen that it does 
not depend on the constants of the substance, on 
de-tuning of the frequencies, nor on the amplitude 
of the pump field. 

It follows from Eq. (13) that the amplification 
of the signal depends on the distance passed through 
by the beam from the boundary, l = zlcos y, the 
polarizations of the waves, the energy of the pump 
at the amplifier input, the detuning .6. and the value 
of r, which depends on the constants of the sub
stance. 2> The bandwidth of the amplifier is deter
mined by the quantity 6, i.e., the relaxation time 
of the vibration x. 

As the amplitude of the signal wave grows, this 
wave itself begins to play the role of a pump and 
create amplifying properties at the frequency w2s 
= wp- 2w0• As it grows, the self-excited wave at 
this frequency in its turn excites a wave of fre
quency w3s = Wp- 3w0, etc. In this way, as an 
intense light wave propagates through the dielec
tric a cascading decrease in its frequency takes 
place. 

In order to go over to the Raman laser scheme, 
it is necessary to place the substance irradiated 
by the pump between two mirrors that are perpen
dicular to the beam of frequency ws· If the reflec
tion coefficient of the mirrors is close to unity, the 
condition for self-excitation of the generator has 
the form 

2rv > (1 - R2) f kL, (14) 

where L is the distance between the two mirrors. 
In this case the polarization of the oscillations of 
the generator will be the same as that of the pump. 

In conclusion we remark that the Raman laser 
is a new kind of generator that can be related to 
but one of the types known in optics. Its energy 
of oscillation is proportional to ( Ws I Wp )E~, 
which relates such generators to parametric ones. 
C7J At the same time they have also a number of 

2 lThe coefficient r is equal in order of magnitude to 
10-• cgs esu, which agrees with the experimental data.E 2J 
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essential distinctions from parametric generators 
-the fulfillment of a rather strict dispersion re
lation is not required, the self-excitation coeffi
cient is determined by the square and not the first 
power of the amplitude of the pump wave, and 
others. 

The authors thank S. A. Akhmanov and D. N. 
Klyshko for a discussion of the results presented 
here. 
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