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The Ke5 decay rates are calculated for the cases of direct interaction and interaction via an 
intermediate YJ meson. The isotopic relations for various charge channels of the reaction 
are considered on the basis of the ~ T = % rule. 

1. INTRODUCTION 

K meson decays are at present the subject of 
much attention. Of particular importance for a 
test of the Sakata model [i] are the leptonic decays 
of the K mesons, Kz: 

K __, n:rt + l + v, (1.1) 

where l stands for the electron or the muon. 
The Kz3 and Kz4 decays have been considered 

in the literature. [2-4] Energy conservation still 
allows for the Ke5 decay, whereas decays with 
larger numbers of 1r mesons and the Kl-!5 decay 
are energetically impossible. In the present paper 
we calculate the Ke5 decay rate. 

Assuming, according to the Sakata model, that 
the leptonic decays of strange particles are due to 
the interaction (pA)(ev) + (Ap)(ve), it can be 
shown that the Kz decays satisfy the selection 
rules [5] 

tl.Q = tl.S = ± 1, tl.T = 1/2, (1.2) 

where ~Q. ~s. and ~T are, respectively, the 
change of the charge, the strangeness, and the iso­
topic spin of the strongly interacting particles. 

2. MATRIX ELEMENT 

In first order in the weak interaction the Ke5 
decay is described by a single Feynman graph 
(Fig. 1), where the bubble A represents the inter­
action of the strongly interacting particles. The 
matrix element for the Ke5 decay can be written 
in the form of a product of the lepton current 
jz = vOe and the current of the strongly interact­
ing particles js = CfJKVcptcp;cp;: 

(2.1) 

where G = 1.01 x 10-5/m2 (m is the nucleon mass) 
is the weak interaction constant, and CfJK• cp 1, cp 2 , 

cp 3 , v, and e are the wave functions of the K 

meson, the three 1r mesons, the neutrino, and the 
electron, respectively. 

According to the V-A theory we have 0 
= Ya( 1 + y5 ). As there exists no theory of strong 
interactions, the vector cannot be determined; 
only its most general form satisfying the require­
ments of relativistic invariance can be given: 

v 0: = /1ql0: + /2q20: + faq3 '.1. + /4QO: + /seO:!J.VO ql!J.q2Vq30 

+ Eo:po Ql'- (f 6q1vq2o + f ?qlvqao + f Bq2vq3)' (2 · 2) 

where Q, q1, q2, and q3 are the four-momenta of 
the K meson and the rr mesons; the functions f 
depend on the various invariants formed from the 
momenta of the strongly interacting particles. In 
a phenomenological theory they are unknown and 
are, as usual, considered to be constants. 

Since the Q value of the reaction is small, the 
orbital angular momenta of the rr mesons will be 
zero, and hence the matrix element must be sym­
metric under the interchange of an arbitrary pair 
of rr mesons. Therefore, we must discard in (2.2) 
all terms except the first four; we assume further 
that f1 = f2 = f3 = f4 = f. Thus we have for the final 
form of the vector V a 

(2.3) 

3. THE Ke 5 DECAY RATE 

For generality, let us consider the decay of a 
K meson into n rr mesons and a lepton pair. The 
differential probability for such a decay is 

dw - (2n)•I)(4)(Q- q- qe-qv)d3qedsqviTn dsqi M 2 

n- 2M (2:rt)3n+62n+2 EeEv . Ei ~ I I ' 
t=l e,v 

(3.1) 

where 

q~ = m2' q; = m';' qe = 0' Q2 = M2. 

Summing over the electron and neutrino polar­
izations, we obtain 
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~I M 12 = 4G2f (2 (q,q) (qvq) - (qeqv) (q2)J. 
e,v 

Using the method developed by one of the au­
thors [G] we can easily reduce the total decay rate 
to a single integral (see the Appendix): 

(3.2) 

where {3 =me /M, a= m/M, and the contour of 
integration goes around the negative real axis in 
the z plane. 

The integral (3.2) is not expressible in terms of 
elementary functions. However, its value can be 
obtained in the relativistic (me '""" 0, m '""" 0) and 
nonrelativistic (me '""" 0, nm '""" M) limits: 

r G2f2nM2n+3 

w n = n2n+l24n+2 r (n + 4) r (n + 2) ' (3.3) 

W~r = a•t•n•M<n-l)/2 (M - nm)<an+7)/2 
2(5n-3)/2n3(n+l)/2 nn/2 r [(3n + 9)/2] (3 .4) 

We further find for the ratio of the Ke4 and Ke 5 
clecay rates 

Wnr 
3 _ (Mfs) 2 f(7,5)(1-3mjM)8 _ 8 

w~r- T 6nV6nf(9)(1-2m/M)6,5 ::::.: 2·5 · 10 . (3.5) 

Since the interaction constants f are made dimen­
sionless with the help of a mass of order M, it is 
clear that the Ke5 is a very rare phenomenon. 

4. Ke5 DECAY VIA THE TJ MESON 

The phenomenological treatment of the graph 
of Fig. 1 given in the preceding section led to a 
very small Ke5 decay rate. However, it might be 
expected that the probability for such a decay via 
the 7) meson, whose mass is close to 3m, will be 
somewhat larger on account of the smallness of 
the denominator of the propagation function. Let 
us, therefore, consider the K meson decay illus­
trated by the graph of Fig. 2. 

The matrix element for this decay has the form 

(4.1) 

where q and J1 are the momentum and the mass of 
the TJ resonance. The denominator in the matrix 
element can be considered constant, since q2 

'""" (3m )2 '""" M2 in the nonrelativistic approximation. 
The decay rate of the K meson can in this case 

be expressed in terms of w~r ( Ke ) : 

W 11 (Kes)IW~r(Kes) = / 2F21/! (f.L2 - M 2)2. (4.2) 

F 

FIG. 1 FIG. 2 
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If we assume that unitary symmetry is not vio­
lated strongly, we can estimate the values of the 
constants f and F. According to the work of Kob­
zarev and Okun', [7] the relation f = f3/3 must 
hold between the constants for the K decay into 
a lepton pair and TJ and 1r mesons, respectively. 
For an estimate of F we use the relation between 
the partial widths r [SJ for 7) - 2y and 7) - 7r + 7ro7r-' 
r(7J- 2y)/r(7J- 7r+7ro7r-) = 1.32, and the connec­
tion between the decay constants for 7) - 2y and 
1r- 2y from unitary symmetry, f1r = f7)/3. 

Finally, we obtain for the ratio (4.2) 

W 11 (!3 y3 )' n2273 y3 
wnr= {sM2 (f12/M2 -1)2 (1- 3m/f1)2 

3 

x ( ~:r(~)3 r<n;2r) ~Io:-s. (4.3) 

Thus the decay of the K meson through the 7) 
resonance cannot increase the probability for the 
Ke5 decay obtained in the preceding section. 

5. ISOTOPIC RELATIONS 

By charge conservation and the selection rules 
(1.2), the following decay channels are allowed for 
the K+ and K0 mesons: 

K+ -no + no + no + e+ + v, (5.1) 
K+- n° + n+ + n- + e+ + v, (5.2) 
K0 - n° + n° + n- + e+ + v, (5.3) 
K 0 - n+ + n- + n- + e+ + v. (5.4) 

The decay rates for these reactions will be denoted 
by W1, W2, W3, and W4, respectively. The decays 
of the K0 and K- mesons are obtained from (5 .1) 

to (5 .4) by charge conjugation. 
The derivation of the isotopic relations is in 

our case the same as in the well known T decay. 
[ 9- 13] Since the isotopic spin of the K meson is 
Y2, the 1r mesons can, according to the ~ T = 1/2 
rule, be in the states with total isotopic spin T = 0 
and T = 1. For a derivation of the isotopic rela­
tions it is convenient to introduce the unphysical 
"spurion" S with T = t;2 and T3 = - %. [2] 

The reactions (5.1) to (5.4) can be regarded as 
processes K +S- 37r which conserve isotopic spin. 
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By the rules of vector addition, the wave functions 
of the initial state can be written in the form 

I K+> = IK+S) == 2-'1• (J1, 0)- JO,O)), 

JKO) = JKOS) = J1, - 1), (5.5) 

where IT, T3 ) denotes the eigenfunction of the op­
erator of the total isotopic spin T2 and its projec­
tion T3 with the eigenvalues T(T+1) and T, re­
spectively. The wave functions of the final states 
can be expressed in terms of the amplitudes a( 0) 
and a( 1) for the transitions of the system between 
the states with given isotopic spin T: 

2-'1'(!1, 0) -JO,O)) __, 2-';, (a (1) J1, 0) -a (0) i 0,0)), 

J1, -1) --->a(1)((1, -1). (5.6) 

Following the work of Berestetski1, [i4J let us 
consider now the charge distribution of the 7l" 

mesons in the states with the isotopic spin 0 and 1. 
The wave function of each of the 7l" mesons is a 
product of the space and spinor parts. The iso­
topic part is a vector in isotopic space which will 
be denoted by 7T in the following. The projection 
of this vector on the coordinate axis corresponds 
to the various charge states of the 7l" meson. 

There is only one wave function for the three 
7l" mesons in the state with T = 0, <P = (7T1> [7!"2, 7Ta])w, 

where w is the space part of the wave function, 
since it is impossible to construct any other scalar 
from the vectors 7T1, 7T2, and 1r3• This wave func­
tion corresponds to the single charge distribution 
1!"+ 7!"07!"-. 

The state with T = 0 is, according to group 
theory, described by two wave functions, corre­
sponding to the two different irreducible represen­
tations of the commutation group: 

where 

C1 = 21Cl (1C21C3) -1C2 (1C11C3) -1C3 (1C11C2), 

e2 = 2n2 (1Ct1C3) -1Ct (n3n2)- 1C3 (1C11C2), 

C3 c= 21C3 (1C21C1) - 1C2 ( 1C31C1) - 1C1 ( 1C21C3) 

and w A and WB are the space parts of the wave 
functions which have the symmetries given by the 
Young schemes A and B of Fig. 3. It follows 
from this that the wave function of the 7l" mesons 
in the state with T = 1 can be represented as 
<P = a<P A + f3<PB, with a 2 + /3 2 = 1. 

Writing the scalar products in (5. 7) explicitly, 
we obtain the following charge distributions: 

11,1) = a [5-'1'2 (n+n+rc) + s-'/, (n+n°n°) I 

+ ~ [2-'', (n+n+n-) + 2-'1'(n+n°n°)l, 

11,0) =a [V2f5(n+n-n°)+ V375 (nonon°)l + ~[n+n-n°l, 

I 1, - 1) = a [5-';, 2 (n-n-n+) + 5-'/•cn-n°n°) l 

+~ [2-'1•(n-n-n+) +2-'l•(n-n°n°)l, 

(5. 8) 

Substituting (5.8) in (5.6), we find for the reaction 
amplitudes 

A 1 = aa(l) V3!10, A 3 = (a!VIO + ~/2)a (1), 

A 2 = (a!VS + ~!V2)a (1) 

. - a(O)/V2, A4 =(a V215 + ~/2)a (1). (5.9) 

The magnitude of the coefficients a and /3 
cannot be determined. But since the kinetic en­
ergy is small, we may assume that all three 7l" 

mesons are in the S state, i.e., that the space part 
of the wave function is symmetric, so that the iso­
topic spin part must also be symmetric. The func­
tion <PB does not have this property, therefore the 
coefficient f3 must be zero. Furthermore, the state 
with T = 0 is also antisymmetric, so that we must 
take a( 0) = 0. From (5.9) we obtain the following 
relations between the reaction probabilities: 

(5.10) 

In conclusion we express our gratitude to L. B. 
Okun' and I. Yu. Kobzarev for suggesting this prob­
lem and constant interest in this work. 

APPENDIX . 
In calculating the total decay rates we encounter 

the following types of integrals: 

J = ~ d~q e-iqx, J a.=~ d~q e-iq~qa.. J a.(3 = ~ d~q e-iqxqaq{l. 

(A.1) 

Clearly, the following relation exists between them: 

J a. = iiJJ/axa., J a(3 = i2a2J/axa.ax(3. (A.2) 

The value of the integral J is well known: [G] 

EP 
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J =2rr.2im2Hi2) (mx)/mx, 

where K = H. The differentiation with respect 
to the coordinates in (A.2) can easily be replaced 
by a differentiation with respect to the masses. 
For example, we obtain for J 01 

. iJ [H<2) (mx)J iJ [H( 2) (mx) J iJmx J"' = _ 2Jt2m2- 1 = _ 2n2m2- 1 __ 
ax"' mx iJmx mx ax"' 

2n2m3x a [H(2) (mx) J a 1 iJ _____ a:- 1 . -=--
- xs om m ' iJmx X iJm • 

The integral J 0!{3 is computed in a similar way. By 
this method, the coefficients of the vector integrals 
are much faster and more simply evaluated than 
by the usual Dalitz method of invariant integration. 
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