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The dispersion relations in macroscopic electrodynamics relate to each other the real and 
imaginary parts of the dielectric tensor Eij(W, k). On the other hand, in the study of the 
propagation of electromagnetic waves through a medium one is more interested in disper
sion relations for the complex index of refraction of "normal waves" nz( W, S) = nz + iK[ 

( nz and K z being the refraction and absorption indices of the normal wave of type l). In an 
isotropic medium without spatial dispersion one has Eij = d w )Oij, n 2 = d w) = E' + iE", 
and the dispersion relations for E and for n2 are essentially identical. This is usually 
the only case considered. In this paper the question of analytic properties and dispersion 
relations for n~ in an anisotropic medium (in particular in a magnetically active plasma) 
is considered. Some comments are also made regarding spatial dispersion. 

ALTHOUGH dispersion relations in electrody
namics have been established more than thirty years 
ago, [iJ it is only recently that they have been in
cluded in textbooks and applied more or less widely. 
[ 2] It may be that it is this circumstance that ex
plains why we were not able to find in the litera
ture known to us the answer to one of the basic 
questions that arise in connection with the use of 
dispersion relations. 

Namely, these relations are established for the 
complex permeability tensor Eij ( w, k), whereas 
from the point of view of analysis of experimental 
data, as well as in a number of other cases, it is 
desirable to have dispersion relations connecting 
the index of refraction and the index of absorption, 
nz( W, S) and K[( W, S) (the complex index of re
fraction nz ( W, S ) = nz + iK[ appears in the expres
sion for uniform plane waves Ez "" E0 z exp l i ( k • r 
- wt)], where k= (w/c)nz(w,s)s, s '= k/k, and 
l is the index characterizing the normal wave, for 
example the ordinary or the extraordinary wave). 

The relation between E ij ( w, k) and nz ( w, S ) is 
obtained by making use of the field equations and 
has the form (see, for example, [2, 3]) 

\n2 (6ij- SiSj) - 8ij (w, wns/c) I 
= BijSiSjn4 - [(e;jSisJ) 8zz- SiSj8iz8zj] n2 + I 8ij I= 0, (1) 

where I aij I is the determinant of the matrix aij. 
In an isotropic medium or in cubic crystals 

without spatial dispersion Eij ( w, k) = E( w )0ij and 
n 2 =E(w)= E'(w)+iE"(w), i.e., n2 -K2 =E' and 
2nK = E". Therefore the dispersion relations con-

necting E' and E" can be automatically expressed 
in terms of n and K (for simplicity we assume 
that the value E" ( 0) is finite): 

e' (w)-1= n2 (w)-x2 (w)-1 
00 00 

= ~ f xE" (x) dx = _i_ C xn (x) x (x) dx, 
n ~ x2 - w2 :n: j x• - w• 

0 0 

e" (w) = 2n (w) x (w) 

00 00 

= _ 2w C e' (x)- 1 dx = _ 2~ C n 2 (x)- x2 (x) - 1 dx (2) 
n j x2 - w2 " j x2 - w• ' 

0 0 

where by the symbol 5 we understand the principal 
value of the integral. 1l However even in the ab
sence of spatial dispersion but for an optically 
anisotropic medium, for example a noncubic crys
tal, Eq. (1) leads to two different values ni(w,s) 
and n~( w, s) and, most important, the dispersion 
relations for~.-Eij ( w) are not directly expressible 
in terms of nf 2• In the presence of spatial dis-

' 
persion the question of how to write the dispersion 
relations for 112 arises even in the simplest case 
of propagation of transverse waves through an iso-

1 )Dispersion relations of type (2) can, of course, be written 
for arbitrary functions of E (w) that have no singularities in the 
upper halfplane and on the real axis of the variable w. Such re
lations [for example, for E 2(w)] give nothing new in comparison 
with the relations (2). For a medium in thermodynamic equili
brium E(w) has no zeros in the upper halfplane and on the real 
axis of w. In that case one may write dispersion relations also 

for the function n(w) = V E(w). 
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tropic medium, when 'iii= Etr( w, wn1 ( w )/c) and 
several solutions for 'ii]_ ( w) may exist. 

The use of dispersion relations is by far not as 
important in electrodynamics or acoustics [4] as in 
elementary particle theory. Nevertheless the ques
tion of dispersion relations for n = n + iK is of 
some interest (in part this is already clear from 
the fact of appearance of the papers by Brodin et 
al. [ 5] and Davydov [SJ). It is therefore the hope 
of the authors that the publication of the present 
paper is not superfluous. 

1. We consider a medium described by the 
tensor[3•7J 

e;; {ro, k) = e;; (ro, k) + ie;; {ro, k) 

= Re e;; {ro, k) + i lm e;; {ro, k) 
00 

= ~ d't' ~ dRe-i(kR-w-r) iii { 't'' R)' 
0 

(3) 

where, in view of the principle of causality, the in
tegration over T runs from only 0 to oo (here 
dj and Elj are hermitian tensors which are useful 
along with Re Eij and Im Eij when the former are 
not real). 

If, as follows from physical considerations, the 
kernel Eij ( T, R) has no nonintegrable singularities2> 

and sufficiently rapidly, or at least without increas
ing, tends to zero as T- oo, then the functions 
Eij(w, k) are always finite in the upper half plane 
and on the real axis of the complex variable w. 
In the case of conductors Eij ( T, R) tends to a finite 
value as T- oo and therefore Eij ( w, k) has a 
simple pole at w = 0 (see [2•4]). In the case of 
superconductors [B] there already appears a pole 
~w - 2; and if the medium is not only not in equi
librium but is also unstable then E ( T, R) will in
crease with increasing T -such a situation will 
not be here considered (see [9 J). 

If the functions Eij ( w, k ) are finite then one ob
tains in the usual way [ 1- 4• 7J the dispersion rela-
tions 

+oo 
1 g Im 8;; (x, k) 

Re e;; {ro, k) - 6;; = - dx, 
ln x-w 

-00 

where it is assumed 3> that Eij ( oo, k) = Oij and, as 
already mentioned, the pole at w = 0 is presumed 
absent. 

It follows from their meaning that w and x take 
on only real values in (4), with the wave vector k 
entering as a parameter. Since in introducing the 
tensor Eij ( w, k) a Fourier transform is performed, 
the vector k in (3) appears directly only as a real 
vector. However in those cases when the kernel 
Eij ( T, R) decreases sufficiently rapidly, say ex
ponentially, as R - oo , one may analytically con
tinue the function Eij ( w, k) into a certain region 
of complex values of k (if, for example, Eij ( T, R) 

= fij(T) exp(-R2/a2 ) then Eij(w,k) is analytic 
for arbitrary complex k). In the usually encoun
tered situation in optics, when the frequency w is 
real, the vector k = w;;'(w, s )s/c is always com
plex, although in the transparency region the value 
K = Im n may be quite small. 

The dispersion relations (4) were obtained with
out taking into account the fact that the speed of a 
signal may not exceed the speed of light in vacuum 
c. Nevertheless we shall not make use of the ap
propriate more general dispersion relations [ 10• 7J 
for the following reasons. In the first place the 
relations (4) not only do not contradict the more 
general ones, but are in fact a special case of 
them. In the second place, we shall be interested 
below in dispersion relations for n when in addi
tion to the principle of causality use is made of 
relativistically invariant field equations. Under 
such circumstances the restrictions imposed on 
the speed of signals are, apparently, automatically 
taken into account (in this connection see [H]). 

As a result of the symmetry principle of the 
kinetic coefficients one has 

e;; {ro, k, B0) = e;; {ro, - k, - B0), (5a) 

where B0 -constant magnetic induction. The re
lation (5a) is proved for real w and k (see C7J), 
but it remains valid within the region of analyticity 
also for complex w and k. Since Di = EijEj is 
real we have for real E 

(5b) 
+oo 

I .. ( k) = _ __!_ C Re e;; (x, k)-6;; d 
m e,1 ro, n j x _ w x, (4) If wave propagation is considered and k 

-oo 

2 >rn vacuum Eij = Oij and, consequently, Eij contains the 
term oii o(r) o (R). If then one writes 

()() 

e .. (w · k) = 6 .. + 4n \ d't \ dRe-i(kR-w•>x~-. ('t R) 
t} ' t] J J tJ ' ' 

0 

then the function Xij(r,R) has no singularities and tends to 
zero as R -ooo. 

= wn(w )s/c, then it follows from the same reality 
requirement that k(-w*) = -k*(w), i.e., 

3 >The following is known from the theory of analytic func
tions. If E ij(w,k) ~aij for w = w' + iw 11 = w' ~±oo, then for 
w ~"", w 11 > 0 (i.e. in the upper half-plane) Eij(w,k) either also 
tends to Oij or grows faster than a certain exponent. This re
sult strengthens the assertion, clear from physical conside
rations, that Eij(w,k) ~a ij for w ~""• W 11 > 0, and not only for 

' W = W --.oo. 
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• • *) ) e;i (w, k (w), B0) = E;j (- w , k (- w , B0 

• • *--• ) = e;i (- w , - w n (w)/c, B0 , 

and 

n (w) = n* (- w*). (5c) 

For B0 = 0 and in the absence of spatial dis
persion 

(5d) 

In the last case the relations (4) can be written in 
the form 

co " 
' 2 C xeii 

E;j (w)- {Jij = n j -x~2-_-'-'-00oc-2 dx, 
0 

(6) 

For an isotropic medium formulae (6) go over 
into (2). In addition for an equilibrium isotropic 
medium it is known that the function E ( w ) has 
no zeroes in the upper half-plane of the variable 
w = w' + iw", and possesses also certain other 
interesting properties. In deriving these proper
ties [ 2] one makes use, among other things, of the 
fact that Im E(w) = E11 (w) > 0 for w = W 1 > 0 (this 
follows from the law of increasing entropy, if one 
is dealing with a medium in a state of thermody
namic equilibrium or, at least, a medium that is 
absorptive for all w = W 1 > 0). 

Analogous assertions cannot be made for all 
components Eij ( w, k, B0 ) since for real w and k 
the heat released into a unit volume depends on a 

b . . f •t . . b [7 12] com matlon o Eij. -1 Is pven y ' 

q = (iw/16:rt) {e;i (w:, k, B0) - Ej; (w, k, B0)} E 0; E~i 

= (w/S:rt) e;i (w, k,B0) Eoi E;;. 
(7) 

Here E0 is the amplitude of the electric field, E 
= E0 exp [ i ( k • r - wt) I and, we remind the reader 

1 • II h I d II once more, Eij = Eij + lf:ij· w ere Eij an Eij are 
hermitian tensors. 

For an equilibrium medium q > 0 and conse
quently 

w=w'>O, (8) 

where we choose for the arbitrary vector E 0 the 
unit vector s (we are considering uniform plane 
waves, when k = ks, s = 1; it should be kept in 
mind that the vector E 0 may be considered to be 
arbitrary, since the presence of arbitrary "exter
nal'' charges and currents is allowed). In view of 
the hermitian nature of E{j and Elj the condition 

(8) may also be written in the form Im U > 0, 
w = W 1 > 0, where 

U = E;j (w, k, B0) S;Sj. 

It is easy to see that Im U(- w, k, B0 ) < 0 
for w = w1 < 0. Indeed, in view of (5b) and the 
hermitian nature of Ei'j we have 

Im U (- w•, k, B0) = e~i (- w•, k, B0) S;Sj 
" . = - eZi* (w, - k*, B0) s;si = - E;j (w, - k , B0) S;Sj. 

As already stated, relation (8) is valid for arbi
trary real w and k, i.e., 

Im U (w, k, B0) = e;; (w, k, B0) s;si > 0. 

Consequently, under similar conditions 

lm U (- w, k, B0) = - e;i (w, - k, B0) S;Sj < 0. 

(9) 

If spatial dispersion is absent, or present but 
B0 = 0 (or Eij does not depend on the sign of Bo), 
then we obtain [making use also of (5a)] 

Im U (- w, k, B0) = - Im U (w, k, B0). 

Moreover we always have U - 1 as w - oo , 
since in that limit Eij - Oij. 

The enumerated properties of the function 
U ( w ) coincide with the properties of the function 
€( w) for an isotropic equilibrium medium. One 
may therefore assert (a proof due to one of the 
authors is given in [2]) that under the indicated 
conditions the function U ( w ) does not take on real 
values at any point in the upper half-plane, with the 
exception of points on the imaginary axis 4>. Along 
that axis U ( w) decreases monotonically from the 
value U > 1 (dielectric ) or U = oo (metals ) at 
w = iO to the value U = 1 at w = ioo. From this 
it follows, in particular, that the function U has 
no zeros in the upper half-plane; as we have seen 
before U ¢ 0 on the real axis also (for dielectrics 
the function Efj ( w) = 0 at w = 0 but in that case 
it follows from thermodynamics (see [2], Sec. 14) 
that U = Eij(w = O)sisj > 1). 

4 lHere, of course, we make use of the condition lm U (-w) = 

- Im U(w), w = w': If however Im U(w) is not symmetric on the 
real axis and only changes sign for w = 0 (this is possible if 
spatial dispersion is significant and at the same time 8 0 ,;, 0), 
then the proof remains valid with this difference that as a re
sult of violation of symmetry the real values occur not along 
the imaginary axis but along some other unique curve in the 
upper w halfplane. This curve starts out from the point w = 0 
and goes off to infinity. Along the indicated curve U(w) de
creases monotonically from the value U(iO) = U(O) > 1 (dielec
trics) or U(+iO) ~ oo (metals) to the value U(w -oo) = 1. Since 
zero is not included in the range of variation of U, U(w) ,;, 0 
for w" ;::. 0. 
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From the inequality U .,: 0 there follows (in the 
same region of the w plane) the inequality 5l 

I e;i (w, k, B0) I =I= 0, w = w' + iw", w" > 0. (10) 

From (10) and (1) it follows that n2( w, s) .,: 0, 
w" ~ 0; in accordance with the basic properties 
of Eij it also follows from (10) that the inverse 
tensor Ei/(w, k, B0 ) exists, and I Ei/(w, k, B0 )1 
.,: 0. 

The proof given here may, apparently, fail for 
complex values of k since in that case the expres
sion (7) does not represent the released heat. [i2] 

But in the absence of spatial dispersion in expres
sion (7) the vector k may, of course, be complex 
and q is the heat. It is thus clear that also in the 
presence of spatial dispersion the indicated prop
erties of the functions U, I Eij I and I Ei/1 may 
persist in some region of complex values of k. 

The question of utilization of the principle of 
increasing entropy (i.e., the condition q > 0, if 
q is the heat) is not sufficiently clear in the gen
eral case and deserves a special study. The same 
is also true in general with regard to energetic 
considerations when spatial dispersion is taken 
into account and k is at the same time allowed to 
be complex (or w is complex with real or com
plex k). 

Let us note that the conditions 

U = 8ii (w, k, B0) s;si = 0, 

I e;i (w, k, B0) I = 0, I ei/ (w, k, B0) I = 0 (11) 

correspond respectively to the condition for the 
appearance of "fictitious" longitudinal waves, 
longitudinal waves, and "polarization waves" 
satisfying the equations of the Coulomb problem 
(see [3J). Therefore the above results-the im
possibility of satisfying conditions (11) for w" 
= Im w ~ 0 -have a clear physical meaning. 
Namely, in a state of thermodynamic equilibrium 
(or, more precisely, for q > 0, which is a some
what more general condition) the frequencies of 
the normal waves, corresponding to the Coulomb 
problem for real k, should be of the form wi = wi 
+ iwf, wf < 0, which corresponds to damping. 
Looking at things this way we could have written 
down the appropriate inequalities right away, how
ever, as we have seen, making use of the theory 
of analytic functions allows us to obtain certain 
other results as well. 

5 >As is clear from the derivation [see in particular expres
sion (7)] the indicated properties of the function U(w) also per
sist if s is replaced by a complex vector a (in which case, of 
course, SiSj must be replaced by aia'p. If I Eij I = 0, then the 
system of equations E ijaj = 0 always has a solution aj ,;, 0 for 
which U = 0. It is for this reason that the inequality U ,;, 0 
leads to the condition I Eij I ,;, 0. 

Let us consider now the quadratic form 

{e;i (w, k, B0) -n2 (6ii- s;si)} a;a;. (12) 

Equation (1) is the condition for the vanishing of 
the determinant of this quadratic form. Conse
quently if n2 satisfies Eq. (1) then the form (12) 

for the corresponding vector ai vanishes. But it 
follows from what has been said above that in an 
equilibrium medium and for real k the function U 
=qj(w,k,B0 )aiaj*,:O for w"~O. Moreover, 

* ~ ( oij - sisj )aiaj ~ 0, and therefore the root nz( w, s) 
of equation (1) cannot vanish for w" ~ 0 in the in
dicated cases (equilibrium medium, k real). 

This circumstance has already been noted above, 
but from the properties of the function U ( w ) and 
the form (12) it is also clear that for w" > 0 
n2 ( w, s) takes on positive real values only on a 
certain line running from the point iO to infinity 
(for B0 = 0 or in the absence of spatial dispersion 
this line is the imaginary half -axis ) . 

Further, 

lm n2 (w, s) = 2nx > 0, (J) = w' > 0; 
lm n2 (()), s) < 0, (J) = w' < 0. (13) 

Thus n( w, s) and K( w, s) have the same sign for 
w = w' > 0 K .,: 0 (the wave is damped in an equi
librium medium ) . 

Since the vector k turns out to be complex, the 
inequalities (13) themselves are only proven in the 
absence of spatial dispersion, when U = Eij ( w, B0 )x 
SiSj. In the presence of spatial dispersion the in
equalities (13), mentioned earlier,[ 11 ] may be vio-

lated (this is connected with the circumstance that 
in that case the vector k and the vector of the 
group velocity Vgr = ow/ok may form an obtuse 
angle (see [1!])). 

Let us suppose that ( oij- sisj )~iar > o. It is 
then clear from (12) that the root n2 ( w, s ) is al
ways finite for w" ~ 0, because the functions 
Eij ( w, k, B0 ) have no singularities in that region 
of w. The case ( oij- sisj )aiar = o corresponds 
to strictly longitudinal waves for which the elec
tric field is E = Es. At that either the induction 
D = 0, which is possible only if I Eij I = 0, or 
n2 - 0 and EijSiSj = 0 (see [3J). Since these re
quirements are not fulfilled under the conditions 
being discussed, it can be said that under these 
conditions n2 is always finite for u;" :=::: 0. This 
can also be seen from Eq. (1) since EijSiSj is the 
coefficient of n4. 

2. The possibility of writing dispersion rela
tions for the roots nz = (nz + iK[ ) 2 of Eq. (1) is 
obviously related to the analytic properties of the 
functions n2( w, s) for w" :=::: 0. If in that region a 
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given root has no singular points (in particular, 
branch points) then we have, making use of Eq. (5c), 

co 
= .i_ 5 xn 1 (x) x 1 (x) n7 (w) - x7 (w) - 1 - dx, Jt x2- w2 

0 

co 2 9 

2nz(w) Xz (w) = - 2: ~ nz (x);:: ~ ~; -i dx. (14) 

0 

For brevity we have left out here the argument s 
in nz ( w' s); we have also assumed that nz ( 00) = 1 
and nz ( 0) K[ ( 0) = 0, however the result can be gen
eralized without difficulty to the case when n1 ( 00) 

= n~ < oo and nz(w) Kzrw) = A/w, A< oo (for w 
-0). 6> Under the conditions when n1( w) "" 0 for 
w" > 0 (see above) one may just as well write dis
persion relations not for n2 but for n. 

We consider the case when spatial dispersion 
is absent, or, more precisely, when it can be neg
lected so that one may set Eij = Eij ( w, B0 ). In that 
case Eq. (1) is quadratic with respect to li 2. Since 
E ij ( 00 ) = Oij it is clear that n1 ( oo ) = 1. Further, 
as shown above, for an equilibrium medium the 
roots n2 ( w ) become nowhere infinite -neither in 
the upper half -plane nor on the real axis of the 
variable w. It thus remains to clarify whether 
the functions ~2 ( w) might not have branch points 
corresponding to multiple roots. For that purpose 
it is most convenient to write Eq. (1) in terms of 
the inverse tensor Ei/ = 11ij. In view of the condi
tion siDi = 0 (here D is the induction; see [3,7]) 

in a coordinate system in which the z axis is 
chosen along the direction of s Eq. (1) has the 
form (m 2 = 1/n2; below i, j = 1, 2 and we are 
dealing with a two -dimensional tensor 11ij ) 

Consequently the condition for the existence of a 
multiple root is 

6 >The problem of dispersion relations for the velocities of 
propagation of normal acoustic waves u is posed in the same 
way as the problem of dispersion relations for n2 • However pre
viously[•] only the case of an isotropic medium has been con
sidered, so that right away dispersion relations were discussed 
for il', and not for the components of the elastic modulus tensor 
Aijlm· But in the anisotropic case one must start precisely with 
dispersion relations for Aij lm· Spatial dispersion plays a 
smaller part in acoustics["] than in electrodynamics, and in 
this respect the acoustic case is simpler. But the necessity of 
separately discussing the high frequency region makes the 
acoustic problem on the whole more complicated. 

(16) 

If the matrix 77ij (for i, j = 1, 2 ) is put into di
agonal form then a multiple root is possible only 
in the case of degeneracy (i.e., in the case of co
incidence of the eigenvalues 771 = 77 2 ) • The wave 
equation has in that case two independent solutions 
of the type exp [ i( k • r - wt )] (two normal waves), 
that differ in polarization. Such a situation occurs, 
for example, in an isotropic medium. If instead 
the matrix 11ij does not reduce to diagonal form 
then a significant multiple root may appear (below, 
when speaking of multiple roots, we have in mind 
precisely this case when the matrix 11ij has just 
one eigenvector and, therefore, it is not sufficient 
to consider only solutions of the type E = E 0 x 
exp [ i ( k • r - wt ) ] ; along with these solutions one 
also has solutions of the type E = E 0( s, r) x 
exp [i(k·r- wt)); see [3,14,15]). 

Let us write 77ij in the form 77ij = 11ij ~ i77[j, 
where 11b and 11i'j are hermitian tensors. It is 
clear that a significant multiple root can occur 
only in the case when the principal axes of the 
tensors 11ij and 11i'j do not coincide. For crystals 
for B0 = 0 such a possibility exists only in the case 
of triclinic, monoclinic and rhombic symmetries, 
because for higher symmetries the principal axes 
of the tensors 11b and 11i'j coincide (or else their 
choice does not matter because of degeneracy ) . 
In addition, in the absence of optical activity (for 
Bo == 0) Eij ( w ) = E ji ( w ) and, consequently, the ten
sors Elj and E[j are real (the same is true of 
11ij and 11fj ) . One may therefore choose the co or
dinate axes in such a way that the tensor 77lj is 
diagonal (7711 = 77t• 1122 = 112). We then obtain from 
(16) 

(17) 

A similar possibility, as is known, [14 • 15] can occur 
(the case of singular optical axes) for a real fre
quency w and also, apparently. for a frequency in 
the upper halfplane. 

If the medium is optically active as a result of 
the presence of a magnetic field B0 (magneto-active 
medium), Eij(w, B0 ) = Eji(w, -B0 ) and for a given 
B0 the hermitian tensors E{j and E[j should not be 
real. The most interesting and important example 
of such a medium is that of a plasma in a magnetic 
field. In that case, in the so-called elementary 
theory approximation, the tensor E ij ( w ) has the 
form (the z axis is taken along the direction of 
the external magnetic field Ho == B0; see [16 ]) 
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The solution of Eq. (1) with such a tensor Eij gives rise to two roots: 

~~ 1 2v (1 +is- v) . 

nu = -2 (1 +is) (1 +is- v)- usin2 ct ± V u•sin4 ct + 4u (1 + is-v)2 cos'CJ' (19) 

where v is the effective number of collisions and 
a is the angle between s and H0. It is clear that 
we have a double root if u sin4 a + 4( 1 +is -v )2 x 

cos2 a = 0, i.e., for 

wk. 1, 2 = - i (v - vJ/2 ± V w~ - (v - vk)2/4, 

wk. 8, 4 = - i (v + vk)/2 ± v· w~ - (v + vJ2/4, 

vk=wHsin2 a/21cosal. (20) 

For v = Vk the multiple roots lie at the points 
w k 1 2 = ± w0 and Wk 3 4 = - iv ± ( w02 - v2k) 112• If in-

'' ' ' stead v > vk then all the points wk lie in the lower 
half-plane. Therefore for v ~ Vk the dispersion 
relations (14) should be valid for both roots lit and 
n~ [ (see 20); the appearance of a branch point on 
the real axis, which occurs for v = vk, changes 
nothing). 

On the other hand when v < Vk the points Wk, 1,2 

lie in the upper half-plane. 7> Under such conditions 
the dispersion relations in the form (14) are, gen
erally speaking, not valid. One can, of course, 
write analogous relations if one integrates along 
a contour that excludes the points Wk in the upper 
half -plane. For a known function E ij ( w ) or n2 ( w ) 
this can be done, but in that case the dispersion 
relations themselves are not needed. On the other 
hand we see no possibility of estimating from some 
sort of general considerations what the contribution 
might be of the integral along the contour L en
closing the roots w k (see, for example, the figure 
which depicts the case when in (20) v < Vk, w0 

> (1'-Vk)/2). And to perform a measurement of 
Eij ( w, B0 ) or n 2 ( w ) for complex frequencies w 
= w' + iw 11 , w 11 > 0, although possible in principle 
[it is necessary to utilize a field E = E 0 exp ( W 11t )x 
exp ( - iw 't) or, more precisely, a pulse whose 
form in a certain interval is close to the indicated 
one], is hardly likely in the interesting cases. 

In the presence of spatial dispersion Eq. (1) 
may have all kinds of roots nz with all sorts of 
singularities; this depends on the character of the 
dependence of the function Eij(w,wn(w,s)s/c) on 
the argument n( w, s ). For this reason the rela
tions (14) are in the presence of spatial dispersion 
generally speaking, not valid. They may however 

7 >The location of the points Wk, 1, 2 plays a signific<J.nt role 
in the study of the "triplication" effect of signals reflected by 
the ionosphere (see ['•], sec. 28). 

be fully valid if the circumstances happen to be 
such that the root n} ( w, s ) under consideration 
has no singularities in the upper half of the w 
plane. This is the case, in particular, when the 
spatial dispersion is weak and one is dealing with 
the "ordinary" roots n2, which are present also 
when spatial dispersion is ignored. 

Let us consider, for example, an isotropic non
gyrotropic medium, for which 

Bij (w, ks) = Etr (w, k) (6;j - S;Sj) + Ez (w, k) S;Sj, 

(21) 
n}_ = Etr (w, wii.l {w)/c), ez (w, wii 11 (w)/c) = 0, 

where nl and nil are the indices of refraction for 
respectively transverse and longitudinal waves. 
When spatial dispersion is neglected Etr ( w, 0) 
= Ez( w, 0) = E( w ). Let us suppose now that at all 
frequencies one may set Etr ( w, k) = E( w ) 

~2 ~2 
+a( w) n1 ( w ), a < 1, and, consequently, n1 ( w) 
= dw)/(1-a(w)). It is obvious that in this case 
the dispersion relations (14) for ni are valid. B) 

In the special case of the roots ni ( w ) for an 
isotropic medium (or also for an anisotropic me
dium provided that one is dealing with the propa
gation of transverse waves along certain symme
try axes) one may arrive at the relations (14) also 
in a somewhat different way. Namely in an iso
tropic medium [see (4) and (21); E' = Re E, E 11 

= Im E) 

+oo " 
' { k) - 1 = __!_ C etr (x, k) d 

etr w, n j x- w x, 
-00 

+oo ' 

e~r (w, k) =- ~ ~ etr (:,~)w- 1 dx. (22) 
-co 

8 lThe conclusion on the validity of the dispersion relation 
(14) for the ordinary root n2 in an isotropic medium with weak 
spatial dispersion taken into account has been previously 
reached by DavydovJ•] We note that Davydov is wrong when 
he remarks that absorption was not taken into account in the 
article of one of the authorsJ' 7] In fact in [' 7], and then in 
more detail in ['], the substantial role of absorption in the 
consideration of effects of spatial dispersion near the line of 
exciton absorption 'is especially emphasized (see [' 7], p. 
1598). Also there [' 7 ] the frequency region where absorption 
becomes relatively weak is estimated, and only graphs of the 
function n2 , of illustrative character, are given in the case 
when absorption is negligible. 
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These relations are, of course, valid in the special 
case when one is dealing with wave propagation, 
i.e., k= wnl(w)/c. 

Let us consider now 

+co _, _.....,. 

g e1r (x, wn .L (w)fc)- e1r (.c, xn .L (x)fc) 
~----~--~~~--~~---dx. 

x-w 
-ex> 

If Etr(X, xnl(x)/c) has no singularities for Im X 
> 0 (on the real axis Etr may have only integrable 
singularities ) and 

[Btr (x, wii.L (w)/c)- Btr (x, xii.L (x)/c)]--+ 0 as x--+ oo, 

then the indicated integral vanishes. We now take 
into account the fact that (for real w ) n 1 ( w ) 
= n{(- w ), which fact is clear from (5c) and was 
already used in deriving the relations (14). It is 
then easy to transform (22) to the form (14) with 
nz ( w ) = n1 ( w). The possibility of violation of re
lations (14) for some ("extraordinary") root of 

~2 ~ I the equation n1 = Etr(w, wn1 c), as is clear from 
what has been said above, is due only to the fact 
that for the corresponding values of k the function 
Etr ( w, k) either does not exist or has singularities 
as a function of k. 

And so the center of gravity of the question of 
dispersion relations for nl( w, s) lies in the region 
of analysis of the concrete form of this function. 

Violation of relations (14) for a given root 
nl ( w' s ) indicates the appearance for that root of 
singularities in the upper halfplane or on the real 
axis. For triclinic, monoclinic and rhombic crys
tals, and also for magneto-active plasmas, in a 
state of thermodynamic equilibrium, the singularity 
of n2 ( w, s ) may be a multiple root with wk > 0, 
which already appears in the absence of spatial 
dispersion. For crystals with higher symmetries, 
however, (and also for the indicated media under 
conditions when the multiple root in the absence 
of spatial dispersion plays no role or is absent) 

violation of relations (14) for an equilibrium me
dium may be due only to the effects of spatial dis
persion. Since this dispersion in optics is weak, [3 ] 

it appears to be, generally speaking, possible to 
clarify the dependence of Eij on k, at least in that 
region of variation of the variables that corre-

~2 
sponds to the ordinary roots nz . Consequently the 
analysis of the question of dispersion relations and 
their utilization within certain limits is possible 
and of value also in the presence of spatial dis
persion. 
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