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We have investigated conversion and scattering of electromagnetic waves in a nonequilibrium 
plasma. If the plasma is nearly unstable, the coefficients describing wave scattering and con­
version become anomalously large. We consider two cases: a plasma with hot electrons mov­
ing through cold ions, and a plasma through which a beam of fast charged particles moves. 
The spontaneous emission caused by conversion of fluctuating longitudinal waves into trans­
verse waves in a nonequilibrium plasma is considered. 

1. INTRODUCTION 

IT is well known that a plasma can support the 
propagation of different kinds of weakly damped 
waves: transverse waves, Langmuir waves, and 
acoustic waves (in a nonisothermal plasma). 
Waves are always excited by plasma fluctuations: 
in thermodynamic equilibrium the amplitudes of 
these waves are determined by the plasma tern­
perature (we shall call these fluctuation waves). 
In a nonequilibrium plasma the amplitudes of the 
fluctuation waves can be found if the distribution 
function for the plasma particles is known. [i-3] 

A plasma can also support waves excited by ex­
ternal sources (we shall call these external waves). 

The nonlinearity of the plasma equations im­
plies that plasma waves can interact, causing wave 
scattering and conversion of waves from one kind 
into another. The scattering and conversion of ex­
ternal waves on plasma fluctuations has been 
treated widely in the literature ( cf. for example 
[4,2,5J). In all of this work both equilibrium and 
nonequilibrium plasmas have been considered; 
however, the plasma was assumed to be in a stable 
state. It has been recently shown [s, 7J that plasma 
fluctuations increase markedly when an unstable 
state is approached. The coefficient for scatter­
ing of transverse waves into transverse waves in­
creases tremendously; [ 7] the effect is analogous 
to critical opalescence in optics. The coefficients 
describing scattering and conversion of longitudi­
nal waves should also be very large. In the pres­
ent work we shall be interested, among other 
things, in scattering of an external longitudinal 
wave by critical plasma fluctuations and transfor­
mation of such a wave into a transverse wave. 

Another characteristic· feature of a nonequilib-

rium plasma is the spontaneous emission associ­
ated with the conversion of two fluctuating longi­
tudinal waves into a transverse wave. (In the equi­
librium case all radiation from the plasma is es­
sentially Ray leigh scattering since the additional 
effect associated with the interaction between 
waves must vanish as a consequence of detailed 
balancing.) We determine the intensity of this 
spontaneous emission and find that it can be anom­
alously large when the plasma is close to an un­
stable state. 

Main emphasis is given in the present work to 
those cases of wave scattering and conversion in 
which the intensity of the produced radiation is 
very large by virtue of the existence of critical 
fluctuations. This situation arises in the interac­
tion between two waves when one has an anoma­
lously large (critical) amplitude, and in the Dop­
pler scattering of a fluctuating wave with an anom­
alously large amplitude on plasma particles. For 
this reason, we shall be interested primarily in 
nonlinear wave interactions; in the analysis of in­
duced scattering of waves by particles we consider 
only the case of Doppler scattering [ Eqs. (24) and 
(25)]. 

2. INTENSITY OF THE SECONDARY WAVE 

We first determine the amplitude of the sec­
ondary wave produced as a result of the interac­
tion between two waves propagating in a plasma. 
For this purpose we start with the complete sys­
tern of equations that describe the plasma: the ki­
netic equation for each particle species and Max­
well's equations. 

Assuming that the amplitudes of the interacting 
waves are small and expanding the particle distri-

208 



CONVERSION AND SCATTERING OF ELECTROMAGNETIC WAVES 209 

bution functions and the electric and magnetic 
fields in powers of this amplitude, we find that 
terms of n-th order are given by 

{ !_ + vV)J<n) + 2 (E(n) + _!_ [vH(n)J) aj~ 
,at " m" c av 

n-1 a (n-n') 

=- 2 ~ (E(n') +_I_ [vH(n')J) _1".,---
m" n'=l c av 

t H<n> _ 1 a E<n> + 4n ~ ~ j<n> d ro - clfi -c-...:::.Jea. .l v" v, 
" 

div E(n} = 4Jt ~ea.\ j~n) dv, 
" ·-

rot E(n) = -_I_!!_ H(n) 
c at • 

div H(n) = 0, 

(1) * 

(2) 

where fa is the distribution function for particles 
of the a species with mass ma and charge ea. 
E is the electric field and H is the magnetic field. 
The nonlinear effect in the interaction between the 
waves is evidently described by the terms on the 
right side of the kinetic equation (1). 

Solving Eqs. (1) and (2) and limiting ourselves 
to the case in which both primary waves are longi­
tudinal waves we find the secondary wave 

E(2> (k, w) = - iD;i (k, w) ~ d(~~)~1 Ci (k,w1; k- k 1 , w- W1) 

X rp(l)(k1, w1) cp(l)(k- k11 w - w1), (3) 

where <P 0 >(k1>w) = ik-2 k·E 0 >(k,w) is the poten­
tial associated with the primary wave 

4n e! 
C; (k1 ,w1; k 2, w2) ~~- -+- ~2 

W1 W2 a ma. 

\ 11; dv ( a ) (kza;av) !~ 
X J (wl + Wz)- (kl + kz) v kl av Wz- kzv 

for a transverse secondary wave the tensor D is 
of the form 

(4) 

DL(k, w) = (6ii- k;kj/k2 ) Wc2/w2 - e1 (k, w )t1 , (5) 

and for a longitudinal secondary wave this tensor is 

(6) 

( EZ and Et are the longitudinal and transverse di­
electric constants of the plasma). 

The scattering and conversion intensities are 
characterized by the change I: in the square of 
the amplitude of the secondary wave per unit time 

I:= !!_ (E<2>2) = ~ di: 
- dt .l 

(the symbol ( ... ) denotes averaging over the 
fluctuations ) . 

We first consider the case in which the inter-

*rot H =curl H; [ vH(n)] = v x H(n). 

(7) 

action of two longitudinal waves leads to the for­
mation of a transverse wave. If both colliding 
waves are fluctuation waves we have from (3) and 
(5) 

dk 
d1:. = U(k) (2n)" , 

( _ QZ + k2c2 ~ dk1dw1 , k ))2 
U k) - 8k2 J (2n)• [kC (kl, wl, k - i' w - wl 

where ( <P 2 )kw is the Fourier component of the 
correlation function for the potential 

(rp2)k"' = ~ dr dt e-ikr+iwt (cp (r + r1 , t + t1) rp (r1 , t1)) 

(8) 

while rl2 = 47fe 2n0/m is the square of the electron 
plasma frequency. 

In deriving Eq. (8) we have neglected higher 
correlations and written the fourth-order corre­
lation in the form 

< rp (k1 , wJ cp (k2, w2) cp' (k3, w3) rp* (k4 , w4)) 

= (2n)s <rr2>k,"', <rp2>k,"', {6 (kl- k3) 

X 6 (w1 - w3) 6 (k2- k4) 6 (w2 - w.) 

+ 6 (k1 - k4) 6 (w 1 - w.) 6 (k2 - k 4) 6 (w2 - w3)}. 

If one of the colliding waves is an external wave 
(qJ<1>(r, t) =<Po exp {ik0·r- iw0t}), the conversion 
coefficient du = di:/1 E 0 12 is given by 

dcr = Q2 + k2cz 

16k2k~ 

X [kC (k0, w0; k - k0, W - Wo) 12 ( (jl2 \-k,, "'-"'o (:!)" · (9) 

We now consider the case in which the second­
ary wave is a longitudinal wave. If both colliding 
waves are fluctuation waves we have from Eqs. (3) 
and (6) 

dk 
d1:. = U(k) (2n)" , 

U (k) _ _1_ I ~(k, w) ~- 2 (' dk1 dw1 
- 2k2 aw J (2n)4 

X (kC (kl, wl; k-ku w - w1))2 (rp2\'"'' (rp2\-k,, "'-"'; 
(10) 

If one of the colliding waves is an external wave the 
quantity du is 

1 I ae1 (k. w) 
1
·-2 • da = --. --8-- (kC (k0 , w0 , k- k0 , w - w0))2 

4k2k~ w 

X ( 2 ) dk1 
(jl k-k0 , Cil-Cil0 -(2n )" · (ll) 

In concluding this section we present an expres­
sion for the function C in the case in which one of 
the colliding waves is a Langmuir wave ( w1 ~ Q) 

and the second a low -frequency wave ( w2 « Q). 

According to Eq. (4) 
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where Te is the electron temperature of the 
plasma. 

3. WAVE CONVERSION AND SCATTERING IN A 
PLASMA IN THE PRESENCE OF A DIRECTED 
ELECTRON MOTION 

We consider wave scattering and conversion in 
a nonisothermal plasma in which the electrons 
move with respect to the ions, which are assumed 
to be at rest. We shall be especially interested in 
critical fluctuations; in this case the directed elec­
tron velocity u approaches the phase velocity of 
nonisothermal sound S = -J Te /M ( M is the ion 
mass ) . The singularity associated with the criti­
cal fluctuations arises in the term in the expres­
sion for the potential correlation, corresponding 
to the possibility of the propagation of acoustic 
oscillations in the plasma: [s, 7] 

2 (2n)2T2S2q2 

(q;2)~w=Q2 I e lb(w2-q2S2). (13) 
m w-qu 

Substituting Eqs. (12) and (13) in Eq. (9) we ob­
tain the following expression for the coefficient 
describing the conversion of an external Langmuir 
wave into a transverse wave 

(14) 

where 6w = -J !J2 + k2c2 - !.1 - k0 • u - % !.1 ( ak0 )2 

is the change in frequency and q = k - k0 is the 
change in wave vector characteristic of the con­
version (a is the electron De bye radius ) . When 
q • u ~ ± qS the coefficient for the 6-function in the 
expression for da becomes anomalously large. 

Integrating Eq. (14) over the modulus of the vec­
tor k we find the coefficient for conversion of 
Langmuir waves into transverse waves (per unit 
solid angle ) . With u ~ S and sin e 0 « 1 we have 

~ - e2koQ j (0 e ) 
do - 16nmc2 ' 0 ' 

(15) 

where 

f (e e ) sin2 e [,I L.c2ko ( u ) J-1 

' 0 = I cos 6 I V 1 + QS cos2 6 1 + S cos 6o -1 

(cos e < 0), 

sin2 6 {[{ 2c2k0 ( u )}'/, J-1 f (e, eo) = I cos 6 I 1 + QS cos2 6 1 + s cos eo - 1_ 

[ { 2c2k0 ( u )}';,]-1} + 1- 1- QS cos2 0 1- S cos e0 (cos e > 0). 

(Here and below, e and e 0 are the angles formed 
by the vectors k and k0 with the direction of u; 
the angle between the vectors k and k0 is desig­
nated by ~.) 

It is evident that da/do becomes anomalously 
large when 1 ± u cos e 0 /S « !.18 cos2e/c2k0. We 

note that this condition imposes very stringent 
limitations on the angle e 0 and on the quantity 
u/S. 

We now find the growth rate for transverse 
waves caused by scattering of fluctuation Lang­
muir oscillations by critical fluctuations with 
conversion into transverse waves. Assuming that 
the Langmuir term in the expression for the po­
tential correlation is of the form [i-3] 

(q;2 )~"' = 2 (2:rt)2 QT.q-2b (w 2 - Q2 - 3Q2 (aq) 2 ) (16) 

( w = w - q • u is the frequency in the reference sys­
tern in which the electrons are at rest) and using 
Eqs. (8), (12) and (13), we have 

U (k) = e2TeQ \ dk dw [kk1J2 (qS)Z b (!'lw2- q2S2) 
m ) 1 1 k2k2 I ~w- qu I 

1 

(17) 

where 6w = -J !.12 + c2k2 - w1 and q = k -k1. 

It is evident that the function U ( k) becomes 
infinite when u ~ S if cos e - c2k/2!.1u. We can 
estimate the coefficient of the resonance denomi­
nator I c2k2 /2!.1 - k • u I - 1 by integrating Eq. (17) 

........,_1 f""..J • 

with respect to k1 up to k1 =a , where a 1s equal 
to several Debye lengths. We thus find 

• e2Te sin2 6 I c2k2 ~-1 U (k) ~ _ 3 - 2Q -ku . 
ma • 

According to Eqs. (15) and (18) the radiation 
from a plasma due to conversion of fluctuations 

(18) 

or external Langmuir waves into transverse waves 
is anomalously large only in the long wavelength 
region, where k ~ Qu/ c2. 

We now consider the scattering of Langmuir 
oscillations. Using Eqs. (11) and (13) for the scat­
tering coefficient we have 

- (ne)Z (qS)2 2 ·'"' ( 2 282) dk da - -.,- 1 ~ I cos vu /'lw - q (-;c--)., , .. m w-qu at· 
(19) 

where 6w = % !.12 ( k2 - k5) + q • u is the change in 
frequency caused by scattering. 

Integrating da with respect to the modulus of 
the vector k, it is easily shown that if 

(cos 8 - cos 8 0)2 = ('2Siu) 2 sin2 (0!:2) (20) 

the expression da/do becomes infinite. Near di­
rections determined by Eq. (20) da/do is of the 
form 

dG e'k~ sin ( {},'2) cos2 t} I u cos On+ :iQa 2ko r-l 
dO Himn I (u, S) (l'OS Oo- cos 6) ± 2 sin (t} 2) i 

4. WAVE CONVERSION IN A PLASMA IN THE 
PRESENCE OF A BEAM 

(21) 

We now consider wave conversion in a plasma 
in the presence of a beam. It is of special interest 
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to investigate the case in which the beam velocity 
is close to the critical velocity at which the Lang­
muir oscillations become unstable, assuming that 
the wave vector is equal to the change in wave 
vector due to scattering. 

Under these conditions the correlation function 
for the potential contains the term C7J 1l 

Substituting Eqs. (22) and (26) in Eq. (8), we have 

ljl (k) = eZQBTi (' dk1 dw1 (kkl]2) 
2m2w2 .l (k- k1)2 (w- w1)2 k2k2 

. 1 

X [(k -k1)2 _ 2kk1 - k2J2 6 (wi- QtJt'l([w- w1]2- Qi-~r,) 
w-w1 w Jwl-ukliJ(w-wi)-u(k-k1) ' 

(27) 

where the integration is carried out over the re-

< 2)L. = 2 (2n) 2 0 2T1 0 (ro2 _ Q2) 
t:p qw q2 I w - qu I q , 

(22) gion 

which can be anomalously large. Here 

Q~ = Q2 + 3Q2 (aq)2 _ (QQ1)2 mjq2T1 , 

~I= 47re2n1 /m; u, T1 and n1 are the mean veloc­
ity, temperature and density of the beam (we as­
sume that the beam is hot). 

We first consider the emission from a plasma 
due to the conversion of two fluctuating longitudi­
nal waves into a transverse wave. This emission 
is due to processes of two kinds: scattering of two 
Langmuir waves on each other and scattering of 
Langmuir waves on low -frequency fluctuations. 

In the low-frequency region ( w « q-/ T/M ) the 
correlation function for the potential fluctuations 
is [1-3] 

1 2)D _ T 2 -. f2JtM 
'<p qw - 4e2noq v-T- ' (23) 

where T is the plasma temperature. Substituting 
this expression in Eq. (8) and using Eq. (12) we 
have 

where the integration is carried out over the re­
gion lk,ul < ~k1 (1- 1/~); ~is a large param­
eter that characterizes the maximum possible ampli­
tude of the critical fluctuations (this cutoff pa­
rameter can only be found exactly from a non­
linear theory ) . 

It is evident from Eq. (24) that the transverse 
radiation produced as a result of conversion is 
longwave radiation k « ~/c. To be definite we 
assume that ck/~ » (n1T/k0T 1 ) 1/ 4 and the con­
version coefficient if found to be 

UD (k) ~ 0,3 (e2T 1fmua 2) ln~. (25) 

We now consider the contribution to d~ from 
scattering of Langmuir waves by Langmuir waves. 
In this case, in accordance with Eq. (4) the func­
tion C is 

(ro = rol + ro2). 
(26) 

IJin neglecting nonlinear effects of the interaction between fluctu­
ations we can use Eq. (22) in the range of frequencies w and wave 
vectors q in which the plasma oscillations are nongrowing. 

I u k1 I< Qk, (1- 1/~). 

l u (k- k1) 1 < Qk-k, (1- 11~). 

It is easily shown that the quantities U L and uD 
do not have poles due to the existence of critical 
fluctuations. The quantity U L is of order 

UL(k) ~0.1 (e2Tilm2ua') o (cW- 3Q2) In~. (28) 

We now find the coefficient for the conversion of 
an external Langmuir wave into a transverse wave. 
Using Eqs. (9), (22) and (26) we have 

-z 2 ("2 + k2 2) (3q2- k2)2 dk da = •• e " . c T o • 2{}6( 2- Q2) 
128m2Q2 1 11lw- qui q2 sm ~ro q (2n)s · 

(29) 

It is evident that as I q • u I - nq the coefficient of 
the o-function in this expression grows without 
limit. 

Integrating Eq. (29) with respect to the modulus 
of the vector k we have 

dcr 'V3e2QT1 k~ sin2 t} 

do 64nm2c3 Q + k0u 
(30) 

If the projection of the wave vector of the external 
Langmuir wave in the direction of u is approxi­
mately (- Q/u) the quantity do/do characterizing 
the growth rate of the transverse waves propagat­
ing in a given direction is found to be anomalously 
large. 

In conclusion we wish to thank A. I. Akhiezer, 
V. P. Silin, and A. A. Rukhadze for valuable dis­
cussion. 
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