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We consider oscillations excited by ac electric fields in plasma structures with diffuse 
boundaries. The thickness of the transition layer of the plasma is assumed to be much 
greater than the De bye radius. The resonance properties of an inhomogeneous plane layer 
are investigated; the radially inhomogeneous sphere and cylinder (with piecewise linear 
distribution of electron density) are also treated. It is shown that strong damping of plasma 
waves in regions where the dielectric constant E ..... 1 reduces appreciably the quality factor 
(Q) of the fundamental dipole resonance (the frequency of this resonance is determined by 
the geometry of the structure) and causes the complete disappearance of the characteristic 
plasma resonances ( E ~ 0 ) for the cylinder and sphere. 

INTRODUCTION 

A number of authors [ 1- 6] have investigated the 
effect of the thermal motion of electrons on the 
resonance properties of a plasma layer bounded 
by ideally reflecting planes. In particular, [6] it 
has been noted that peculiar resonance effects 
can arise in the region of the most probable fre
quency WT of the characteristic oscillations of 
the electrons between the layer boundaries. It 
has also been shown[1- 5] that the experimentally 
observed frequency splitting of the dipole reso
nance in bounded plasma structures [7- 10] can be 
explained (at least qualitatively) by the thermal 
motion of the electrons. The appropriate expres
sions for the frequency Wk and width y~ of a res
onance line (for a Maxwellian velocity distribution 
and w » WT) are [4 , 5] 

ro: = ro~ + f (2k - 1)2 ro}, 

2 -v it ti)t [ ffi2 
] 

r~ = ffi}(2k -1)3 exp - ffi} (2: -1)2 ' (1) 

where k = 1, 2, 3, ... ; w~ = 47rne2/m; w~ = 1r2KT/ 
2mL2; e, m, n, and T are respectively the charge, 
mass, density, and temperature of the electrons; 
K is Boltzmann's constant; 2L is the thickness of 
the layer .1> Similar expressions have been ob
tained for the plasma oscillation frequencies of 
uniform cylinders and spheres with sharp bounda
ries. [3,12] 

1>We note that (1) can be obtained directly from the solu
tion of the familiar problem of propagation and damping of 
longitudinal waves in an infinite uniform plasma; for this 
purpose one introduces standing plasma waves whose nodal 
planes correspond with the boundaries of the layer (cf.[111). 

These results derive primarily from the as
sumption of specular reflection of the electrons 
at the boundaries of the plasma; when applied to 
real plasma structures, they are strictly speaking 
subject to the requirement of a sharp drop in 
plasma density in distances much less than the 
Debye radius. 

It is the purpose of the present work to inves
tigate the resonance properties of a bounded 
plasma in the other limiting case, i.e., the case 
in which the thickness of the boundary layer is 
much greater than the Debye radius. We shall 
consider the oscillations of a plane layer with a 
smoothly varying density as well as a cylinder 
and sphere with non-idealized boundaries. Oscil
lations of an inhomogeneous plasma layer were 
considered earlier by Wolff; [13] however, this 
analysis was not completely correct because the 
hydrodynamic equations were used to describe 
oscillatory processes in regions with relatively 
large values of the Debye radius and because the 
energy losses due to damping of the plasma waves 
were not taken into account. It is shown below that 
in inhomogeneous structures these losses can be
come so important that the plasma resonance lines 
for the plane layer become wider than y~; in the 
cylinder and sphere cases the characteristic 
plasma resonances ( w ~ wp) can, in general, be 
quenched altogether. 

1. OSCILLATIONS OF A PLANE INHOMOGENE
OUS LAYER 

We consider oscillations excited by a specified 
external field E0 = x0E0eiwt in a symmetric plasma 
layer with piecewise linear equilibrium density 
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distribution n( x) (the x axis is perpendicular to 
the boundaries of the layer ) : 

{
no, 

n (x) = no [1 + (L -I xI); I], 
0, 

\xl ~L 
L~ lxl ~L+ I. 
L+l~lxl 

(2) 

It is assumed that the dimensions of the homo
geneous and inhomogeneous regions of the layer 
( L and l) as well as the characteristic scale size 
of the field inhomogeneity 7t: in the region wp ( x) 
::::; w are much greater than the Debye radius D 
= KT/81rne2 = KT/2mwb, so that the problem can 
be solved in the hydrodynamic approximation; 
where necessary this treatment is supplemented 
by well known results of the kinetic analysis. 

The scale size of the inhomogeneity of the ex
ternal field E0 is assumed to be large compared 
with L + l so that at distances appreciably greater 
than L + l (in the plane x = const) it can be treated 
as a uniform field and the system analyzed as a 
uniform system. Under these conditions there
sulting field E and current density j in the layer 
have only x components and are described by the 
following equations in the linear approximation 
(particle collisions and the ion motion are neg
lected): 

· · e E 1 F 3xT dn1 
twnx = n -;:;_ + nl m 0 - --;;;:- dx ' 

dE . iw 
j = nex, x = 4nenl> 1 = - 4n (E - Eo), 

where x and n1 are the amplitudes of the velocity 
and the ac part of the electron density and F 0 ( x) 
is a static force field due to the specified equilib
rium density distribution (2); this force is given 
by the stationary-state equation 

nF0 = xTdnjdx. 

Substituting (4) in (3) and eliminating X:, n1 and 
we have 

where 

(~ 

D~ = 3xTjmw2 (D0 ~L, l), s (x) = 1- w~ (x)jw2 • 

The expression in (5) will describe the field 
distribution E (x) properly only in regions in which 
7t: »D. Aceording to (5) 

J D0 I I B 1'1• for I e l'h ~ D0 I ds I dx I 
\D0 (l I (I- B0) D0)'1• for I B 1'/, 6; D0 I dsjdx [, 

(6) 

and this inequality can be satisfied only when wp ( x) 
::::; w, that is to say, in regions in which I E 1112 « 1 
(where it is especially necessary to take account 
of the thermal motion and the associated spatial 
dispersion). However, in regions where I E I .<!. 1 

spatial dispersion is generally not important and 
the field is determined by the simple relation EE 
= E0 ( cf. below). 

It will be assumed that the absolute value of the 
dielectric constant in the uniform portion of the 
layer Eo= 1- 47rn0e2/mw2 is not large compared 
with unity (I Eo I « l/D0 ). Under these conditions 
I E 1112 « 1, the second term on the left side of (5), 
is l/lt: times smaller than the first; since Z/lt:max 
::::; ( l /D0 ) 213 » 1 [as follows from (6)], this term 
can be neglected and reasonable accuracy 2 > can 
still be obtained. The final expression for the 
field E is then 

(7) 

Since this layer is symmetric with respect to the 
plane x = 0 it is sufficient to solve (7) for x ::S 0 
requiring that the derivative dE/dx vanish at 
X= 0. 

We now consider two cases: I Eo I « 1 and I Eo I 
-1. 

1. I Eo I « 1. When - L ::S x ::S 0 the solution of 
(7) that satisfies the condition dE/dx = 0 at the 
point x = 0 is 

(8) 

where h~ = Eo /D~. 
In the region x ::S -L we have E(x) = E0 -(1-E0 )x 

( L +x )/Z; introducing the new variable 

z = - as (x), a = ll/(1 - e0) D 0 ]'/,, 

we write (7) in the form 

d2E/dz2 - zE = aEo. (9) 

The solution of this equation is expressed in terms 
of the Airy functions u(z) and v(z):[ 15 ] 

E = C2 [u (z} - iv (z)l 
z z 

+ aE 0 [ u (z) ~ v (t) dt - v (z) ~ u (t) dt J . 
-00 -00 

(10) 

The limits of integration and the relations between 
the coefficients of u ( z ) and v ( z ) are chosen in 
such a way that when - z » 1 (the quantity E 
= - z/ a can still be small compared with unity 
since a ,..,. ( l/D0 ) 2/ 3 » 1 ) the second term becomes 
the field E0 IE obtained with spatial dispersion 

2 >Taking account of this term in the present case would 
only yield a small relative correction (of order I E I) to the 
amplitude of the plasma wave (11). It should be noted, how
ever, that in the general case the term containing the first 
derivative of the field can be neglected only if certain addi
tional conditions are satisfied (for example if one introduces 
a small but finite collision frequency; cfJ 14 l). 
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neglected while the first gives the geometric op
tics approximation for a plasma wave propagating 
in the - x direction (toward the edge of the layer ) :3 l 

Fp ~, C2 (- z(1• 

xexp[ -i} (- z)'1'- i : J ~ s-'l•exp {i ~ h (x) dx}, 

h2 (x) = s (x)jD~. 
(11) 

The plasma wave traveling in the opposite direc
tion vanishes by virtue of the following considera
tions. Using a well-known result of linear kinetic 
theory we can replace the expression for the 
plasma wave (11) by a more exact expression 

E~ = Ep exP{ ~ y (x) dx} (12) 

( y is the Landau damping constant) which holds in 
the region in which the inequality I E 1112 « 1 is not 
satisfied. The wavelength is of the same order as 
the Debye radius in this region and y increases 
sharply so that the wave is damped rapidly and 
never reaches the edge of the layer. Hence the 
plasma wave in the +x direction, which can be 
excited only as a result of reflection of the wave 
in (12) from the edge of the layer, is quenched. We 
note that the introduction of this wave damping is 
necessary only for relating the constants of inte
gration in (9); in what follows the difference be
tween (11) and (12) is unimportant. 

The continuity conditions on the field E and its 
derivative dE/dx at x = L (these boundary condi
tions are completely reasonable physically and can 
be obtained from (7) or (5) by taking the limit from 
the smooth function E ( x) to the piecewise linear 
function) give the following expressions for the 
constants C 1 and C2: 

z, 
w' (zo) - z0 S w (i) dt 

Cl =' Eo --- -~ ~-~=-=-,~~--~oo::::c==----~-~------,:-==-
80 - c:>' (zo) CO'i (M f -~zo) -i- f:_zo W (zo) sin (M f- z0) ' 

c - ~ V=Zosin (M v=--z~) [1 + Zo1Jl(zoll- Zoljl' (zo) cos(M V=--2;;) 
2 - £o - w' (zo) cos (M V- z0) !- V- Zo w (z0) sin (M V- z0) 

Here, 
(13) 

Z0 =- ae0 , M =a (1- s0)L/l, w (z) = u (z)- iv (z), 
z z 

'iJ (z) = u (z) ~ v (t) dt·- v(z) ~ u (t) dt; 
-co -oo 

the primes denote differentiation with respect to z. 
The frequency dependence of the constants C1 

3 l A similar solution has been obtained by Denisov[ 161 who 
investigated the interaction between the electromagnetic wave 
and the plasma wave in a linear plasma layer. 

and C2 and the polarizability of the layer (per unit 
area) expressed in terms of the constants 

L~ o 
_ 1 ,. L--t-l 1 

X-- -E I en 1xdx = -- --- I Edx (14) 
·o ,\ 2n: 2n:£0 \ 

-L-l -i.'-t 

can be obtained simply (without using numerical 
methods ) only in the particular limiting cases that 
we consider below. 

When I z0 I » 1 we have: 
a) z0 < 0 (E 0 > 0); I C1 1, I C2 1 « E0 /E 0; the am

plitude of the plasma wave is negligibly small and 
to a high degree of accuracy the field is given by 
E 0 IE in the entire layer; 

b) z0 >0 (E 0 <0); 
+CO 

!Cll <,Eo/8o, c2 = -a ~ v (t) dtEo = - VitaEo; 
-co 

the plasma wave is characterized by a large am
plitude (a » 1) and a finite power flux 

n _ 1 R ( •· rol 2 - 2 e 3xTn1x) = 8 (1 _eo) £ 0 , (15) 

which is independent of temperature and inversely 
proportional to the slope of the plasma density dis
tribution. The polarizability is a complex quantity 
in this case: 

X = Xr + ix;; 
+oo 

X; = - 2n:ct (1C~ eo) Eo ~ v (t) dt = - 2 (1- e0 ) • ( 16) 
-co 

The real part Xr for L ~ l is determined prima
rily by the polarizability of the uniform portion: 

Xr = - L/2ns0. (17) 

From the point of view of resonance properties 
greatest interest attaches to the other limiting 
case: I z0 I « 1. In (13) we replace the functions 
u, v, u' and v' by their values at z = 0, obtaining 
the resonance condition in the form 

.. 1 - .. ;--: w'(O) . v - Z0 tan (M v - ~o) = w (O) = a + tb; 

a= 0,367, b = 0.635. 
(18) 

When M » 1 ( L ~ l) we obtain the following ex
pressions for the resonance frequencies wk and 
the damping factors (line widths ) Yk; 

w~= w~ [1 + : 2 (2k- 1)2(~0 ) 2 1, 
.J 

k= I, 2, 3,... (19) 

Comparing (19) with the analogous expression 
(1) that characterizes the characteristic oscillation 
spectrum of a layer with sharp boundaries, in which 
the electrons experience specular reflection, we see 
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that the real part of the characteristic frequency is 
the same in both cases (this holds only when I zo I 
« 1 ); on the other hand, the line widths are con
siderably different: when T - 0 the width y~ is 
an exponentially small quantity while Yk "' T4/ 3 

and is appreciably greater than y~. 
The polarizability near resonance is given by 

x=- 1t3 (2k-1)2 (w-wk-ilk) 0 

(20) 

2. When I Eo I "' 1 we obtain the same results as 
in the preceding case for I z0 I » 1: when Eo > 0 
we have E = Eo/E; if Eo< 0 for I z0 I » 1 we have 

E (z > 0) = Eo~'e, 

E (z < 0) = (E 0/e)- VnaE0 (- z)-'1. 

X exp [- i ~ (- z)'f,- i ~ J, 
while the energy dissipated in the plasma wave and 
the imaginary part of the polarizability xi are de
termined by the same expressions (15) and (16). It 
is interesting to note that II and x. (15)-(17), are 
respectively the Joule loss and the polarizability 
computed for the same layer neglecting spatial 
dispersion ( T = 0) but keeping a finite collision 
frequency v « w. 

2. OSCILLATIONS OF A SPHERE OR CYLINDER 
WITH DIFFUSE BOUNDARIES 

The results obtained in the previous section can 
be used for investigating the resonance properties 
of two and three-dimensional structures with dif
fuse boundaries if the widths of the transition re
gions are small compared with the radius of cur
vature. As an example we consider the oscilla
tions of a spherically symmetric plasmoid in a 
uniform field E0 = x0E0eiwt. The dependence of 
equilibrium density n on radius r is chosen in 
the same form as the piecewise linear function 
(2) (I xI- r) and it is assumed that L » l » D0 

( L is the radius of the region with uniform den
sity). It is also assumed that the wavelength of 
the electromagnetic field, both in free space and 
in the plasma, is large compared with L. We shall 
consider the solution of the problem in the quasi
static approximation (taking E = - 'Vtp ). 

Generalization of (3) and (4) to the three-dimen
sional case gives 

div ( eE + D~grad divE- ~ D~ gra: n div E)= 0. (21) 

In the uniform region ( r ::::: L) this equation (which 
holds only when I E 11/ 2 « 1) splits up into an equa
tion for the scalar potential of the irrotational field 

( div Es = 0) and the plasma field ( div EP ~ 0) 

(E = Es + Ep = -'Vtps -'Vtpp ): 

(22) 

The solutions of these equations with the same 
dependence on polar angle (] (with respect to the 
x axis ) as the potential of the external field tp 0 

= - E0r cos (] are 

C(Js, P = <Ds, p(r) COS 8, 

<Ds = A 5r, <Dp = Apjt(h0r), 
(23) 

where j 1 ( h0r) is the spherical Bessel function of 
first order. 

In the region L ::::: r ::::: L + l a separation pro
cedure analogous to that used in obtaining (22) can
not be used and the complete potential is described 
by the equation (terms proportional to 'Vn are ig
nored) 

e~cp + VeVcp + D~~ (~cp) = 0. (24) 

We substitute everywhere tp = <I> ( r ) cos (] and 
neglect terms of higher order in Z/L, obtaining 

D~d3cl>,ldr3 -1-- e (r) d<D/dr = const = At> (25) 

which coincides with (7) for the uniform problem. 
As before we introduce the new variable z 
= - Cl'E(r) and write (25) in the form [cf. (10)] 

z 

<D (r) =- l ) \ [A 2w (t) + aA 11jJ (t)l dt + A 3• (26) 
ct (1-eo ,, 

z, 

Outside the plasma region ( r ~ L + l) the total 
potential is made up of potential associated with the 
external field tp 0 and the potential of a point dipole 

cp =- E 0 r cos e + r 2 pease (27) 

( p is the dipole moment of the plasmoid). 
The constants As P' A1 2 3 and p must be found 

from the conditions ~f conti~uity on the potential 
and its derivatives at the boundary surfaces: at 
r = L + l the quantities tp and otp I or are contin
uous; at r = L, as follows from the general equa
tion (21), the quantities o2tp/or2 and o3tp/or3 are 
continuous. Since the formulas giving these con
stants are extremely complicated we present an 
expression only for the most important quantity, 
the dipole moment p 

_ ErJ--3 Eo- G (zo) 
P - eo + 2G (zo) ' (28) 

G (zo) 
z, 

V- z0w (z0) j~ (p) + w' (zo) j~ (p)- zo J w (t) dt [j~' (p) + j~ (p)] 
-00 

V- z0 j~ (p) w (z0)- j~" (p) w' (zo) 
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Zo Zo 

it (p) [w' (zo)- Zo S w (t) dt]- Zo S w (I) dt {[1 + Zo'IJ (zo)] i~ (p) + V- Zo'IJ'(zo)i~'(p)) z0 

-oo -oo - Mzo \ 'ljJ (t) dt; 
p [f- Zoj~ (p) w (zo) - j~' (p) w' (zo)] .\ 

(29) 
-00 

This expression is simplified considerably when 
z 0 » 1 (-E0 » 1/a) 

_ E L3 eo- 1 - iS 
p - 0 llo + 2 + 2i(j • (30) 

where 6 = 7l"Eo /L( 1 -Eo) is a quantity that deter
mines the linewidth of the so -called fundamental 
dipole resonance (Eo= -2 ). 

It is important to note that the feature pointed 
out at the end of the preceding section also appears 
in the present case: if the basic dissipation is due 
to particle collisions rather than the excitation of 
plasma waves the energy loss and the expression 
for the dipole moment (30) remain unchanged ( cf. 
[17] and [18]). 

In view of the results given in the introduction 
and in Sec. 1, we expect that in addition to the 
resonance at Eo= -2 there will also be character
istic plasma resonances in the region of small 
positive E0. However, a detailed investigation of 
the function G( z0) shows that for all values of Eo 
satisfying the condition I Eo + 2 I » 6 the dipole 
moment is given by the expression p = E0L3 x 
(Eo -1 )/ (Eo + 2) to a high degree of accuracy and 
does not exhibit maxima. In particular, when 
0 < - z0 « 1 the minimum value that can be as
sumed by G( z0 ) (in absolute magnitude) is ap
proximately .,;-=z;, and since .,;-=z; = -fCiE; 
» E 0, then p = - E0L3/2. We note that the ampli
tude of each of the fields Es and Ep increases 
strongly in this case; nonetheless, the total field 
distribution in the plasma Es + Ep is such that 
the dipole moment does not exhibit a resonance. 

A similar analysis shows that such resonance 
properties are also exhibited by an infinite plasma 
cylinder with diffuse boundaries with the cylinder 
axis perpendicular to the electric field. The di
pole moment per unit length of cylinder (-Eo 
» 1/ a ) is given by 

P = E0L2 (e0 - 1 - i6)/(e0 + 1 + i6). (31) 

Far from resonance (i.e., when I Eo+ 11 » 6) we 
have p = E0L2(E0 -1)/(E0 + 1) (the notation is sim
ilar to that used above ) . 

The discrepancy between the results obtained in 
various experiments [7- 10] in which a series of res
onances have been observed in the region w "' Wp 
can be explained by the fact that the condition 
l » D has not been satisfied in these experiments. 
These results were obtained with discharge tubes 
with radius small compared with the mean free 

path of the electrons in the gas. Under these con
ditions the direct loss of electrons to the walls of 
the tube is inhibited by the separated charges which 
form a double layer near the walls; the layer thick
ness (approximately equal to the Debye radius ) 
is the characteristic dimension of the inhomoge
neity in the electron density l. A qualitative de
scription of the resonance properties of plasma 
structures characterized by l ~ D can be obtained 
from the results obtained under the assumption 
that l « D (1) which predict the presence of many 
resonances. The discrepancy between these results 
and the experimental data with respect to the rela
tive position of the resonance lines 4> is removed [19 ] 

if one takes account of the smooth increase in den
sity in the direction from the walls to the axis in 
addition to the sudden drop in plasma density close 
to the walls of the tube. 

If the plasma is not in contact with the walls of 
a container (meteor trails, plasmoids in labora
tory experiments) the characteristic scale size of 
the inhomogeneity is generally greater than the 
Debye radius and the resonance effects associated 
with the excitation of longitudinal (plasma) waves 
must disappear. As far as the fundamental dipole 
resonance frequency determined by structure ge-; 
ometry is concerned, we note that under conditions 
of strong diffuseness ( l ~ L) its quality factor (as 
follows from Eqs. (30) and (31) which apply quali
tatively in the present case) is also very low. 

CONCLUSION 

In the linear approximation the effectiveness of 
the resonance interaction of a bounded plasma with 
a field depends on the diffuseness of the plasma 
boundary. If the characteristic scale size of the 
boundary region is of the order of the dimensions 
of the object itself ( l ~ L » D) all resonance ef
fects are very weak and the maximum value of the 
dipole moment is rather small (p ~ L3E0 ). We 
note that in the final analysis this circumstance 
is responsible for the component of electric field 
parallel to V E which leads to a strong growth of 
the field near the point E = 0; when T ___.... 0 (and 
v ___.... 0) the field becomes infinite at this point and 

4 >According to (1) the spacing between neighboring lines 
is increased as the number k increases; experimentally, how
ever, one observes a convergence in the sequence of reso
nance peaks. 
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the power loss becomes finite. In the absence of 
components E II 'V E (for a radially inhomogeneous 
sphere this is the case for magnetic modes ) there 
is no such singularity in the field at E = 0; in this 
case the energy loss at low temperatures and col
lision frequencies is due only to radiation associ
ated with the corresponding magnetic multipole. 
Thus the highest efficiency for interaction between 
a plasmoid and field is evidently achieved for res
onance excitation of a magnetic mode (for example, 
the magnetic dipole resonance ) . In the case of an 
isotropic dielectric structure whose characteristic 
scale size L is small compared with the wave
length in free space A. the frequency of the mag
netic resonance is given by the condition IE L ~ A., 
which can be satisfied only for large positive E 

(this is impossible in an isotropic plasma). Hence, 
it would be of interest to investigate the resonance 
properties of plasmoids consisting of magnetoac
tive plasma, which can exhibit the properties of a 
medium with E > 1 for certain definite relations 
between the components of the dielectric tensor. 

It is of interest to consider the possible roles 
of various nonlinear effects, primarily those re
lated to resonance interactions. In particular, the 
plasma oscillation spectrum can be modified if the 
high-frequency field changes the electron density 
distribution in the resonance region E ~ 0 (where 
the average high-frequency potential [20] has a 
s]J.arp peak) or smooths the electron velocity dis
tribution function in the region of the points X. 
= v cp = h/ w. [21 ] The first of these effects has not 
been studied at the present time and its role is as 
yet unclear. As is well known, the second can lead 
to a strong reduction in the attenuation factor y 
of the plasma wave, owing to which there may ap
pear a plasma wave reflected from the boundaries 
of the structure and a sharp reduction in the dis
sipation of energy. In this case all of these reso
nance effects become more pronounced, as in the 
case of a plasma with sharp boundaries. Estimates 
show that at the relatively low levels of radio-fre
quency power customarily used for diagnostic 
measurements the indicated nonlinear effects are 
still very weak. However, at the high powers used, 
for example, in the acceleration of plasmoids, the 
quality factor of the resonances should increase 

markedly because of the nonlinear reduction in 
damping. 

The author is indebted to M. A. Miller and I. G. 
Kondrat'ev for discussion of these results and for 
a number of valuable comments. 
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