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A theory of the Knight shift in superconductors is developed in which formation of pairs with 
nonzero angular momentum is taken into account. It is found that for pairing in the triplet 
state the Knight shift at T = 0 does not vanish. The theoretical predictions are in good agree-
ment with the experimental data. -

IN the theory of superconductivity [1, 2] it is as­
sumed that the Cooper pairs are in S-states. It 
should be noted that higher harmonics in the in­
teraction between electrons, which arise as are­
sult of exchange with phonons, have not been in­
vestigated. Evidently, these harmonics exist and 
can have an attraction sign. In this case, the for­
mation of pairs with nonzero orbital momentum 
is possible [3- 6] in superconductors as well as in 
superfluid He3• 

The author has shown [7] that the interaction 
between the conduction electrons of an antiferro­
magnet, which is brought about by the spin waves, 
leads to the formation of Cooper pairs in the trip­
let state. It is possible that this mechanism is 
responsible for the superconductivity of ruthenium 
and osmium, in which no isotope effect is observed. 
[S, 9] The electrons in an antiferromagnet interact 
only if the projections of their spins on the axis 
of easy magnetization are oppositely directed. 
Hence the electrons in an anitferromagnet form 
pairs with Sz = 0. 

There has been no experimental evidence up to 
this time that the spin of Cooper pairs is zero. 
Moreover, those experiments that can give infor­
mation about the spin of the pairs can be explained 
by assuming that the Cooper pairs are formed in 
the triplet state. We have in mind here the meas­
urements of the Knight shift of the frequency of 
nuclear magnetic resonance, [ 10•12 ] which at abso­
lute zero has the same order of magnitude as in 
the normal state, in contradiction to the conclu­
sions of the BCS theory. [1] According to this 
theory, the Knight shift, which is proportional to 
the spin paramagnetic susceptibility of the con­
duction electrons, should tend to zero as the tem­
perature is lowered, [13 •14 ] since the ordering of 
the spins of the electrons, which form Cooper 
pairs in the singlet state, is energetically un­
favorable. 

If the Cooper pairs form in the triplet state, 
then the ordering of the spins of the electron pairs 
in the magnetic field is energetically favorable, 
i.e., at T = 0 the paramagnetic susceptibility, and 
consequently the Knight shift, is different from 
zero. It will be shown below that the calculation 
of the paramagnetic susceptibility of a supercon­
ductor with pairing in the triplet state leads to 
good agreement with the experimental data. 1 > 

The Hamiltonian of the interaction between the 
electrons taking into account the higher harmonics 
is of the form 

Jeint = ~ L; v ••. (p, p') a;.at-p,o'ap•oaq-p', o'• (1) 
p,p',a, o', Q 

The coefficients Vzaa' in the expansion of the 
"potential" of the interaction in Legendre polyno­
mials 

/" v ••. (p, p') = L;(2l +I) V1 •• .Pz(cosp, p'), 
I 

characterize the intensity of the interaction of the 
electrons that form a pair with momentum l and 
a projection of spin a +a', and a positive sign on 
Vzaa' signifies attraction. For even l only the 
off-diagonal elements of the matrix Vzaa' are dif­
ferent from zero, because of the Pauli principle. 

In an isotropic system, when the interaction is 
independent of the direction of the total spin of the 
pair, all components of the matrix Vzaa' with odd 
l are equal to each other: Vzaa' = Vz. In phonon 
superconductors the energy of the pair can depend 
on the direction of the spin because of the presence 

1lAbrikosov and Gor'kov[ts] have suggested that the source 
of the non-zero Knight shift is spin-orbit interaction on the 
boundaries of the crystallites. At the same time, the experi­
ments of Androes and Knight["] did not disclose any signi­
ficant dependence of the Knight shift on the dimensions of 
the sample, although this is not a reliable conclusion, as 
Abrikosov and Gor'kov[ 15] have remarked. 
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of intracrystalline fields. In this case Vzaa ;ro Vza, -a· 
In a uniaxial antiferromagnet only those spins in­
teract which have antiparallel spin projections, 
i.e., the diagonal elements Vzaa are zero. 

Unfortunately, at the present time there is no 
agreement about the symmetry properties of the 
state of thermodynamic equilibrium of a Fermi­
system with pairing to nonzero momentum. Ander­
son and Morel [3] consider that in pairing with 
l ;ro 0 the energy gap in the spectrum of elementary 
excitations of a system with the Hamiltonian (1) is 
anisotropic. 2> Gor'kov and Galitski1 [4] have found 
another possible structure for the ground state of 
a system with Hamiltonian (1) by the Green's func­
tion method. The energy of the ground state as­
sumed by Gor'kov and Galitski1 is less than in the 
scheme of Anderson and Morel, the gap in the ele­
mentary excitation spectrum is isotropic. Recently 
Balian and WerthamerC 16] generalized the scheme 
of Anderson and Morel and, assuming that the pairs 
form in p-states and the interaction is independent 
of the spin direction, found by the variational 
method a solution with an isotropic gap that was 
not equivalent to the solution of Gor'kov and Galit­
ski1, although the values of the energy gap and the 
energy of the ground state calculated in [4] and [16 ] 

are the same. We shall calculate the spin para­
magnetic susceptibility below by both methods. 

In order to determine the susceptibility, it is 
necessary to find the average of the magnetization 
operator: 

(2) 

Here Jlo is the Bohr magneton, 1/J + ( x) and 1/J ( x ) 
are second-quantization operators in the coordi­
nate representation, and s is the electron spin 
operator. In the Hamiltonian of the interaction of 
the conduction electrons with an external magnetic 
field H we will take into account only the "para­
magnetic" term: 

:J£1 = 2f10 ~ d3x'IJ+(x) Hs'IJ (x) """'~ d~x:J£1 (x). (3) 

We shall assume that the dimensions of the 
sample are such that the magnetic field within it 
is practically homogeneous, but we shall not take 
into account the alteration in the correlation func­
tions caused by the fact that these dimensions are 
small. This alteration is not important in our prob­
lem if the spin-orbit interaction is neglected. [14] 

For calculating the averages we make use of 

2 >This means that in real superconductors the symmetry 
of the gap ~(p) is different from the symmetry of the recipro­
cal lattice. 

the "scattering matrix" of the thermodynamic 
theory of perturbations [17]: 

Calculating the magnetization to first order in 
the magnetic field H, it is not difficult to obtain 
for the components of the tensor Xik the following 
general relations: 

x,k = fl~ ~ (aJo:/3 (ak)~s ~ d4x' <'P~ (x') 'ils (x') 'P~ (x) 'Pil (x)), 
o:,{3,y, 3 (5) 

where &i are the Pauli matrices. 
In the scheme of Gor'kov and Galitski1[4J the 

averages of the four Fermi operators are ex­
pressed via Green functions for two operators: 

<T'IJ,.(x) 'PZ(x') 'P""(y) 'Pt (y')) = ga/3 (x - x') g""5 (y - y'~ 

- g .. 3 (x - y') g""13 (y - x') 

- ~ F';"" (x - y) F;i~m) (x' - y'). (6) 
m 

The Green's functions g, :fCm), and :f+Cm) are de­
termined as follows: 

ga./3 (x- x') = - (T'I\J,;, (x) 'PZ (x')), 

F~t;> (x - x') = <N \ T'!Ja. (x) '1\'ll (x') IN + 2, l, m), 

F~~m) (x- x') = <N + 2, l, m I T'IJ~ (x} 'P;i (x') IN), 

(7) 

(8) 

(9) 

where the state IN+ 2, l, m) differs from the state 
IN) of the system with average number of par­
ticles N by the addition of pairs with momentum 
l and projection m. 

Considering Eq. (6) and transforming to Fourier 
components of the Green's functions, we obtain 

+ ~ F~~l) (p, ffin} F~~m) (p, ffin)} • (10) 
m 

In [4] the Fourier components of the Green func­
tions dependir.g on real time were calculated. A 
similar calculation for the Matsubara Green func­
tions leads to the following formulas: 

F~{l) (p, ffin) = F (p, ffin) Ytm (n) 1 ail• 

(11) 

(12) 

(13) 

(14) 

where Ep = ( ?;~ + CJ..2 ) 112 is the energy of the ele-



1348 I. A. PRIVOROTSKII 

mentary excitations. The matrix Iaf3 is antisym­
metric for pairing in the singlet state ( I~J 
= - I~sd ) and symmetric for the triplet state ( I~b 

= Itn ) . In both cases the matrix i is unitary: 

ii + = i. The matrix I< s) (to within a phase factor 
eia) equals 

h(s) ( 0 1' .h 

I = _ 1 o) = zau. (15) 

If the interaction between the electrons forming 
a pair in the triplet state depends on the orienta­
tion of the total spin, then we can choose the coor­
dinate axes in such a way that the maximum posi­
tive coefficient Vzau' will be non-diagonal. In the 
scheme of Gor'kov and Galitski1 this means that 
the only allowable value of Sz is zero, i.e., 

h (f) ( 0 1 ) h 

J = 1 O = Cix• 
(16) 

If the interaction is isotropic, then for s = 1 the 
projection of the total spin of the pair takes values 
Sz = -1, 0, 1. In this case, in the absence of a 
magnetic field the choice of matrix f is not unique 
and is limited only by the conditions of unitarity 
and symmetry. This non-uniqueness reflects the 
presence of degeneracy, which is caused by the 
fact that in the equilibrium state the number of 
pairs with Sz = 0 can be arbitrary and is removed 
in an external magnetic field. 

The change in free energy F in a magnetic field, 
calculated from the perturb~tion theory, depends 
on the choice of the matrix I of the zeroth approx­
imation. The minimum free energy is attained if 
the quantity I:a(IIaa [2 - [Ia,-a [2 ) is a maximum 
(here a is the projection of the electron spin on 
the direction of the magnetic field ) . Because of 
this requirement the matrix i<t) for an isotropic 
system equals 

j<f) = (1 0) 
0 ± 1 

(17) 

and only electrons with the same spin projections 
associate in pairs. For this choice of i, the value 
of the susceptibility x. which needs to be calcu­
lated from the formula for Xzz, turns out to be 
greatest. 

It is clear that in the isotropic case, i.e., for 
pairing in the singlet state, or when the interaction 
in the triplet state is independent of the orientation 
of the total spin of the pair, the susceptibility is 
also isotropic: Xik = XDik· Below we will introduce 
the symbols x<s) and x<t) for the susceptibility of 
an isotropic superconductor for pairing in the 
singlet state and triplet state, respectively. 

The susceptibility is anisotropic when the inter-

action of the electrons that form a pair with s = 1 
depends on the orientation of the total spin relative 
to a chosen axis ( z axis ) . This axis we choose in 
such a way that the only allowed (in the scheme of 
Gor'kov and Galitski1) value of the total spin of the 
pair Sz equals zero. The values of the paramag­
netic susceptibility of the current carriers in a 
field parallel to the chosen axis XII and in a field 
perpendicular to this axis Xl are different: XII 
>" Xl· The Knight shift, therefore, is anisotropic. 

Accomplishing the summation over the spin in­
dices in Eqs. (14) and (15), and making use of the 
spherical harmonic addition theorem, we obtain: 

2[1~ "' 1 cJ3 { 2 ( ) 21 + t F2 ( )} x<•> = X 11 = - (2n)" [3 L..J ~ P g p, Wn + ~ p, Wn , 

n (18) 

2[1~ "' \ d3 { 2 ( ) 2/ + 1 F" ( >} x<l) =x_l =- (2n)"[3 L..JJ p g p, ffin -~ "p, w, . 
n (19) 

It is convenient to transform from a summation 
over n to an integration by means of the substitu­
tion 

"' i[3 \' [3w L..J ••• __. 4n ~ dw tg 2 . . . ' 
n (C) 

(20)* 

where (C) is a contour consisting of two straight, 
parallel real axes. Closing the contour by semi­
circles and summing the residues of the sub-inte­
gral functions in the points w = ± i E: p, we find that 

Calculating the integrals in Eqs. (21) and (22), 

we obtain 
x<•>Jxo = x 11 /xo = Nn (~)IN, (23) 

xU>fxo = x -Lixo = I, (24) 

where Xo = J..tijpij/rr2v0 is the Pauli paramagnetic 
susceptibility of free electrons (p0 and v0 are the 
momentum and velocity on the Fermi surface), 
and Nn ({3 )/N is the ratio of the number of "nor­
mal" electrons to the total number of conduction 
electrons: 

N ~V([3~ = r ch-2 1/ z2 + ([3~-r dz. (25) 
0 

The quantities x<s) and x11 tend rapidly toward 
zero at low temperatures. 

The paramagnetic susceptibility of polycrystal­
line anisotropic superconductors equals 

*tg =tan. 
tch =cosh, th =tanh. 
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XII) cc=2..X +2.z =z (c~+N11 (~)/3N). (26) 
polycr a ·!I :J 1. ·o .l 

The Knight shift in mercury [ 1o] and tin [H] at 
absolute zero equals approximately % of the shift 
in the normal state, and in vanadium L12 J the Knight 
shift apparently does not depend on temperature 
and does not change in the superconducting tran­
sition. Thus, a nonzero Knight shift can be ex­
plained if one assumes that the Cooper pairs form 
in the triplet state. 

Until now we have been using the method of 
Gor'kov and Galitski'l to calculate susceptibilities. 
In the scheme of Anderson-Morel-Balian­
Werthamer [3, 16 ] the uncoupling of two-particle 
systems is the same as in the work of Gor'kov [1S] 

for pairing in S-states: 

<T'IJ,(x) 'Ill, (x') \jJY (y) \jl~ (y')) = g"-,3 (x- x') g.15 (y - y') 

- g"-5 (x - y') g·r{l (y - x') - F a.·r (x - y) F;5 (x' - y'). 

(27) 

It is easy to show that for pairing in the singlet 
state, or in the case when in the interaction 
V uu' (p, p') only the off-diagonal components 
Vu -u(p,p') are nonzero, i.e., in the triplet state, 
the' only allowed value of the projection of the total 

· · 3 l th thod of [3•16] spin of the pair Sz 1s zero, e me 
leads to Eqs. (23), (24), and (26), obtained by the 

method of Gor'kov and Galitskil. It is necessary 
to remember, however, that if the gap is aniso­
tropic, then the ratio of the number of normal 
electrons to the total number of conduction elec­
trons Nn(,B )/N does not have the form (25), al­
though, of course, it tends toward zero as the tem­
perature is lowered. 

We will now assume that the interaction is iso­
tropic: Vuu'(p,p')=V(p,p'). Forpairinginthe 
triplet state all components of the matrices 
F(x-x') and F+(x-x') are different from zero: 

F (p, Wn) = Li (p)/(w~ + e~), 
where 3.(p) satisfies the equation 

Li (p) = (2:)a ~ ~ ~ d3p'V (p, p') 
n 

and the normalization condition 

,& (p') 

(!}~ + £~, 

(28) 

(29) 

3 lln this case, when all differences between the maximum 
coefficient (Vzo-,-o-)max and the other coefficients V(o-o-' 
have the same order of magnitude as (Vzo-,-o-)max• the num­
ber of pairs with s = 1 and s z =1 0 calculated by the method 
of Anderson and Morel[•] and Balian and Werthamer[••] are 
found to be negligibly small, i.e., these pairs are of no con­
sequence in our problem. 

~ (p) Li+ (p) = ~2 (p) f. (30) 

It can be shown that this solution is asymptotically 
accurate. 

The solution of Balian and Werthamer, [16 ] who 
considered pairing~ p-states, has the form 

1(p) = ~naa1 , (31) 

where n is unit vector in the direction of the mo­
mentum p, and the energy gap .6. satisfies the 
same equation as in the model of Gor'kov and 
Galitski1 [4]: 

(32) 

Balian and Werthamer, by assuming that .6.(p) 
= 3.n&ay, found that for pairing in a p-state the 
susceptibility equals xCt) = xo<% + NnUn/3N). 
Thus, independently of model, one can success­
fully explain the nonzero Knight shift in supercon­
ductors at T = 0, by assuming that the pairs are 
in a triplet state. 

Measurements of the anisotropy of the Knight 
shift in monocrystalline samples can give not only 
information about the spin of the Cooper pairs but 
also throw light on the properties of the interac­
tion V uu' ( p, p' ) between the electrons. 

In conclusion, without giving the details of the 
calculation, we write the relation between the 
Fourier components of the current j ( x) and the 
transverse component of the vector potential A(x) 
obtained from the model of Gor'kov and Galit­
skil [4] 4>: 

j (k) = - (Ne2/m) Q (k) A(k); (33) 

" 
Q (k) = 1 + ~ ~ ~ sin3 8d8 

· n o 
co 

X ~ 
-co 

d (iwn + \;+) (iwn + ~-) + fi+!:l_Pl (n+n_) 

~ (w~ + s!J (w~ + s:_) 

We have introduced the abbreviated symbols P± 
= p ± k/2 and chosen the polar axis in p-space 
along the vector k. 

(34) 

It is easy to show that for characteristic values 
of k that are of order of the inverse skin depth 6, 
the nucleus of Q ( k) does not depend on l to the 
accuracy of terms of order ( la/ 6 )2, where a is 
the lattice constant. 

I thank I. M. Lifshitz, M. I. Kaganov, and L. P. 
Gor'kov for discussions of the results obtained. 

4 lSuch a relation with l = 1 can be obtained by the method 
of Balian and Werthamer[••] in the case of isotropic pairing in 
a p-state. 
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