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A new method for calculation of the effective cross sections for excitation of atoms by elec­
trons is proposed, based on a model in which the atom + electron system can be described 
by a comparatively simple wave function with unseparated variables. The method yields for 
the 1s-2p and 1s-2s transitions in the hydrogen atom results that are in good agreement 
with the experiments. 

1. INTRODUCTION 

As is well known, the simplest method of calcula­
ting the effective cross section for the excitation 
and ionization of atoms by electrons-the Born 
method-gives good results at high electron veloc­
ities. But the Born method is strictly speaking not 
valid in the very region where the cross sections 
usually reach their maxima. Nonetheless, it is ex­
tensively used, since it gives qualitatively sensible 
results, although the maximum of the cross section 
is as a rule exaggerated by a factor of 2 or 3 and 
is shifted towards the lower energies. It must be 
emphasized that this statement is based on the ex­
perimental data which concern only a few transi­
tions from the ground state. There are no reliable 
experimental data at present for transitions be­
tween strongly excited states. Relatively simple 
corrections to the Born approximation, such as 
distortion of the incident and scattered waves, ac­
count of exchange, etc., cannot improve the results 
appreciably. Moreover, in some cases (for exam­
ple in the approximation of distorted waves without 
exchange) the results become worse. 

It is possible to get better results in principle 
by taking into account the effect of the polarization 
of the electron shell of the atom. Here, however, 
difficulties arise in connection with the need of 
taking into account a la1e number of intermediate 
states. Calculations [!,2 show that an account of 
one or two intermediate states is patently insuffi­
cient. 

A general shortcoming of all the methods based 
on expansion of the wave function of a system in 
terms of the unperturbed atomic functions (second 
Born approximation, method of distorted waves, 
etc.) is that what comes to the forefront is actually 
an account of the attraction of the electron by the 

screened nucleus, and no account is taken (in the 
wave functions) of the repulsion of the atomic elec­
tron by the incident electron. Yet, it is just this 
effect which is of primary significance for inelas­
tic collisions. It therefore becomes necessary to 
search for such methods of solving the problem, 
in which the repulsion of the electrons is taken into 
account even in the first approximation, that is, in 
the wave functions. 
. In the present paper we investigate the possibil­

ity of one model, which makes possible description 
of the atom-plus-electron system by means of 
relatively simple wave functions with non-separ­
ated variables. The method proposed has some 
common features with the impulse approximation 
[ 3 J, as will be indicated in detail below. 

2. CALCULATION OF THE EXCITATION CROSS 
SECTIONS WITHOUT ACCOUNT OF EXCHANGE 

Let us consider the simplest case of excitation 
of the hydrogen atom. The exact expression for the 
effective cross section of the transition between 
two arbitrary states, denoted below by the indices 
0 and 1, can be written in the form n 

0' 01 = 4!~0 ~I (ljl~ (rl) e-tk,r,IV I 'l'o (rl, r2))12 dO, (1) 

(2) 

where r 1 and r 2 are the coordinates of the atomic 
and incident electrons, k0 and k1 are the wave 
vectors of the incident and scattered electrons, 
and ..Y0 ( r 1 , r 2 ) is the solution of the Schrodinger 
equation 

1>We use everywhere atomic units with the Rydberg unit 
for the energy, Ry = me4/2h2 • 
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satisfying the boundary condition 

with <Pn the unperturbed atomic functions. 
We write the function "IJ! 0 in the form 

(5) 

In the Born approximation g ( r 1 , r 2 ) = exp ( ik0 · r 2 ). 

In the general case the function g satisfies an 
equation which can be conveniently written, for the 
sake of what follows, in the form 

{.:11 + L\2 + 211r2 + r11- 2/lr2- r11 + k~}g 
= {2/l r2 + r1l - 2/r2 - 2 (v't In c:p0) ~\}g. 

(6) 

We change over to new variables p = (r2 - r 1)/2 
and R = (r2 + r 1)/2, which describe respectively 
the relative motion of the atomic and incident elec­
trons and the motion of their center of inertia 

Q = {liR- 2/IR + p 1- (v't lnc:p0) (V'R lng- V'plng)}. 

(7) 

Equation (7) is exact. We now introduce the 
principal assumption of our method, taking for the 
function g the solution of (7) without the right half. 
The function g will then describe the scattering of 
free electrons by each other and the motion of their 
center of inertia in the field of the nucleus. This, 
properly speaking, is the model which we are us­
ing. Some refinement of the model (introduction of 
an effective charge and allowance for exchange) 
will be considered in later sections. 

The variables R and p can be separated in ( 7) 

without the right half, and a solution satisfying the 
necessary boundary conditions is of the form [4] 

g (R, p) = Neik,(R+P) F (iv, I, ikoR- ik0R) 

x.F(- iv, l, ik0p- ik0p), (8) 

where F stands for the confluent hypergeometric 
function, 

N = r (I - iv) r (I + iv). 

We proceed to calculate the matrix element in 
(1) with the aid of (5) and (8). In the Born approxi­
mation a nonvanishing contribution is made only by 
the first term in (2). We confine ourselves in this 
case also to only this term. Representing 
cp{( r 1 ) cp 0 ( r 1 ) in the form of a Fourier integral 

c:p~(r1) c:po(r 1) = ~<P'(x) e-i><r•dx, 

we obtain for the matrix element in (1) 

J = 4N ~ dscp (q- s) ~ dReisR F ( iv, I, ikoR - ik0R) 

(' / (2q-s) p 

X .\ dp P F (- iv, I, ik0p- ik0p), 

where q = k0 - k 1 . 

(9) 

Inasmuch as the integral with respect to R in­
creases without limit as s - 0 , we replace the 
slowly varying function q1 ( q - s) by q1 ( q). In this 
case, generally speaking, we make an incorrect es­
timate of the contribution made to (9) by the region 
s ~ q, since cp ( 0) = 0. We can show, however, 
that the resultant error is cancelled to some de­
gree by replacement of exp [ i ( 2q - s ) · p] by 
exp [ i ( - 2q - s) · p] . After this replacement, us­
ing the known convolution theorem of Fourier 
transform theory, we obtain 

~ \ e-i2qr 
J = 4Nc:p (q) \ dr -- F (iv, I, ik 0r- ik0r) 

• r 

x.IF (- iv, I, ik0r- ik0r). 

This integral can be calculated exactly by the 
method proposed in Nordsieck's paper [sJ. We 
present the final result 

J = 4~,lt<P (q) F (- iv, iv, I, x); 

k,+kt 

aot = s; ~ r~~ I< I I eiqr I o >12 [f (v, x) 12; (10) 
0 k,-k, 

f (v, x) =ltV Ish ltv)-1 F (- iv, iv, I, x); 

[ qko ]2 [ile + q2 ]2 (11) * 
X = q2 + qk0 = ile + 3q2 ' 

where F is the hypergeometric function and 
C1 e: = k~ - ki is the excitation energy. 

Expression (10) differs from Born's formula in 
the presence of the additional factor [f ( v, s ) ] 2 

under the integral sign. When k0 » 1, the func­
tion f ( v , x) ~ 1 and (10) coincides with the Born 
approximation. When k0 ~ 1, the function f ( v, x) 
can differ appreciably from unity. It is important 
that for all values of the parameters we have 
f ( v , x) :s 1, so that the cross sections are always 
smaller than the Born cross sections. For fixed 
k0 and q- 0 we have f(v, x)- 1. 

The appearance of the factor [ f ( v, x) ] 2 in (10) 
is connected with the fact that we used in the cal­
culations not the plane wave exp (ik0 • r 2 ), but the 
function g, which has an explicit dependence on the 
interelectron distance r 2 - r 1 = 2p. Therefore ex­
pression (10) takes into account, to some degree of 

*sh = sinh. 
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approximation, both the distortion of the incident 
wave and the polarization of the electron shell of 
the atom. 

Inasmuch as f ( v , x) ::; 1, the repulsion of the 
electrons prevails over the attraction of the inci­
dent electron by the nucleus within the framework 
of the given model. In the usual method of distorted 
waves, the situation is reversed, and the cross 
sections exceed the Born cross sections, in direct 
contradiction with experiment. If account is taken 
of polarization effects by perturbation theory 
methods or by solving the system of equations and 
accounting for the strong coupling, it is always 
necessary to confine oneself to a consideration of a 
small number of perturbing levels and as a rule 
these correspond to open scattering channels. An 
account of the closed channels increases the com­
putational difficulties enormously. Within the 
framework of the present method, on the other 
hand, the contribution made to the polarization of 
an infinite number of perturbing levels is taken into 
account in a certain approximation. This is seen 
from the fact that the function '1!0 ( r 1 , r 2 ) , defined 
by (5) and (8), is generally speaking not orthogonal 
to any of the unperturbed atomic functions. 

3. INTRODUCTION OF THE EFFECTIVE CHARGE 

We now consider one of the possible ways of re­
fining g . We take it upon ourselves to reduce as 
much as possible the magnitude of the discarded 
right half of the equation, and to introduce a de­
pendence on the characteristics of the atomic state 
into the function g . This can be done by introduc­
ing into the equation a suitably selected effective 
charge t;. 

We rewrite (7) in the form 

e12 Lh + 1/zl!.p + VR- ~~p + k~}g 
= g/R - 2lJR + pI + (1 - ~)/p 

X = e-Lk, <R+P\ J!. (12) 

The solution of this equation without the right half 
is given by (8) with v = t/k0 . Substituting the so 
defined function g in the right half of (12), we can 
show that for large R and p we have 

I(V 1 In qJ0) V R In X I ~ VBo"~koR + 0 (R-2), 
(13) 

where E 0 is the ionization energy of the state 0 . 
The first terms of the expansion in (13), with 

t = const and k0 - 0, increase without limit. We 
choose t; in such a way as to eliminate this diver-

gence and simultaneously ensure the same order 
of magnitude of all the discarded terms of the 
equation; to this end we stipulate 

(1 - ~)/p = VB;;"slkoP· 

Hence 

~ = k01(ko + yE;;), (14) 

With such a definition of t;, the order of magnitude 
of v- 1 is that of the relative velocity of the elec­
trons for arbitrary values of k0 , corresponding to 
the physical meaning of this quantity. 

4. ACCOUNT OF EXCHANGE 

We now take the exchange effect into considera­
tion. The function g ( R, p) in the approximation 
(8) is symmetrical with respect to the coordinates 
r 1 and r 2 , so that a rearrangement of the coor­
dinates of the electrons in (5) leads to a replace­
ment of c:p 0 (rd and p by c:p 0 (r2 ) and p' = -p. 
As a result, the exchange integral takes the form 

Jexch= 4 ~ ~ dRdp'qJ~ (r 1) e-ik,r, 7(j)o (rz) g (R' p') 

= 4N~ ~ds 1 dsip; (s1) cp0 (s- q -s1) 

x ~ dRetsR F(iv, 1, ik0 R - ikoR) 

\' ei (2k,-s-2s1 ) p' ( 
X Jdp' p' F (- iv, 1, ik 0 p'- ik0p'), 15) 

where <Pi and 'q) 0 are the Fourier transforms of 
the corresponding atomic functions. 

In the approximation in which we calculated the 
integral (9), we can leave out s from the argument 
of the function 'q) 0 • In addition, we leave out the 
term i2s 1 from the argument of the exponential in 
the integral with respect to p' . At large values of 
k 0 , the validity of such a simplification is obvious. 
In the region of small k0 , the role of this term in­
creases, generally speaking, but the order of mag­
nitude of the integral (15) is determined in this 
case by a small normalization factor N. 

Using again the convolution theorem and the 
method of Nordsieck [5J, we obtain 

h _ \ e-izk,r 
;exc = 4N qJ (q) J dr -,- F (iv, 1, ik 0r- ik 0r) 

x F (- iv, 1, ik 0r- ik0r) 

4Nrr.-()F( .. 1 1) =~(j) q - lV, lV, •4. 
0 

(16) 

Recently Ochkur [sJ proposed a method which 
makes it possible, without going outside the frame­
work of the plane-wave approximation, to elimin-
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ate certain shortcomings of the Born-Oppenheimer 
method. In an analogous approximation 
( g = exp [ ik0 • rd), the method used above to 
calculate the integral (15) leads, although in a way 
different than that of Ochkur, to the same results. 
This circumstance seems to us of extreme impor­
tance. We note, however, that the difference be­
tween the exact value of the integral (15) and the 
approximate expression (16) is much smaller than 
the difference between the Born-Oppenheimer and 
the Ochkur formulas. 

Taking exchange into account, the formula for 
the effective cross section assumes the form 

(17) 

= [ l1e+ q2]2 
X l1e + 3q2 • 

(19) 

The function f ( v, x) is determined by ( 11) . In the 
case of the hydrogen atom c+ = 1/4 and c- = 3/4. 

5. DISCUSSION OF THE RESULTS 

With the aid of the formulas obtained we have 
made numerical calculations of the cross sections 
of the transitions 1s-2p, 1s-2s, and 4s-5p. The 
calculations were made with an electronic compu­
ter. We note that the function f ( v, x) is real and 
can be calculated with the aid of the ordinary ser­
ies for the hypergeometrical functions (see [7]). 

Consequently, the presence of a correction multi­
plier in the integrand of (18) does not lead to any 
appreciable complications of the numerical cal­
culations. 

In Fig. 1 are compared the results of the cal­
culations for v = ( k0 + ~) - 1 with and without 
account of the exchange and for v = k0- 1 without 
account of exchange. In Fig. 2 the results of the 
calculations with the aid of (18) ( v = ( k0 + ..JE;)-1) 

of the cross sections of the transitions 1s-2p and 
1s-2s are compared with the experimental data [s, 9J 
and with the results of calculations by other meth­
ods [tJ. As can be seen, the proposed model gives 
in these cases very good agreement with experi­
ment. As regards the transitions between the ex­
cited states, it is seen from the 4s-5p transition 
as an example (Fig. 1c) that this method leads to a 
considerably stronger decrease in the cross sec­
tion compared with the Born method. In addition, 
the similarity between the sections in threshold 
energy units, which is typical for the Born method, 
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FIG. 1. Effective cross sections of the transitions 1s-2p 
(a), 1s-2s (b), and 4s-Sp (c) in the hydrogen atom, calcu­
lated in the following approximations (see the curve): 1- for­
mulas (18) and (14); 2- formulas (10) and (14); 3- formula 
(10); 4- Born approximation with v = k~1 • 
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FIG. 2. Comparison of the calculations of the effective 
cross sections of the transitions 1s-2p (a) and 1s-2s (b) 
with the experimental data: dash-dot curve -Born approxima­
tion, dashed curve- method of distorted waves, soiid curve 
-formulas (18) and (14) of the present paper; the symbol x­
method of strong coupling of three levels 1s-2s-2p.[•] 

is violated. Unfortunately, for transitions of this 
type there are no experimental data. It is therefore 
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not clear to what degree this result corresponds to 
the true state of the matter. 

As can be seen from Fig. 1, an account of ex­
change hardly influences the results. The introduc­
tion of the effective charge (14), as expected, ex­
erts a stronger influence, particularly near the 
excitation threshold. 

As noted earlier, the proposed method has some 
similarity to the impulse approximation. This ap­
proximation is, however, mathematically more 
complicated, owing to the presence of additional 
integration in the momentum space. Finally, 
Akerib and Borowitz [3] describe the motion of 
the electron c.m.s. by means of a plane wave, 
which leads to an incorrect asymptotic wave func­
tion (the appearance of a Coulomb phase shift in 
the incident wave). In principle, this shortcoming 
can be eliminated by replacing the plane wave with 
a Coulomb function, similar to that contained in 
(8). However, even without this complication the 
matrix element of the transition cannot be calcula­
ted exactly. 

The calculation of this matrix element is car­
ried out in [3 ] in an approximation which is hard to 
justify. As a result of these approximations, the 
final formula in [3] reduces to a formula which can 
be obtained exactly in the simplified variant of our 
model, corresponding to a description of the mo­
tion of the c.m.s. of the electron by a plane wave. 
It must be noted that there is an appreciable dis­
crepancy between the final formulas of Akerib and 

Borowitz [3 ] and the presented plots, making it es­
sentially difficult to discuss the results of that 
work 2'. 

2lThe final formulas in L•] contain several misprints, the 
elimination of which leads to no. agreement between the re­
sults of the plots and the formulas. 
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