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In the proposed model a metal is regarded as a homogeneous and isotropic system of elec­
trons and ions. Coulomb electron-electron interaction is assumed. The remaining interac­
tions are assumed to be of a Coulomb nature at large distances; at small distances they are 
described by corresponding form factors. The model of the ion system is a fluid. Some os­
cillations of the ion fluid are quantized. The present model differs from that of Frohlich by 
the absence of a "bare" velocity of sound, which is a quantity possessing no physical mean­
ing. This results from a more consistent manner of taking interaction between the particles 
into account. Expressions are obtained for the phonon and electron spectra. Qualitatively 
the effect of the electron-phonon interaction on the electron spectrum is the same as in the 
Frohlich model. It is shown that if the attraction between the electrons and ions is sufficiently 
great at small distances, the system may become unstable with respect to long-wave phonon 
production. 

THE interaction between electrons and phonons in 
the metal is usually taken into account within the 
framework of the Frohlich model [1]. This model 
is based on the assumption that the interaction be­
tween the electrons and the ions is screened, and 
the electrons do not interact with one another. Such 
an assumption corresponds to an interaction Ham­
iltonian 

(1) 

Here apv and apv are the annihilation and creation 
operators for an electron with momentum p and 
spin v; bq and b~ are the operators of annihila­
tion and creation of the phonon with momentum q; 
qm is the maximum phonon momentum; V is the 
volume. The matrix element of the electron -phonon 
interaction o:q takes for q « Po (Po is the Fermi 
momentum ) the form (in atomic units ) 

(2) 

where A.0 is a constant on the order of unity and s 0 

is the ''bare'' velocity of sound ( s 0 ~ M - 1/ 2, M -
ion mass). 

The spectrum of the electrons and phonons in 
the Frohlich model, without assuming weak inter­
action, was obtained by Migdal [2] accurate to 
terms ~ M - 112• For the velocity of sound s the 
expression obtained was 

(3) 

from which we see that the system becomes un­
stable when A.0 > %. However, the physical fac­
tors that lead to the instability remained unclear 
within the framework of the Frohlich model. 

The Frohlich model introduces a quantity with 
no physical meaning, namely the "bare" velocity 
of sound s 0• In addition, somewhat inconsistently, 
account is taken of the interaction between the 
electrons and the ions. Indeed, this interaction 
is already taken into account by the fact that the 
phonons have a linear dispersion, which results 
from the collective motion of the electrons and the 
ions. On the other hand, the same interaction is 
included as an interaction between the electrons 
and the phonons in the Hamiltonian (1). Finally, 
no account is taken in the Frohlich model of the 
Coulomb interaction between the electrons, which 
is not weak in a metal. 

In the present paper we proposed a model free 
of the foregoing shortcomings. 

1. FORMULATION OF THE PROBLEM 

Let us consider a homogeneous isotropic system 
consisting of electrons and a classical ion fluid. 
Strictly speaking, we can consider the system of 
ions as a fluid only for long-wave oscillations. 
However, we can expect that the conclusions ob­
tained with such an approach will be qualitatively 
correct if the finite nature of the number of de-
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grees of freedom of the ion fluid is taken into ac­
count in the usual fashion, by introducing a maxi­
mum phonon momentum qm. 

We take into consideration only small oscilla­
tions of the ion fluid. The Hamiltonian of the sys­
tem under consideration is of the form 

H = H. + H; + H.;, (4) 

He = - + ~ 'Jl~ (r) t.'Jl. (r) <Pr 

+ + ~ 'll~ (r) 'Jl~ (r') I r-=- r' I 'JlfL (r')'Jlv (r) <Pr lPr', (5) 

H; = A~o ~ v2cPr + +I cp1 (I r - r' I) p (r) p (r') <Pr lPr', 
• J (6) 

He;=~ 'Jl~ (r) 'Pv (r) cp2 (I r - r' I) p (r') <Pr lPr', (7) 

'Jlv (r) = y-'f, Lj apveiPr, 'Jl~ (r) = y-'f, Lj a;riPr. (8) 
p p 

Here He - Hamiltonian of the electrons which do 
not interact with the ions, Hi -the energy of the 
small oscillations of the ion fluid, and Hei -the 
energy of interaction between the electrons and 
the small oscillations of the ion fluid. In the total 
Hamiltonian H, we took no account of the constant 
infinite terms that describe the electron-ion and 
ion-ion interaction in the equilibrium state. As is 
well known, these terms are offset by the corre­
sponding term in the Hamiltonian He (the system 
is quasineutral ). Therefore in the self-energy 
part of the electron we need not take into account 
the contribution of the diagram shown in Fig. 1 
(the solid line corresponds to the electron Green's 
function and the dashed line to the function 4nq - 2, 

q- 0). 
Let us explain the notation used in (6) and (7): 

p -deviation of the number of ions per unit vol­
ume from the average value Po and v -velocity 
of the ion fluid. The function q; 1 characterizes 
the ion-ion interaction, while q; 2 characterizes 
the electron -ion interaction. The functions q; 1 

and q; 2 depend only on I r- r' I, since the system 
is assumed homogeneous and isotropic. At large 
values of the argument, the functions q; 1 and q; 2 

are Coulomb functions, so that we can write 

cp1 (x) = z2/x for x ~ 1, 

cp2 (x) = - z!x + 4nz <D(x). 

I 
I 

0 
FIG. 1 

(9) 

(10) 

Here z -ion charge, <I> ( x) characterizes the 
electron-ion interaction at short range (the factor 
4nz is introduced for convenience ) . 

Let us quantize the ion oscillations and introduce 
the phonon annihilation and creation operators b 
and b + • Then in the momentum representation we 
obtain in place of (5)-(7) 

(11) 

H; = ~ w0 (q) b~bq, (12) 
q<qm 

(13) 

Xq = 4nz V p012.ivfw0 (q) [1/q- qcp(q)]. (14) 

Here Ep and w 0(q) are the energies of the elec­
tron and of the phonon in the absence of interaction, 
and q; ( q) is the Fourier transform of <I> ( x) [see 
(10)]. The frequency w 0( q) is determined by the 
Fourier component of the function q; 1 ( x): 

(15) 

For q = 0 we have 

w0 (0) = (4np0z2/i1It'. (16) 

We introduce, as usual, the electron and phonon 
Green's functions: 

G (p, t1 - t2) = i (Tap (t1) a; (t2)), (17) 

f1J (q, t1 - t2) = ix~ <T {bq (t1) + b~q (t1)} {b~ (t2) + b_q (t2)}), 

(18) 
where ap ( t) = eiHt ap a -iHt (and the same for 
other operators). The Fourier transforms of (17) 
and (18) will be denoted by G(p, E) and fJJ(q, w ), 

respectively. The Green's function of the interac­
tion phonons is of the form 

2{ "1 1 } fJJo (q, w) = Xq o "/) + o . ·t; ' 
W -W-l w· --W-7 q q . 

6 --> + 0. 
(19) 

We see from (19) that when w » wn ( wn is the 
Debye frequency) the function f1J 0 decreases quad­
ratically with w. This property holds true also 
for the total Green's function fJJ, i.e., each $­

function effectively limits the integration with re­
spect to the frequency to the interval ~ wn « J1 

( J1 -chemical potential). This is just the circum­
stance which allowed Migdal c2= to determine the 
electron and phonon spectra accurate to the quan­
tity ~ wniJ.J. ~ M-112 

In the problem considered here, this property 
of the .9ll-function also enables us to simplify ap­
preciably the Dyson equations for the functions G 
and :£J and draw certain conclusions concerning 
the spectrum of the electrons and the phonons. 
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We shall solve the problem by the methods of 
quantum field theory at zero temperature, and 
confine ourselves to the case of a normal metal. 
We assume that the solution of the Coulomb prob­
lem (with Hamiltonian He) is known. Namely, 
we shall find it useful to know the electron Green's 
functions and the two-particle scattering amplitude 
of the Coulomb problem, in order to determine the 
electron and phonon spectra of the problem under 
consideration. 

2. PHONON GREEN'S FUNCTION 

We consider the boson self-energy part shown 
in Fig. 2. The solid lines correspond here to the 
function G, while the dashed lines denote the boson 
ends (i.e., we can connect to them lines corre­
sponding to the functions gj( q, w) or 41Tq - 2 ). The 
contribution of the diagram under consideration 
is represented by the integral 

II - 2.\ de d3p G ) G ( ) r ( . (q,ro)-- lJ (Z:n)• (p-q,e-ro p,e p,q,e,ro)· 

(20) 

Here r is the vertex part, which cannot be di­
vided into two parts interconnected by one dashed 
line only. 

----0---
FIG. 2 

We introduce the function U(q, w ), determined 
by the equation 

U (q, ro) = 4nq-2 [1 +II (q, m) U (q, ro)]. (21) 

With the aid of this function the equation for the 
phonon Green's function gj( q, w) can be written in 
the form 

gj (q, ro) = gjo (q, ro) - gj0 (q, ro) [11 (q, ro) 

+ U (q, ro) 112 (q, ro)] gj (q, ro). (22) 

The phonon Green's function gj corresponds to the 
aggregate of diagrams, beginning and ending with 
the line gJ0. This circumstance is reflected in 
Eq. (22), shown graphically in Fig. 3 (the thin wavy 
line, the heavy wavy line, and the dashed line cor­
respond to gj 0, gj, and U, respectively). 

The integral in (20) contains the total Green's 
function G and the total vertex part r of the prob­
lem. However, these functions, accurate to quan­
tities ~ M - 112 , can be replaced by the correspond-

~ = '"V'v- + ~ + ~--Qr\/'v 

FIG. 3 

ing Coulomb functions. Indeed, as will be shown 
in Sec. 3, the function G differs from the Coulomb 
function G0 in the narrow region ~ WD near the 
Fermi surface. The integration in (20) is over a 
broad region ( E ~ JJ,, p ~ Po), so that we can make 
the substitution G- G0• In exactly the same man­
ner, we can replace all the G lines in the diagrams 
for the vertex part r by G0, and the diagrams with 
gj lines can be discarded, since they make a con­
tribution ~ M-1/2 compared with the remaining 
ones. These estimates are analogous to the cor­
responding estimates of Migdal [2], and we shall 
not stop to discuss them in detail. 

As a result, the function II(q, w) can be re­
placed, accurate to quantities ~ M - 1/ 2, by flo ( q, w), 

which is determined by the expression 

IIo(q,ro) 

_ . \ ded3p ( . ) ( ) ( . ) -- 2l.) (Z:rt)• G0 p- q, e- ro G0 p, e ro p, q, e, ro . 

(23) 

The functions G0, r 0, and 11 0 are determined 
only by the Hamiltonian He. These functions have 
characteristic dimensions ~ JJ, in frequency and 
~Po in momentum (there are no other dimensions 
in the Coulomb problem). For the phonon Green's 
functions [ Eq. (22)) we are interested in the fre­
quencies w ~ WD « JJ, (at high frequencies the 
function gj decreases rapidly), so that we can 
put w = 0 in the functions 11 0 and U0• This in­
troduces an error ~ M - 1/ 2 in the determination 
of the phonon dispersion. 

Making the substitution II ( q, w) - 11 0( q, w) in 
(21) and (22) we obtain for gj the expression 

g:;-l (q, ro) = gj~1 (q, ro) + 11o (q, 0) [1- 4nq-2IIo (q, owl. 
(24) 

Substituting (19) in (24) we get an expression 
for gj ( q, w ) : 

gj ( ro) = 4:rt-~ { 1 1 r q, q2 2w w -w-i{) + w -j-w-i8 ' q q q q q 

ro~ = [ro0(q)]2 + 4n~~l10 (q, 0) [q2 - 4nl10 (q, OWl, 

~q =roo (0) [1- q2cp (q)] 

(25) 

(26) 

(27) 

(the phonon damping oq will be determined later). 
In determining the velocity of sound we are in­

teres ted in the value of the function 110 ( q, 0) as 
q- 0. To calculate this limit we use an identity 
obtained by Nozieres and Luttinger [a] for systems 
with Coulomb interaction. It turns out that we can 
write for the vertex part r 0 [ see (23)) 

lim r 0 (p, q; e, 0) = - oG;1 (p, e)/8j.t0 (28) 
Q-?0 
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(here JJ.o -chemical potential of the Coulomb 
problem). Substituting this expression in (23) we 
get 

lim II0 (q, 0) = - 8n/8fl0 , (29) 
q~o 

where n = p0z -electron density. 
We denote by y(q) the value of the vertex part 

r 0 when both electron momenta p and p - q are 
equal in absolute value to Po and E - JJ.o = w = 0. 
We then have for y(q) as q- 0 

(30) 

Here v 0 and a 0 is the Fermi velocity of the Cou­
lomb problem and the renormalized constant in 
the expression for G0 near the Fermi surface: 

G01 (p, e) = a01 [ v0 (p- p 0) - e + fl0]. (31) 

With the aid of (29), expression (26) for q- 0 
assumes the form 

-o-
a b 

FIG. 4 

'JJ' (q, ro) = 'JJ (q, ro) [1 + U0 (q, 0) II0 (q, 0)]2 • (33) 

It is convenient to introduce a function D ( q, w ) 
which differs from 'JJ' ( q, w) by a factor y 2 (q): 

D ( ro) - A2 { 1 + 1 } q, - q wq-w-i6q wq+w-i{jq' 

A2 = 2nq2 {wo (0) [1- q"rp (q)] y (q) }2 
q- wq q2 -4nllo(q,O) ' 

Using (29) and (30), we obtain for small q 

A~= n2z (vofa0)2 q/6Msp0 • 

The damping of sound oq can be obtained by 
substituting in (26) the function IT 0 ( q, 0) 

(34) 

(35) 

(36) 

+ i Im IT 0 ( q, Wq). As a result we get for q « p 0 

(37) 
ro~ ==: s2q2 = 2ro0 (0) [ro0 (q) - ro0 (0)] 

+ 2 [roo (0)]2 <p (0) q2 + ~ ~o q2. (32) 3. ELECTRON GREEN'S FUNCTION 

The first and last terms in the right half of (32) are 
positive. The sign of the second term is determined 
by the sign of qJ ( 0). If the function q, ( x) (10) cor­
responds essentially to attraction, then (/! ( 0 ) is 
negative. In this case, at sufficiently large (/! ( 0 ) , 
the velocity of sound s becomes imaginary. This 
is apparently connected with the fact that for suf­
ficiently strong attraction between the electron 
and the ion the system becomes unstable with re­
spect to "sticking" of the electron to the ion. 1> 

We see from (25) that the function 'J) ( q, w ) 
contains a factor q -3. However, the function 
'JJ( q, w) is contained in all the diagrams with a 
certain factor, which for small q compensates for 
this discrepancy. Let us consider, for example, 
the diagram shown in Fig. 4a (the wavy line cor­
responds to the function (25) and the solid line to 
the function G). It is clear that in addition to this 
diagram we have also the diagram 4b ( the dashed 
line corresponds to the function U 0 and the circle 
to the function IT 0 ), and a similar diagram with the 
wavy and dashed lines interchanged. In addition, 
we have a similar diagram in which dashed lines 
are connected to both ends of the wavy line (Fig. 
4c). In place of all these diagrams we can take 
into account only 4a, by setting the wavy line in 
correspondence with the function 

1 >This phenomenon is similar in nature to the affinity of an 
electron to a neutral atom, and is determined by the structure 
of the electron shells of the ion. 

The main idea of the forthcoming computations 
is as follows. The electron -phonon interaction can 
change appreciably the quasiparticle spectrum only 
near the Fermi surface, in a layer ~ wn. But it is 
precisely near the Fermi surface that the Coulomb 
quasiparticles are well defined, since their damp­
ing is small compared with the energy. This cir­
cumstance enables us to reformulate the problem 
of calculating the quasiparticle spectrum: we 
choose initially Coulomb quasiparticles and take 
into account their interaction with the phonon field. 

For the electron Green's function G we write 
the Dyson equation 

G (p, e)= @3 (p, e)+ @3 (p, e)~ (p, e) G (p, e), (38) 

where @3 -Green's function of the free electron. 
The self -energy part ~ corresponds to a set of 
irreducible graphs with one entrance and one exit. 
We shall assume that these diagrams are made up 
of lines G, U, and D, i.e., all the reducible parts 
in ~ have been summed. 

According to Migdal's estimates [2], which are 
valid also in the present problem, it is not neces­
sary to take into account in ~ the diagrams with 
two and more phonon lines. We introduce the 
notation 

(39) 

where ~ 1 is the contribution of the diagrams which 
do not contain D-lines, and ~ 2 is the contribution 
of the diagrams with a single D line. In ~ 2 there 
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are diagrams of two types, the simplest being 
shown in Figs. 4a and 5. The smooth continuous 
line corresponds here to the function G, the wavy 
line to D, and the dashed line to U [see (21)]. 
The circles on Fig. 5 show the vertex parts which 
do not contain D lines. The diagrams of the type 
of Fig. 5 differ from those of Fig. 4a in that they 
cannot be divided into two parts connected only by 
a smooth and wavy line. 

FIG. 5 

In order of magnitude L 2 is equivalent to wu, 
so that it can influence the dispersion of the quasi­
particles only in the layer ~ wu. This enables us 
to draw certain conclusions with respect to L 1. The 
diagrams in L; 1 contain only G and U lines, i.e., 
the integration in them occurs over the region ~ 1-t 

» wu. We can therefore make everywhere in L; 1 

the substitutions G- G0 and U- U0, which means 
that we neglect terms ~ M - 112 . Thus, L; 1 coin­
cides, accurate to terms ~ M-112, with the self­
energy part of the Coulomb problem. Taking this 
into account, we rewrite (38) in the form 

G (p, e) = G0 (p, e) + G0 (p, e) 1: 2 (p, e) G (p, c). (40) 

In these equations all the diagrams with L 1 have 
been summed. 

Diagrams of type 4a and 5 make a contribution 
~ WD to 1: 2• However, the dispersion of the quasi­
particles is influenced noticeably only by diagrams 
of type 4a. 

We consider first diagrams of type 4a. Their 
contribution to L; 2 is given by 

qm 

~ 3 (p, e) = (;n~• ~ d3q ~ dwG (p- q, e- w) 
0 

x D (q, w) y-2 (q) f2 (p, q; e, w). (41) 

In exactly the same way as in II [see (20) and (23)], 
we can replace here r by r 0• 

We must separate from L; 3 a function which 
changes appreciably in the interval IE- J.-t I "' wu, 
since it is precisely such a function that can greatly 
influence the dispersion of the quasiparticle. The 
appearance of such a function is connected with the 
presence of the Fermi surface. Indeed, the inter­
action of the particle with the background (via vir­
tual phonons ), being strong in the layer ~ wu. 
rapidly decreases when the distance from the 

Fermi surface becomes > wu. Repeating Migdal's 
argument [2 J we obtain for the rapidly oscillating 
part of the function L; 3 the following expression: 

q, 

f(e) = 8;;Vo' ~ qdq~dwD (q, w) sign (e- w- ~t), (42) 
0 

where a 0 and v 0 are constants in the expression 
for Go on the Fermi surface [see (31)], and q1 

= min ( 2p0, qm ) . We note that f ( E ) has the same 
form as the corresponding function according to 
the Frohlich model [2]. 

Let us examine now the diagram of Fig. 5. The 
contribution of this diagram to L; 2 is given by the 
expression 

., - \ d·'kd4 q • 
_. 4 (p, e) - J (2n)"-K (k, q, p, Q, w, e) G (k, Q) D (q, w) 

X U(p-k-q, e-w- Q). 

Here K is the contribution of the vertex parts. 
The functions K and U can be replaced by the 
corresponding Coulomb functions. Their charac­
teristic dimensions in frequency are ~ J.-t. There­
fore, when E varies in the interval ~ wu, the 
functions K and U remain constant. This means 
that L; 4 does not contain rapidly varying functions, 
i.e., it influences little the dispersion of the quasi­
particles. 

Thus, the influence of the electron-phonon in­
teraction on the dispersion of the quasiparticles 
is completely taken into account, accurate to terms 
~ M-112, by the function f( E). The remaining func­
tions, for example 1: 4, 1: 3-f, etc.) merely renor­
malize somewhat the chemical potential. 

With the aid of (40) and the expression for G0 

near the Fermi surface (31) we have for I E - J.-t I, 
voiP-Pol «~-t 

G (p, c)= au/[ Vo (p- Po)- (e- ~)- a0f (e)]. (43) 

This expression for the function G is valid so long 
as the main damping is due to the phonon radiation. 
In the region I E- J.-t I, v0 1 p- Po I ~ M- 112 wu, a dif­
ferent damping mechanism becomes fundamental, 
but in this region the damping is small and can be 
neglected. When IE- J.-t I, v0 1 p- Po I » wu, the 
value of G coincides essentially with that of G0• 

We note that the change in the dispersion of the 
Coulomb quasiparticles due to the interaction with 
the phonons and the damping of the phonon can be 
obtained by considering a model with an interaction 
Hamiltonian in the form 

(44) 

and by taking as the initial function the Green's 
function G0 of the Coulomb problem [ Aq is de-
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fined in (35)]. However, such an approach cannot 
be made in consistent fashion, since it is necessary 
to take into account the fact that the phonon disper­
sion remains unchanged. 
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