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The effective-mass anisotropy of majority current carriers in aluminum is derived from a 
study of cyclotron resonance in the three principal crystallographic planes. By comparing 
the experimental results with calculations performed on an electronic computer for the 
nearly-free-electron model it was possible to indicate the electron orbits for almost all ex
perimentally observed effective masses and to demonstrate their good agreement with the 
chosen Fermi surface model. The anisotropy of experimental cross-section areas measure
able from the de Haas-van Alphen effect was also calculated. 

INTRODUCTION 

A detailed study of the anisotropy of small effec
tive masses in aluminum [t] has shown that Harri
son's model of the Fermi surface for the third 
zone provides a fairly adequate interpretation of 
experimental observations. Still better agreement 
of the model with experiment can be expected for 
the Fermi surface in the second zone, which is 
shown in Fig. 1, where the lattice potential should 
have a smaller influence. 

Galkin et al. [2] have attempted to interpret 
qualitatively the anisotropy of large effective 
masses in aluminum for the (001) plane using 
Harrison's model for the Fermi hole surface in 
the second zone. However, the complexity of the 
resonance spectra and the geometry of the model 
itself in some instances prevented a unique identi
fication of resonance orbits. The effective mass 
~ 0.8 m 0 was incorrectly interpreted as the mass 
in the central section. 

In order to obtain a more reliable interpreta
tion of the experimental effective masses we have 
performed a detailed calculation of all possible 
resonance orbits on the model of "nearly free 
electrons," using an M-20 electronic computer. 
We thus derived the dependence of the effective 
masses m* and cross-section areas S on kH for 
all directions of the magnetic field H in the three 
principal crystallographic planes ( 00 1), ( 110), and 
(111). 

The effective mass was defined as the sum of 
all angles at which orbital segments are visible 
from the corresponding centers, divided by 27T. 
This definition of the effective mass [a] is based 
on the fact that if the Fermi surface is repre-

FIG. 1. Model of Fermi 
surface in the second zone 
(a pocket of holes) of 
aluminum. 

sented as a sphere intersected by Bragg planes, 
then under the influence of a magnetic field the 
projection of an electron on the plane kH = const 
will move with constant angular velocity, per
forming finite jumps at intersections of the orbit 
with the Bragg planes. If it is assumed that the 
mass associated with the sphere in the absence of 
Bragg reflections is m 0, then the sum of all 
angles at which orbital segments are visible, 
divided by 27T, gives the effective mass in units of 
mo. 

This definition of the effective mass can be ap
plied to the case of a reduced zone. Since in this 
case the orbit consists of segments which are 
circular arcs, the effective mass in a given cross 
section can be determined if we know the angles 
at which these orbits are visible from the centers 
of the respective circles. 

Our problem was formulated as follows. Since 
aluminum has a face-centered cubic lattice, it has 
a body-centered cubic reciprocal lattice with the 
edge length 2 ( 21r/a ), a being the lattice constant. 
Free-electron spheres are centered on the ver
tices of the cube and on the centers of neighboring 
cubes (for the second zone). The radius of each 
of these 14 spheres for aluminum is 
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Here n is the number of electrons in the unit cell; 
for aluminum n = 12 because each unit cell of the 
trivalent metal contains four atoms. 

In order to determine the required orbital 
parameters we found the intersection points of the 
circles lying in the plane kH = const. For this 
purpose the computer solved simultaneously the 
equations of the spheres and of the planes kH 
= const. The parameter kH was varied in steps of 
0.01 x ( 21r/a) up to values for which multiply 
connected regions began to appear in the cross 
section. No simple and reliable algorithm could 
be found for large kH. 

For the resultant polygonal figure in the plane 
kH = const the area and effective mass were de
termined as functions of kH for a given direction 
of H. The angle e defining the direction of H at 
which the calculation was performed was varied 
in 2.5° steps, thus covering, when symmetry is 
taken into account, the entire required angular 
region for the given crystallographic plane. 

Since the calculated dependence of the effective 
mass on kH varied greatly as the angle · e was 
changed, it was desirable to estimate the magni
tude of resonance for the different oro its. The 
amplitude and width of resonance, all other con
ditions remaining identical, are determined by the 

sharpness of the effective-mass extremum, i.e., 
by the rate at which m* changes with kH. At the 
extremum we have 

m' (kH) = m' (k~) + (11kH)2 ./J2m*(kH)/ok'Jr, 

where k~ is the value of kH at which the ex
tremum of m * is reached. The quantity 

82m* (kH) 1 Mn' (kH) 1 
-~-- ----.---:cc- = -------

ok'Jr m' (k~) m' (kH) (Mu)2 

will characterize the possible resonance intensity, 
since the sharper the extremum, the smaller the 
number of conduction electrons contributing to the 
resonance. Since ~kH was everywhere identical, 
the characteristic of resonance was taken to be 
.6.m*/m* corresponding to the interval ~kH. 

Another important characteristic of the reso
nance orbits is the mean drift velocity per period 
of electrons along a magnetic field H: 

Vu = (1i/2rr.m*) as (kH) (okH. 

The calculation showed that the areal extremum 
does not, as a rule, coincide with the mass ex
tremum (except for orbits with kH = 0). There
fore a knowledge of vH is essential for a com
parison with experiment. When a sample has a 
"bad" surface and H is somewhat inclined to the 
surface, resonance in orbits with high drift ve-

FIG. 2. Calculated angular dependences of extremal 
effective masses for Fermi surface (of pocket of holes) 
of aluminum in the three crystallographic planes (110), 
(001), and (111). Heavy lines-effective "'mass in the 
central section; dashed lines-effective masses with 
low probability of resonance; letters denote resonances 
in different orbits. 

FIG. 3. Calculated angular dependences of extremal 
cross-sectional areas for Fermi surface (of pocket of 
holes) of aluminum in the three crystallographic planes 
(110), (001), and (111). Heavy curves-areas of central 
sections. 
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locity will be strongly reduced (electrons move 
quickly into the interior of the metal) or even 
disappear. 

Since the computer derived discrete values of 
the function S ( kH) at intervals &H, vH was 
computed as ( n/27Tm* ).6.8/ &H for k~, where the 
effective mass either had an extremum or varied 
only slightly with changes of kH· 

Figures 2 and 3 show the calculated angular 
dependences of effective masses and cross-section 
areas for the three planes (110), (001), and (111) 
(from right to left). The experimental data and 
calculations will now be considered separately for 
each plane. 

EXPERIMENTAL DATA AND THEIR 
INTERPRETATION 

( 001) plane. We shall first consider briefly the 
behavior of the effective masses in the nearly
free-electron model. Figure 4 represents the cal
culated dependence of the masses on kH for cer
tain directions of H. For (} = oo, which is the 
case of H II [100J, the effective mass, viewed 
rigorously, has an extremum only in the central 
section. However, for kH = 0.47 k 0 and 0.9 ko, 
although the derivative Bm*/BkH does not vanish, 
the variation of the mass is so slight that the 
probability of a very sharp resonance is great. 
When it is also considered that under the influence 
of the lattice potential sharp corners of the Fermi 
surface must be rounded off, an extremum of the 
mass can also be expected on these orbits. 

It is interesting that the effective mass in the 
central section at (} = 0° is maximal, but that with 
a small departure of H from this direction it be
comes minimal. The separation of the extrema 
increases gradually with the angle 8, and the 
corresponding masses differ greatly. An increase 
of (} also impairs the conditions for realizing 
resonance in the cases of orbits E and M at 
kH ~ 0.9 k 0 and ~ 0.47 k 0, respectively. 

A very distinctive mass distribution arises 
when (} = 25°. At this angle the mass again be
comes maximal for kH = 0, and minimal for kH 
= 0.15 k 0• In addition, on a large broad maximum 
the mass can exhibit both a minimum and a maxi
mum. It is then not at all clear whether resonance 
can be resolved on these orbits or will be observed 
as a single broad line. Jumps of the mass, which 
are observed in the region kH ~ 0.65 k 0, evidently 
do not yield a perceptible resonance because of 
their sharpness. 

With further variation of (} the mass minimum 
B for kH ~ 0.15 k 0 again disappears; at kH = 0 a , 

FIG. 4. Effective mass as a 
function of kH for certain direc
tions of the magnetic field H in 
the (001) plane. The angle be
tween H and [100] axis is de
noted at the end of each curve; 
the letters denote the extrema 
corresponding to the effective 
masses in Fig. 2. 

FIG. 5. Cross-section 
area as a function of kH 
for certain directions of H 
in the (001) plane. The 
angle between H and the 
[ 100] axis is denoted at 
the end of each curve. 

s 

at aJ as a7 

minimum is again reached. The broad maximum 
for kH ~ 0.3 k is greatly narrowed and at kH 
~ 0.65 k0 resonance again becomes possible. 

For the cross-section areas, whose dependence 
on kH is shown in Fig. 5, the number of extrema 
is considerably smaller. At (} = 0° an extremum 
(maximum) of S ( kH) is reached only when kH = 0. 
With increasing (} the areal maximum shifts 
towards larger kH; S ( kH ) has a minimum at 
kH = Oo. 

The value of kH at which a maximum of S ( kH) 
occurs coincides with the value of kH where the 
change of the effective mass is practically dis
continuous. 

Figure 6 shows the experimental anisotropy of 
effective masses in the ( 001) plane. All masses 
are seen to be much larger than the calculated 
values. Therefore the orbits can be identified only 
from the anisotropy and amplitude estimates. 

When H is parallel to a fourfold axis only two 
resonances are observed experimentally, with ef
fective masses mi ~ 0.7 m 0 and mi ~ 1.43 m 0. 

These resonances are observed in a very limited 
angle interval; the mass ratio mi/m{ is approxi
mately the same as for the calculated masses E 
and M. We can thus identify orbits associated with 
the indicated experimental masses, and the orbits 
E and M occurring with kH = 0.9 k and 0.47 k 0 • 
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The calculations show that for these orbits when 
e > 7 .5°, .6.m*/m* becomes very large and the 
orbits can hardly be observed at much larger 
angles. 

The fact that in this direction a third resonance 
A in the central section is not observed can be 
accounted for by the result that for the orbit A 
the relative change of mass .6.m*/m* is almost 
one order greater than for E and M. It is inter
esting to note that in the given field direction the 
de Haas-van Alphen oscillations could not be ob
served in extremely high fields, although these 

. h d" t" [4] oscillations were pronounced m ot er tree wns. 
When the field forms an angle of about 7.5° with 

the axis two additional resonances appear with m * 
~ 2.0 m 0 and ~ 2.2 m 0 (designated in Figs. 6 and 
8 by circles and crosses, respectively). The first 
of these resonances is observed steadily near all 
fourfold axes with an amplitude that increases with 
e; the second resonance, which is weaker, is re
produced poorly for similar directions of H. 
Since the surface of the sample was not smoothed 
out for each angle e separately, it is suggested 
that this resonance occurs in an orbit with an 
appreciable drift velocity vH, and that its poor 
reproducibility is associated with the changing 
field angle as the sample is rotated. 

The behavior of these resonances leads to their 
identification with the calculated resonances A 
and C, which correspond to orbits in the central 
section with maximal mass. Indeed, in complete 
agreement with experiment resonance A should 
grow in intensity with e up to ~25°' while the 
effective mass is considerably diminished. Reso
nance C occurs on orbits with VH "'=' 0.6 x 108 

em/sec and its observation may be difficult. 
At e = 25° from the [lOOJ axis an easily ob

served resonance B occurs in addition to A. This 
resonance splitting is characteristically absent 
for the same angle from other fourfold axes, thus 
indicating that the plane of the sample deviates 
from the (001) plane. 

FIG. 6. Experimental anisotropy of effective masses 
in (001) plane. Line without experimental points-calcu
lated mass anisotropy in central section. The letter 
symbols are the same as in Fig. 2. 

The splitting can be accounted for completely 
by considering the dependence of the mass on 
kH (Fig. 4). Ate= 25°, in addition to the extre
mum at kH = 0, a minimum occurs at kH = 0.14 

k 0, at which the mass is somewhat smaller than 
the mass A. The calculation also shows that for 
resonance B, ~m * /m * is considerably smaller 
than for A. This situation is also accompanied by 
a small drift velocity vH:::::: 0.04 x 108 em/sec. 
The mass difference, which is small ( 0.97 and 
0.94 m 0 ) for exact orientation, can be considerably 
increased when the sample is inclined in one 
direction, and decreased for the opposite direction. 
In this case resonances A and B can be resolved 
for identical field directions while they are unre
solved for other similar directions, even without 
taking into account that orbital parameters may 
vary at the same time. 

With regard to resonance F corresponding to 
a minimum of m* at kH = 0.39 k 0, which should 
also be observed at e = 25°, it is not clear, as 
already mentioned, whether this could be observed 
separately from resonance C or whether the two 
resonances cannot be resolved. Since the effective
mass difference between C and F is about 4%, 
the relative width ~H/H > 5% of the observed 
lines suggests that these resonances cannot be re
solved. However, considering that the parameters 
of orbit F are considerably better than those of 
C the oscillation period is most probably deter
mined by the mass F. 

As e continues to increase, the effective mass 
corresponding to resonance A begins to decrease 
sharply, as should occur for a mass in the central 
section; the resonance amplitude, which is weak at 
e = 30°, gradually increases to a maximum at 45 o. 

It should be noted, however, that although the 
amplitude grows, it remains smaller than at 
e ~ 15-20°, although .6.m*/m* should remain 
approximately unchanged according to the calcula
tion. 
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FIG. 7. Experimental anisotropy of effective masses 
in the (110) plane. The letter symbols are the same as 
in Fig. 2. 

~ 
[010 

FIG. 8. Experimental anisotropy of effective masses in the 
(111) plane. The letter symbols are the same as in Fig. 2. 

At e close to 45° three effective masses are 
observed experimentally. The Harrison model 
furnishes a good interpretation of two of these, 
while the third does not follow from the calculation. 
At e = 45° the calculation actually gives three 
masses: A, L; and D corresponding to kH = 0, 
0.33 k0, and 0.69 k 0• Here mass D is somewhat 
larger than A, and the resonance conditions for 
the former can be impaired both by a large value 
vH ~ 108 em/sec and by ~m*/m*""' ( 1-3) x 10- 3 . 

Mass L should be almost twice as large, and may 
be unobservable because of the very sharp maxi
mum ( ~m*/m* ~ 2 x 10-2 ). 

Masses smaller than that in the central section 
are not obtained by calculation, but experiment 
yields ~0.6 m 0, while the mass in the central sec
tion is ~1.3 m 0. This result suggests that the 
mass ~0.6 m 0 pertains to orbits not lying on a 
large Fermi surface. Since the resonance corre
sponding to this mass is very broad and not 
sharply defined, it may represent a logarithmic 
resonance for values of k0 associated with multi
ply connected regions. 

(110) plane. In this plane the behavior of the 
calculated effective masses differs somewhat from 
their behavior in the (001) plane. For example, the 
mass extremum in the central section also splits 
with a deviation from the (100] axis, but the splitting 
results in three, rather than two, extrema. The 
extremum for kH "'· 0 is a maximum up to e = 35o, 
while ~m*fm* decreases as e increases, reach
ing a minimum at e=25°. At35°, ~m*/m* again 
becomes large, but remains smaller than at 
e = o0

• 

Another resolved mass maximum, denoted in 
the figures by C, is very sharp, with some broad
ening in the range e = 15-25°. 

The mass minimum N, which lies between the 
first two maxima, also is accompanied by a large 
value of ~m * /m *, which decreases as e in
creases. At e = 35° it becomes smaller than for 
all other extrema in this section. 

The calculated mass distribution presents a 
very complex picture in the range e = 57.5-80°. 
Here the extrema A and S are accompanied by 
two additional extrema P and Q. In the range 
e = 65-75° the value of ~m*/m* for the latter 
becomes considerably smaller than for the ex
trema A in the central section. At e = 90°, i.e. 
for H II (110], the mass distribution is, of course, 
the same as that already described in the (001) 
plane at e = 45°. 

Let us now consider the behavior of the experi
mental effective masses shown in Fig. 7. For H 
along fourfold axes, as in the (001) plane, the ob
served resonances give the effective masses E 
and M. Ate > 7.5° from the [100] axis, reso
nances E and M disappear, in complete agree
ment with the calculation. Moreover, in this di
rection the mass A is observed, while its aniso
tropy around the fourfold axis differs from the 
calculation. This can be understood from the very 
strong anisotropy of this mass and the deviation 
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of the sample's surface from the crystallographic 
plane. Indeed, if the plane of the sample is some
what inclined toward a fourfold axis, then H can 
never be parallel to this axis, near which the mass 
will then be isotropic. 

For e - 15-35° resonances with the two 
masses A and C are again observed experi
mentally. The anisotropy in this angular range of 
A, which we have assigned to the central section, 
agrees fully with the calculation. Mass C must 
evidently be assigned to a mass maximum in the 
region kH ~ 0.2-0.5 k0• For some reason a 
resonance corresponding to mass N is not ob
served in this range of (}, although the corre
sponding calculated value of ~m*/m* is some
what smaller than for C. The resonance corre
sponding to this mass occurs only in the region 
e ·= 35-40°' where ~m*/m* becomes minimal. 
However, the observed resonances N differ some
what in intensity for [100 1 and [ioo 1 at e = 35°. 
In the first case resonance N is stronger, while 
in the second case the resonance A is stronger, 
although resonance N should be maximal in both 
cases. This difference appears to result from 
inaccurate orientation of the sample. The general 
picture given by the calculation is similar to that 
observed at e = 35-40° from the [100 1 axis for 
exact orientation. 

At the given angles the mass maximum in the 
central section becomes very sharp, whereas the 
minimum N for kH = 0.51 k0 becomes very broad 
and resonance with this mass should be maximal. 
Inexact orientation can, of course, affect this situ
ation. With further increase of e, resonance A 
increases in intensity while the corresponding 
mass diminishes, in full agreement with the cal
culation for the orbit in the central section. 

At e ~ 50-80° experiment reveals some 
resonances which should evidently be identified 
with the calculated effective masses A, P, Q, and 
S. Since the experimental points were obtained 5° 
apart and in a narrow angular interval we ob
serve several close masses differing in aniso
tropy, a given point cannot always be assigned 
uniquely to a particular orbit. However, in the 
given range of (} the observed picture resembles 
the calculated anisotropy in general. Mass R is 
an exception. Although at e ~ 55° the calculation 
gives a mass smaller than in the central section, 
this corresponds to a smooth change of m * as a 
function of kH near values of kH associated with 
multiply connected regions (as for masses E and 
M) and large values of ~m*/m*. It rE)mains pos
sible that when the Fermi surface is somewhat 
deformed around sharp corners such orbits will 

exhibit a smoother dependence of m * on kH and 
resonance can occur. 

As H approaches the [110 1 axis the observed 
resonance pattern becomes similar to that ob
served in the (001) plane. Here also two masses 
A and D are observed, which are confirmed by 
the calculation. 

In addition to the effective masses already con
sidered, in the (110) plane masses ~0.7 m 0 are 
observed at (} ~ 90° and 40°. As in the case of the 
(001) plane, the calculation does not indicate the 
existence of these masses for a large Fermi sur
face. 

(111) plane. For H II [1101 the calculated ef
fective-mass distribution in this plane is the same 
as in the two other planes. When H deviates from 
this direction the mass in the central section must 
increase, while the mass L corresponding to a 
large mass maximum for kH ~ 0.33 k0 decreases 
sharply, with ~m*/m* having considerable mag
nitude up to e = 10°. As in the (001) and (110) 
planes, the effective mass D can be observed in 
a very limited angular range ( e ± 5°). Also, at 
e > 2.5° two mass extrema C and N appear, for 
kH = 0.32 and 0.34 k0, respectively. 

The minimal mass N is associated with an 
appreciable value of .t.m*/m*, which decreases 
as (} increases and at e = 13-15° becomes the 
same as in the central section. For mass C, 
.t.m*/m* also decreases as e increases, becoming 
very small at (} = 25-20°. Near kH = 0 at (} = 20° 
an additional minimum mass B appears with small 
.t.m*/m*, but disappears at e = 25°. In the range 
e = 25-30° we find a mass K corresponding to a 
value of kH near which multiply connected regions 
arise. 

Let us now consider the experimental aniso
tropy of effective masses represented in Fig. 8. 
Here we observe some departure from the 30-
degree symmetry; this is accounted for by the 
5-6° deviation of the sample's surface from the 
(111) plane. Nevertheless, the angular dependences 

. of the effective masses are in good agreement with 
the calculation for an exact orientation. 

For H oriented close to the [110] axis we ob
serve, as expected, a resonance A corresponding 
to an orbit in the central section and a resonance 
with a somewhat larger mass (denoted in Fig. 8 
by black squares), which apparently corresponds 
to mass D. The mass anisotropy of resonance A 
in this angular range agrees very well with the 
calculation. For (} ~ 7.5-12.5° resonance is ob
served with mass ~1.95 m 0, which in all proba
bility corresponds to the calculated resonance L. 

In the range e ~ 20-30° we observe, in addi-
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tion to the resonance A corresponding to the 
central section, two additional resonances with 
smaller effective masses. The anisotropy of the 
smallest mass is very similar to the anisotropy of 
the calculated mass N, although it is not entirely 
clear why the corresponding resonance is not ob
served at e f':j 15°, where ~m*/m* becomes still 
smaller than at e = 30°. This may possibly be 
associated with a considerably larger drift velocity 
along H, which at e = 15° is f':j0.2 x 108 em/sec, 
while at e f':j 30° we have vH f':j 0.07 x 108 em/sec. 

The resonance with the mass ~1.8 m 0 must 
evidently be identified with the calculated reso
nance K. In addition to the described resonances, 
certain other resonances are observed with the 
corresponding masses denoted in Fig. 7 by 
crosses. These resonances are reproduced poorly 
along similar directions of H, possibly as a re
sult of a high drift velocity along H, and evidently 
belong to resonances C. 

CONCLUSION 

The foregoing comparison between the experi
mental angular dependences of large effective 
masses in three crystallographic planes and 
similar calculations based on the nearly-free
electron model has shown their good qualitative 
agreement. Most of the experimentally observed 
effective masses can be identified with the calcu
lated masses and the values of kH for the reso
nance orbits can be given. The good agreement of 
the results not only for orbits with kH = 0 but 
also for other orbits where a mass extremum is 
reached, represents strong confirmation of many 
topological properties of the Fermi surface. 
Cyclotron resonance can thus sometimes furnish 
much more information than the deHaas-van Alphen 
effect, for example. When we compare the aniso-

tropy of calculated effective masses with the cal
culated anisotropy of extremal cross sectional 
areas it becomes clear that the topological proper
ties are much more pronounced and significant in 
connection with the former. This significance ap
pears both in the mass anisotropy and in the large 
number of resonance orbits. 

The agreement with Harrison's model of the 
Fermi surface is only qualitative; the quantitative 
results differ considerably. All the experimental 
effective masses, without exception, are 1.4-1.8 
times larger than the calculated masses, the ratio 
varying with e. For example, ~n the central sec
tion the ratio is ~1.4 for H II (110] and increases 
to 1.8 near fourfold axes. It is interesting that 
this ratio is approximately the same as for the 
small Fermi surface in the third zone. [t] 
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