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Resonance interaction of radiation with a medium as determined by collective processes is 
considered. It is shown that for small radiation energies the interaction results in a modu­
lation of the electromagnetic field. The de-excitation time of the non-equilibrium medium 
due to collective processes is also determined. 

THE resonance interaction of radiation with a 
medium is usually described with the help of the 
dielectric permittivity £. This refers also to the 
case of a medium with negative absorption coeffi­
cient, where £, averaged over the oscillation 
frequency of the field, depends on the field energy 
as on a parameter. [i, 2J In calculating the reaction 
of the medium to the radiation (transition proba­
bilities) it is assumed that the time dependence of 
the electromagnetic field is given by eiwt with a 
constant field amplitude. This approximation is 
justified, however, only for a strong electromag­
netic field when the energy of em iss ion is large 
compared to the excitation energy of the medium, 
i.e., when 

( 1) 

Here w 0 is the transition frequency, N the den­
sity of atoms in the states between which the 
transition takes place, and c = n = 1. In the oppo­
site case, y;::, 1, the change of the radiation en­
ergy during the interaction with the medium must 
be taken into account. In this case it is no longer 
possible to obtain a closed expression for £, and 
one must consider a self-consistent solution of 
Maxwell's equations and the equations of motion 
for the medium. In the present paper such a solu­
tion is found (in a number of special cases) for 
arbitrary y. 

For small radiation energies the interaction 
with the medium leads to a modulation of the field 
amplitude with a characteristic frequency S1 [see 
formula ( 11) below]. It is clear that consideration 
of this effect is meaningful only for a medium with 
sufficiently weak absorption, 

(2) 

where T is the characteristic relaxation time. 
The condition y ;::, 1 and (2) define thus the range 

of parameters within which collective processes 
in the medium may become of importance. 

In general, the proposed problem is rather 
complicated. To simplify the calculations, we 
shall therefore assume that ( 1) the medium is in­
finite and sufficiently rarefied, so that S1 « w 0, 

(2) the medium represents a two-level system, 
and ( 3) there is no dissipation in the medium ( T 

= oo). The last condition implies that we are in­
terested in the behavior of the medium and of the 
electromagnetic field during times small com­
pared with T. Treated in this way, the problem 
reduces to the consideration of the behavior in 
time of the electromagnetic field, given its initial 
value. 

In Sec. 2 we consider the case where the elec­
tromagnetic field is a plane wave. In Sec. 3 we 
compute the de-excitation time of the excited 
medium for y « 1. 

1. As usual, we shall describe the behavior of 
the medium with the help of the density matrix 
Pmn- The basic equation for Pmn and the Maxwell 
equations have the form 

iOPmn I ot = (t) mnPmn + 2J (EDmlPln- PmlEDzn)' l 
(3) 

(4) 

where Dmn is the dipole moment between the 
states m and n; ( ... ) means averaging over all 
possible orientations of the atoms. 

We shall seek the electromagnetic field in the 
form of a superposition of plane waves with a 
slowly time dependent amplitude, 

where ek is the unit polarization vector. By a 
slow time dependence of the amplitude we mean 

Ek (t) ~wkEk(t), u>~.: = \ k I· 
130 

(5) 
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A criterion for slowness will be given further 

below. 
Let us introduce the following notation 

, ( ) • "' ( ) d -i (wkt+kr) 
P22- Pn ="' t , P12 = P21 = LJ Pk t ek e 

k (6) 
Dl2 = D21 = dD, I d I= 1. 

Assuming that D11 = D22 = 0 and averaging (3) and 
(4) over the high-frequency oscillations with fre­
quency Wk ~ w 0 and over the space oscillations, 
we obtain a system of equations for the separate 
harmonics ( Ok = Wk - w0): 

In averaging over the orientations of the atoms 
we have made the approximation ( Pk I ekd 12 ) 

(7) 

( 8) 

(9) 

~ ( 1/ 3 ) Pk· The average value symbol around A. 
and Pk has been omitted in (7) to (9) for brevity, 
as will also be done in what follows. 

Equations (7) to (9) have the following first in­
tegral: 

( 10) 

This is an adiabatic invariant of the problem under 
consideration. However, in the sum of this last 
expression only the resonance harmonics are im­
portant, for which the frequency difference is 
small ( ok « w0 ). Therefore, (10) practically 
coincides with the energy integral, i.e., the energy 
stored in the medium and the energy of the field 
are conserved in the sum: 

A (t)Nro0 +E2 (t) I 4rt = const, I A, I< 1. ( 10') 

Eliminating Pk ( t) from ( 8) and (9), we find 

Ek + i6kEk- A (t) Q~Ek = 0, Q~ = 2/ 3 rtND2rok. ( 11) 

We note that the characteristic value of Qk in the 
optical region is Qk ~ wkv' Na 3, where a is the 
linear dimension of the atom. Thus the slowness 
condition for the change of the field amplitude, 
Qk « Wk, becomes Na 3 « 1 (''gas approxima­
tion"). 

2. Let us first consider the case where the 
field contains only one harmonic. Leaving out the 
index k in (10) and (11) and setting I E 0 i2/2rrNw 0 

= y 0, we have the equation 

E+ i6E- [A,0 +2y0 (1-IE/E0 12)] Q2E= 0. (12) 

As initial conditions for E ( t) we take the follow­
ing E(O)=E0 and E(O)=p(O)=O, i.e., the 
medium is initially in a mixed state. Noting that 

( 12) is equivalent to the equation of motion for a 
nonlinear oscillator in a magnetic field, we find 
in virtue of the conservation laws for the general­
ized angular momentum and energy 

d argE!d( = 1/lJ (1-I-1), 

(di/dt) 2 + 4Q2 (I- 1) !rof2 

- (yo+ A0 - 62/4Q 2) I- o2/4Q2 ] = 0, 

where I ( t) = IE ( t )/E 0 
1
2 is the dimensionless 

field energy. 

( 13) 

( 14) 

The roots of the second term on the left-hand 
side of ( 14) are 

I± = ~ {Yo + Ao - ( 2~ t ± [ (Yo + Ao - :~2 t + ~~~2 rl 
(15) 

Since I± ~ 0, the field energy I ( t) oscillates 
periodically between 1 and I+. As is seen from 
(15), I:e ~ 1 for 11. 0 ~ 0. The case 11. 0 < 0 corre­
sponds to the equilibrium state of the medium, 
while f.. 0 > 0 corresponds to a non-equilibrium 
state (inverted state): at the initial moment there 
are more particles on the upper level than on the 
lower one. Thus the electromagnetic energy de­
creases (increases) as a result of the interaction 
with a medium in equilibrium (not in equilibrium). 

Let us consider some limiting cases. If the 
radiation energy is small, 'Yo « 1, and the 
medium is in equilibrium, 11.0 < 0, then we find 
approximately from ( 13) and ( 14) 

A (t) = A0 { 1 + I Ao I ~0 821Q2 sin2 at} , 

I (t) = cos2 at + x2 sin2 at, 

argE (t) = argE0 + ~ [t- ct~ tan- 1(x tan at)]; 

( 16) 

In this case the population of the levels changes 
slightly under the influence of the radiation. At 
precise resonance ( o = 0) the field energy I ( t) 
oscillates between 0 and 1; far from the reso­
nance ( o » 2 ~ Q ) the field energy is con­
stant. 

If the medium was initially in a non-equilibrium 
state ( 11. 0 > 0) and the intensity of the radiation is 
small ('Yo « 11. 0 ), then the maximal energy of the 
field I+ as a function of the frequency difference 
is approximately given by 

( 
Ao/io- 62/4Q2jo, 8 < 2 V ~ Q, 

I+ = Vl.o/io, 6 = 2 "V"X;; Q, 

62!(62 - 4Q2/.o) 6 > 2 VX";;" Q. 

( 18) 
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As should be expected, the oscillations become 
essentially nonlinear for sufficiently small fre­
quency differences. The expression for the oscil­
lation period t 0 for o = 0 and Yo « Ao is 

I+ 
t = _1_ \ dl """'In (4A.0/io) • ( 19) 
o yt;;g 1 VI<I-1)(I+-I)- VA.oQ 

We further note the special case o = 0 and Yo 

= I Ao I. Ao < 0. Integrating ( 14), we find 

t.. (t) = 1 t..0 1 (1-2 ch-2 (f Q VI t..0 1 t)J, (20)* 

(21) 

This solution can be interpreted as the "spon­
taneous" radiation from a non-equilibrium medium 
[A ( - oo) > 0 1 and absorption by a medium in 
equilibrium [A ( 0) < 01 separated (in time) by the 
electromagnetic pulse. The period of the pulse is 
oforder (~Q)-1 . 

Finally, in the case of a strong electromagnetic 
field (Yo » 1, o » Q, N- 0) we obtain from (14) 
and (10) the known result of the "single particle" 
approximation [3] averaged over the orientations 
of the atoms: 

_ [ 21 EOD 12 ( t -. r------)] 
A. (t) - A.o 1 - I EoD I' + 3112/4 sin2 2 y ~2 + 4- I Eo D 12 ' 

(22) 

I ( ) - 1 + 2rtrooA.oN . 2 ( t -. r -"2 + 4 I EO" 12) 
t - 1 E" 1• + 3os;4D2 sm 2 r u 3 :v • (23) 

3. In this section we discuss the spontaneous 
radiation from a non-equilibrium medium. In the 
"single particle" approximation ( y » 1) the 
solution of this problem is well known. It is of 
interest to consider the other limiting case, when 
the de-excitation process is determined by the 
vibrational properties of the medium, i.e., 
y « 1. The characteristic feature of this case is 
that the radiation which starts out as spontaneous, 
quickly goes over into stimulated emission owing 
to the large density of atoms in the medium. 

Thus let us assume that at t = 0 the medium is 
in the non-equilibrium state ( A.0 > 0); the electro-

*ch =cosh. 

magnetic field is a random quantity, where the 
energy of the resonance harmonics, for which 
I Ok I < 5onk, is small compared to the excitation 
energy of the medium. Setting A= Ao in (11), we 
may obtain the energy of the resonance harmonics 
at the initial stage of the increase of the radiation: 

!Ek(t)j2 ~+1E&I2 exp[tQk V 21.. 0 - f(~k/Qk)2]. (24) 

Here it is assumed that the exponential is large. 
Let us now determine the time for the transi­

tion of the medium into the equilibrium state, ti. 
It is natural to assume that for t = ti the radiation 
energy becomes equal to the excitation energy of 
the medium at t = 0, i.e., ,\ ( ti) = 0. Computing 
the sum in (10) by the method of steepest descent, 
we obtain with logarithmic accuracy 

ti=lnA/V2A.0Q, A=V~Niw0Q0 2J IE&/2 • (25) 
[k[=oo, 

The summation in (25) goes over a sphere of 
radius w0. The last expression is only valid for 
A»l. 

If the initial electromagnetic field is given by 
the zero order vacuum ·oscillations ( / E~ /2 

~ I k I), ti is approximately determined as 

(26) 

in the optical range. 
In conclusion we note that the condition for the 

applicability of (25) and (26) in a realistic situa­
tion, where the dissipation is finite, is, of course, 
ti « T. 

The authors thank V. L. Pokrovskil for a useful 
discussion. 
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