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The polarization properties of the radiation from relativistic electrons with oriented spins 
in a magnetic field are investigated. Two cases of electron spin polarization are considered: 
polarization along the direction of motion and polarization along the magnetic field intensity 
vector. 

As is well known, the radiation of fast electrons 
moving in a magnetic field is strongly polarized [t]. 
Seven eighths of the total intensity of radiation be­
longs to the a component of the linear polarization 
(the electric vector of the radiation field lies in the 
plane of the electron orbit and is directed along the 
radius towards its center), and % of the total in­
tensity pertains to the 71' component (the electric 
vector of the radiation field is practically perpen­
dicular to the plane of the electron orbit ) . The a 
and 71' components of the linear polarization differ 
in angular distribution: the a component is char­
acterized by the presence of two maxima, which 
are symmetrical relative to the plane of the orbit 
e = 71'/2, and the a component has a maximum in 
the plane of the orbit. These deductions of the 
classical theory were confirmed experimentally 
by an investigation of the polarization properties 
of synchrotron radiation [2 J. 

In the present paper we wish to investigate the 
properties of the radiation of fast electrons in a 
magnetic field by the methods of quantum theory, 
including in the analysis the polarization of elec­
tron spin. 

1. WAVE FUNCTIONS OF AN ELECTRON MOVING 
IN A CONSTANT AND HOMOGENEOUS MAG­
NETIC FIELD 

To investigate the motion of a relativistic elec­
tron in a constant and homogeneous magnetic field 

Ax=-+yH, Ay=-t;xH, Az=O (1) 

we require that the wave function obey the Dirac 
equation 

iM'¢/fJt = ie'¢; :fl = c (atP) + p3m0c2 , P = p- eA/c, 
(2) 

and that for operators commuting with the Hamil­
tonian it be an eigenfunction for the operators of 
projection of momentum and total angular mom en-

tum on the direction of the magnetic field, i.e., on 
the z axis. In a cylindrical coordinate system 
r, rp, z, which is naturally connected with the char­
acter of motion of the electron, the wave function 
is of the form 

eik,z 2i (!-1) 'P 
•h _ e-iscKt ___ j (p) · 
'1'1,3 - -vr vzn 1.3 , 

. eikaz eilcp 
'¢2.4 = e-lSCKt lfL ~ j 2,4 (p), 

E = ec1iK = ec1i Y k~ + 4yn + k~, e = ±- 1 

Here p = yr2, y = e 0H/2cli, e 0 = -e. 
The radial functions are of the form 

f Clln-1, s (p) l 
iC2ln 8 (p) I 

/1.2,3,4 = Jf2Y c I , (p) ~ • 
I 3 n-1, s [ 

[ iC•I n, s (p) ) 

Here In,s(P) are connected with the Laguerre 
polynomials: 

(3) 

(4) 

(5) 

J (p) = _1_ -P/J (n-s)/2 Qn-s ( ) (6) 
n, s V fiTS] e P s P , 

with n = l + s = 0, 1, 2 ... the principal quantum 
numbers and, s = 0, 1, 2 ... the radial ones, and 
l = 0, ± 1, ± 2 ... (- oo ::s l ::s n) are the azimuthal 
ones. The spin coefficients Ci obey the Dirac 
equation (2) and are interrelated by the normali­
zation condition 

4 

2j [Ci[2 =1, (7) 
7.=1 

but their form nevertheless remains indeterminate. 
For a complete determination of the wave function 
it is necessary to introduce a fourth operator, 
which commutes with the Hamiltonian and charac­
terizes the polarization of the electron spin. 

In the investigation of the longitudinal polariza­
tion of the electron spin, it is advantageous to use 
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the polarization 4-vector 

T~'- = 1/ 2 (PlJp. + a~'-P4), (8) 

where P 4 = ( i/ c ) ( Jc - ecp ) (in our problem the 
scalar potential cp is equal to zero), and al-l = 
{a, ipd are Dirac matrices (see [a,4]). The time­
dependent component of this vector 

T4 =- aP (9) 

is an integral of the motion and describes the pro­
jection of the spin on the direction of motion. We 
stipulate that the wave function be an eigenfunction 
for this operator, i.e., 

(10) 

Then simultaneous solution of (2) and (10) for the 
coefficients Ci yields the following expression 
(see [5J): 

C1 = %a.A, C2 = ali, C3 = e!f.A, C4 = er!fli, 

function to the requirement that it be an eigenfunc­
tion of the operator (15): 

(16) 

and solving (2) and (16) simultaneously, we obtain 
the coefficients (5) in the form 

C1 = aA, C2 =- ~bB, C3 = bA, C4 = ~aB, 

A= Y1/ 2 (i + ~k0/k), B = V1/ 2 (i- ~k0/k), 

a= 1/ 2 (Vi+ ek3/K + e~ Yi- ek3/K), 

b = 1/ 2 (Vi+ ek3/K- e~ Vi- ek31K), (17) 

where k = .J K2 - k~ , and t = ± 1 characterizes the 
state of the spin polarization relative to the direc­
tion of the magnetic field: t = 1 along the field and 
t = -1 against the field. 

2. SPONTANEOUS TRANSITIONS. INTENSITY OF 
POLARIZED RADIATION 

We shall henceforth follow the method of [i], in 
which the radiation intensity in spontaneous transi-

(11) tion of the electron from the state n, s, k3, t to the 
staten'= n-v, s', k:J, /;', 

In these formulas k = .J K2 - kij ; t = ± 1 corre­
sponds to the spin polarization with and against the 
motion. 

To investigate the polarization of the electron 
spin in the direction of the magnetic field, the po­
larization 4-vector (8) is of little use. Its space­
dependent component 

(12) 

is also an integral of the motion, but the presence 
of the electron rest energy in front of the spin ma­
trix raises practical difficulties in the case of 
large energies E » m 0c2, since the term contain­
ing the spin matrix becomes small. In this respect 
it is more advantageous to introduce the polariza­
tion tensor (see [s, 7]) 

(13) 

where 

(14) 

is the tensor of the magnetic and electric moments. 
The quantity 

II12 = m0c2a 3 + cp2 [aP] 3 (15)* 

is also an integral of motion. Subjecting the wave 

*la P] = a x P. 

ce2 r 
W; = -2° \ cflx6 (K- K' - x) S;, 

Jt " 
(18) 

is connected with the quantities Si, which charac­
terize the polarization of the radiated photons. In 
particular, we obtain the a and 1r components of 
the linear polarization, if we put 

So = ia1l2 • (19) 

s" = 1 a2 12 cos2 8 + 1 a3 l 2 sin28 - 21 a2 I a3 1 sin 8 cos 8. 
(20) 

To investigate circular polarization of the radia­
tion, we must set the quantity Si equal to 

S1 =+(So+ S.,- il [(aia2 - u;a1) cos 8 

(21) 

where l = 1 corresponds to the right-hand circu­
lar polarization (the photon spin is directed with 
the motion), and l = - 1 corresponds to left -hand 
circular polarization (photon spin directed against 
the motion ) . 

The elements of the Dirac matrices Oin take the 
form 

(22) 

They can be readily obtained with the aid of the 
functions (3)- (5). To simplify the calculations we 
set the momentum along the field k3 in the initial 
state equal to zero, and confine ourselves to states 
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with positive energy E = E' = 1; then 

- (C1C~' + C3C;')In-1, n' (x)} t\. -xcos o' 

a2 =Iss' (x) {(Ci'C4 + C;'C2) In, n'-1 (x) 

- (c;'c4 + c;'C2) Inn' (:c)} 6,,~, -%COSo' (23) 

In this case the Laguerre functions are determined 
by formula (6), and the argument is equal to 

(24) 

From the energy conservation law it follows that 
the frequency of the radiated photons is 

x = K- K' = V k6 + 4rn- Jlk~ + 4yn' + /;;;2 , 

n' = n- v, k; =- x cos8. (25) 

The number v of the harmonic is best replaced by 
a new quantity v' bearing in mind an eventual tran­
sition to a continuous spectrum in which summation 
over n' is replaced by integrals 

v = v' (1-~~2 sin2 8); 4n 

and then it follows from (25) that K = Vy / n (3 v' 

(26) 

= v'(3/R, where R is the radius of the orbit of the 
electron. The form of the coefficients Cn and Cn 
depends on the choice of the state of polarization 
of the electron spin. 

As is well known (see, for example, [BJ), the 
Laguerre function and its derivative can be approx­
imated by the cylindrical K functions uniformly 
over the entire region of the spectrum 

In 11 • (x) = ~ (1- __:>:_)'!_ K,; {~3' 1~/nn' V X~- (1- __::__)"/,} , 
' 3l V 3 .x·o , 3 Xo 

(27) 

' 1 j/ nn' ( x ) { 2 ~ ~-, /-- ( x )'h( /,,,. (x) = --_ ---=- 1--- K'l- -3 v nn l Xo 1-----;- f 
:It V3 V x 0 Xo xo 

(28) 

with x0 = (-/ll - -.fll' )2. We shall use these ap­
proximations to calculate the radiation intensity. 

3. INVESTIGATION OF THE RADIATION INTEN­
SITY IN THE CASE OF LONGITUDINAL PO­
LARIZATION OF THE ELECTRON SPIN 

The form of the coefficients Cn and Cn' in the 
matrix elements is determined by formula (11). It 

is convenient to carry out the entire calculation in 
the form of a series expansion in the quantity 1 - (32, 

since for the ultrarelativistic motion, which is of 
particular interest, we have 1 - {3 2 « 1. Eliminating 
intermediate steps, we present now the expressions 
for the spectral composition of the radiation, ob­
tained as a result of the integration of the intensity 
over all the photon emission angles. Then the in­
tensity of the radiation can be reduced to the form 

• 3 V3 e~c r 11 dy 
W i = ---gn R2e~ .) (1 + l;y)' F; (y). 

0 

(29) 

In this formula a transition is made to the continu­
ous spectrum: the summation over the number v 
of the harmonic is replaced by an integral after 
introducing the variable 

_ 2 v' '/, ( ) 
y-31-v'j2n Eo' Eo= 1- ~2, 30 

and ~ is a characteristic parameter: 

(31) 

The components Fi (y) are of the following form: 
a) linearly-polarized radiation without spin flip 

t' = t (:::::::) and with spin flip t' = - t (:;=): 

00 00 

F;:._ = (1 + £y) [~ K.1, (:c) dx ± K,1, (x) J + 1- £2y2 ~ K'la (x) dx. 
y u (32) 

(the upper sign pertains to the u component and 
the lower to the rr component), 

00 

if = F;- = + £2y2 ~ K,;, (x) dx; (33) 
ll 

b) circular polarization 

co 

F-:; = [ 1 + (1 -+- l~) (£y + f £2 y2)] ~ K'h (x) dx, (34) 
u 

co 

if = (1 + Z~) + £2y2 ~ K,1, (x) dx. (35) 
!/ 

All the formulas are equally applicable for ar­
bitrary values of the parameter ~. 

We now consider the integrated radiation inten­
sity in two limiting cases, respectively 

and 
£ < 1, or E < E';, = m0c2 (m0cR/'Ii)'1' 

£ ~ 1, or E ~E,1,. 

(36) 

(37) 

The integration for ~ « 1 can be carried out by 
expanding all the expressions in powers of ~, and 
then using the well known integral 

00 

~ xq-1Kv (x) dx = 2q-2r ( q--.; P) r ( q ~ P) (38) 
0 
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to obtain 

(39) 

It follows from these formulas that the intensity 
of radiation of linearly polarized a and 1T compo­
nents without spin flip does not depend on the ini­
tial state of the electron polarization, and the spin 
flip influences only the terms that are proportional 
to the square of Planck's constant 112, and the prob­
ability of the change of spin projection on the di­
rection of motion is likewise independent of the 
initial spin orientation. 

Therefore the change in the electron spin polar­
ization will occur with equal probability, and will 
not depend on whether the initial spin direction is 
with or against the motion. Thus, the spin effects 
in the radiation of linearly polarized components 
can come into play only in terms proportional to 
112 (see also [9]). 

Considering in the same approximation the cir­
cular polarization 

TV:! = 2.. J-Vcl {1 _55 ¥3 (1 _ 2._ zr) t2 
l 2 24 3 "' "' 

+ 1:2 (1-ilJl~)£2 -···), (42) 

Wf=+Wcl{~(1+Z~)£2}, (43) 

we see that a correlation exists between the elec­
tron and photon spins, and that the radiation inten­
sity has a correlation term already in the first 
order in Planck's constant 11. In the classical ap­
proximation the circular polarization vanishes as 
~- 0 (see [1J). 

In the other limiting case when ~ » 1, the ra­
diation intensity differs greatly from the classical 
value and, as is well known, in place of wcl we 
obtain a different quantity (see [B]): 

(44) 

To obtain the main terms of the expansion in 
C 1 we can use the asymptotic behavior of the func­
tion KJ.I at small values of the argument (we recall 
that at large arguments KJ.I decreases exponen­
tially): 

K~'- (x) = 2Hr (fl)/yl'·. (45) 

Then integration yields 

w=: = .j!_ wglob. w? = ~ wg!ob. 
0 64 , '" 64 , 

W~ =W:; =~~~Wgtob. 
0 •• 256 r (%) t,'ia ' 

w=: = _1_ wgtob[1 + ..!.! zr] 
l 2 16 "' ' 

~ _ 81 2'h ln f, ~ rglob 
w1 - 256 r (2!a) t,'h (i + l?;) l-l- · 

(46) 

(47) 

(48) 

(49) 

Thus, in the region of very large values of the 
energy E » E 1; 2 the general character of the spin 
effects remains the same in the sense of the influ­
ence on the radiation, but the role of the spin in 
the radiation of photons with circular polarization 
increases sharply: the correlation term ft does 
not have the character of the small correction, but 
the character of the principal expression for the 
intensity. The radiation of an electron with longi­
tudinal polarized spin turns out to be polarized, 
and the sign of the circular polarization depends 
on the initial spin orientation. The deduction that 
the photons which have circular polarization can 
be emitted by an electron only if the electron has 
a longitudinally oriented spin is analogous to the 
polarization correlations in the bremsstrahlung 
of an electron in the Coulomb field of the nucleus 
(see [ 10]). 

We note also that longitudinal polarization of 
the electron spin has a unique stability: the prob­
ability of quantum transitions with changes in spin 
orientation remains small in both cases both when 
E « E112 and when E » E1; 2 [see formulas (41)­
(43) and (47)-(49)]. 

4. INVESTIGATION OF THE INTENSITY OF RA­
DIATION IN THE CASE OF POLARIZATION 
OF THE ELECTRON SPIN ALONG A MAG­
NETIC FIELD 

In this case the coefficients Cn and Cfi in the 
formulas for the matrix elements of the Dirac mat­
rices are defined by (17). Repeating the method 
described above, we obtain for the radiation inten­
sity the following expression: 

(50) 

where Fi (y) characterizes the spectral composi­
tion of the radiation only for the linear polariza­
tion components -there is no circular polanzation, 
since the corresponding components of the circular 
polarization vanish upon integration with respect to 
the angle 0 .. 

For the components of the linear polarization 
without spin flip (t t) and with spin flip (t 0 we 
obtain 



RADIATION FROM FAST ELECTRONS WITH ORIENTED SPINS 259 

co 

F!t = (1++ ~y) 2 [~ K,1, (.r)dx +K,1, (y)J 
netic field ~ 104 Oe it amounts to a quantity of 
the order of 1 hour. 

y 

co 

+ + ~2Y2 ~ K.1, (x) dx - ~ (2 + ~y) ~yK.1, (y), 
y 

In conclusion let us find the integral value of 
(5 l) the radiation intensity in the other limiting case 

~ » 1. We get 
co 

F! l = -7 ~2y2 [~ K,1, (x) dx - K,;, (y)], (52) 
11 

co 

F! 1 = ( 1 + + ~Y )2 [~ Ko;, (x) dx- K.1, (y) J , (53) 
y 

00 00 

F~ l = -7 ~2y2 [~ Ks;, (x) dx + K.1, (y) + 2 ~ K,;, (x) dx 
y y 

+ 4~K,1, (y) 1. 
J 

(54) 

Let us consider the integral radiation in analogy 
with the preceding case. Then for energies E 
« E112 ( ~ « 1) we obtain 

w!t = vVcl {f _ (25x3 + ~) ~ 

+ (335 I 245lf3 )")!: 2 _ }· 
\ 18 I 48 \, \, •. • ' (55) 

wtl = wcl _1_ !:2. 
o: 1R '-' ' 

(56) 

wtt = wet {_i_ _ 5 lf3 r:: + ~ r:: 2 _ } . 
" 8 24 \, 18 \, . . . , (57) 

wtl = wcl ~ { 1 + 105 vl_ )"} r:: 2 
" 18 184 \, "' . 

(58) 

It follows from these formulas that in the case 
where the electron spin is polarized along the field 
W a the radiation component depends on the initial 
spin orientation, and this dependence is contained 
in the terms proportional to the first power of 
Planck's constant n. Spin flip is manifest, as be­
fore, in the terms proportional to n2' but the spin­
flip probability now depends on the initial spin ori­
entation. The change in the polarization of electron 
spin during radiation occurs in such a way that the 
spin strives to orient itself against the field. Be­
cause of this, the spin of an electron beam which 
is not polarized at the initial instant should acquire 
with time a preferred orientation against the field 
(see [ttJ). Estimates of the "lifetime" of an elec­
tron with spin polarization along the field, which 
can be readily obtained on the basis of (58), show 
that for electrons with energy 1 BeV and a mag-

wtt = 75 Wglob n1 tt _ _3~ Wglob. 
0 128 , " - 128 , (59) 

TV~~ = ~ Wglob, W~l = {~ + ~ ~ r ('/a) } Wglob ( 
L8 128 8 r (2,'a) z'i•£'f, · 60) 

Th_u~, at l~rge values of the energy E » E112 , 

transitions with reversal of the spin orientation 
make a contribution to the main term of the in­
tensity. In this lies the essential difference from 
longitudinal polarization, which is more stable with 
respect to changes in the spin orientation. We note 
also that in the case when E » E112 the directivity 
in the change of the spin orientation decreases and 
as can be seen from (60), when ~ » 1 the radiatio~ 
intensity depends little on the initial spin polariza­
tion. 

The authors are grateful to Prof. A. A. Sokolov 
and Yu. M. Loskutov for their participation in a 
discussion of the results of the work. 
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