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Inelastic peripheral high energy interactions due to exchanges of various types of "poles" 
(pions, kaons and vacuum reggeon) are considered from the unified viewpoint of amplitude 
poles in the complex angular momentum plane. It is demonstrated that in the region in which 
effects related to the motion of poles describing these quanta are important, the overwhelm
ing part of the contribution is from the vacuum reggeon. However, the contribution from this 
whole region decreases logarithmically with energy and the production multiplicity is small. 
In the region which yields the main contribution to the cross section these pole motion effects 
do not play any role. Here the main contribution is from one-pion exchange as computed in the 
one-meson approximation. This circumstance is related to the difference in kinematics of 
elastic and inelastic processes. 

Some criteria are considered which can be employed for distinguishing between inelastic 
processes due to vacuum reggeon exchange and processes due to meson exchange. 

1. The method of moving poles (MPM) in the plane 
of complex orbital momenta [1] makes it possible 
to determine the asymptotic behavior of the elastic
scattering amplitude. 0 It is customary to state 
here that the process is due to the exchange of one 
"vacuum pole" or "n!ggeon." This yields, 
through the optical theorem, the asymptotic be
havior of the total cross section. Until recently, 
the constancy of the total cross section of inelastic 
processes at high energy was the only information 
that could be extracted within the framework of this 
method concerning the inelastic processes. Yet the 
question of inelastic processes is most important 
in the theory of particle interaction. 

It is known that elastic scattering, particularly 
diffraction scattering, can be accompanied by in
elastic processes. An example is the so-called 
diffraction generation of particles [3 ] . From the 
point of view of the MPM this process must be re
garded as an inelastic interaction, due to the ex
change of one vacuum reggeon [4•5]. 

On the other hand, the theory of peripheral in
teraction [s,r~ deals with inelastic processes due 
to the exchange of a single quantum: pion, kaon, 
etc. (This method of analysis is called the one
meson approximation-OMA). In the method of 
complex orbital momenta, these quanta must also 
be regarded as "moving poles" with quantum 

1lWe leave aside the question of the universality of the 
MPM, which has become particularly acute following recent 
experiments on scattering of pions by protons [2]. 

numbers (parity, strangeness, etc.) which differ 
from the quantum numbers of the vacuum 2). 

This raises the possibility of regarding all 
peripheral inelastic collisions (both "diffraction" 
and one-m~son) from a unified point of view. In 
the present paper we consider the interaction of 
high-energy nucleons and discuss the following 
questions: 

1. What is the relative role of different Regge 
trajectories in inelastic processes? 

2. What is the character of the inelastic proces
ses of various types occurring at high energies ? 

2. In examining inelastic processes we shall 
make use of the diagram method in the MPM, which 
has already been used by Ter-Martirosyan [4] and 
Frautschi [5= (who have also considered the validity 
of this method). The gist of this method consists 
in the following. Secondary particles are divided 
into two groups (or two "jets"), with several par
ticles in each (in particular, one of these groups 
may contain one particle-we shall call such a 
process a single-jet process). 

It is assumed that the process can be regarded 
as an ordinary "four-point diagram," i.e., the 
production of two heavier particles with masses 
:Jrr1 = -IS; and :Jrr2 = /s; from two nucleons of 
mass m (s 1 and s 2 are the squares of the total 

2lWe note that effects connected with the motion of the 
pole describing the quantum that effects the exchange were 
not taken into account in [6 • 7 ]. The role of these effects will 
be discussed below. 
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energy of the particles of the first and second 
groups, respectively, in their c.m.s.). We can 
then use the concept of crossed channel (t-channel), 
in which two particles with masses m and mt 1 go 
over into two particles with masses m and mt 2 • 

The cosine of the angle in the t channel can in 
this case be calculated from the general rules, and 
has the form (x = k2 = - t) 

coset == z 

(st- m2 + x) (s2 - m2 + x)- 2x (s- 2m2) 

[(s1 - m2 + x)2 + 4m2x]'f, [(sz- m2 + x)2 +4m2x'f, 
(1) 

It is assumed that the interaction is carried by 
a single quantum, which is set in correspondence 
to the moving pole in the MPM . The diagrams of 
this process are shown in Fig. 1 (single-jet proc
ess) and Fig. 2 (two-jet process). The amplitude 
is calculated by the Feynman rule, but with the 
following differences [4 ,5·8~. 

FIG. 1. FIG. 2. 

The propagation function D ( x) is replaced by 
the quantity -1ra I i( t) /2 , where I i ( t) 
= sin-1 (7rli(t)/2), Zi(t) is the i-th Regge trajec
tory. It is customary to assume that when 
It I « m 2 , all the trajectories are straight lines 
with equal slopes, i.e., 

It (t) = bt + at, 

The quantities b i are then determined from the 
condition l i ( mi) = J i , where m i and J i are the 
mass and spin of the quantum. For particles with 
zero spin (for example pions and kaons), this 
yields b1r = -J.L 2/m2 and bk = -mr/m2 ; J.L and 
m k are the masses of the pion and kaon. It is easy 
to see that when x - - mi the quantity I i has a 
pole Ii ~ (x + mi)- 1 , i.e., it behaves like Di(x). 

In addition, it is necessary to introduce in the 
MPM an additional factor Pz . (t) ( z ) -Legendre 
polynomials of order l i of th~ cosine of the angle 
in the t-channel. 

Starting from the foregoing rules, we can write 
down the differential cross sections for single-jet 
and two-jet nucleon-nucleon interaction processes 
at high energies in the form 

a2o}1>/as1ax = +nnm2a2g~ (x) s-2 [(s1 - m2 + x)2 

(2) 

a 3a}2>;asl as. ax = (3a2/32rts2) l(sl- m2 + x)2 + 4m2xl'1' 

X [ (s2 - m2 + x)2 + 4m2x]'1'at (s1, x) a (s2, x) 

X i I (x) \2 P~1 (x) (z). (3) 

H (1,2) . . 
ere u i -cross sectiOn of smgle-and two-jet 

processes (Figs. 1, 2) due to the exchange of the 
i -th "reggeon"; f i-is the reggeon -nucleon coup
ling constant in the unexcited vertex of the diagram 
of Fig. 1, and g i ( x) is the "form factor" in this 
vertex. The quantities u i ( s , x) have the same 
meaning as in the OMA, and stand for the cross 
sections of the interactions between the virtual 
reggeon and the nucleon. When I i ( x) = 2D i( x) /1ra 
and P z i ( z) - 1 these expressions coincide with 
those of the OMA. 

Expressions (2) and (3) can be recast in differ
ent form, which is more usual from the point of 
view of the MPM . Indeed, putting 

nfm2a2g2 (x) c; (sl, x) = cl (sl, x), 

(3a2/32n) a (s1, x) o (s2, x) = C2 (s1, s2, x), 

we can rewrite (1) and (2) in the form 

a2o?> tas1ax 

= C1s-2 !(s1 - m2 + x)2 + 4m2x]';, i It (x) i2Pl1 <x> (z),(4) 

iJ3a}2>/iJs/Js2iJx = C2s-• [(s1 - m2 + x)2 + 4m2xl'1' 

X !(s2 - m2 + x)2 + 4m2xJ';, \11 (x): PY1 <x> (z). (5) 

The quantities C1 and C2 are proportional to the 
squares of the residues of the partial amplitude 
f i ( l, t) which is encountered in elastic scattering. 
The arguments s 1 and s 2 reflect the dependence of 
the residues on the "masses" of the excited nu
cleons. 

We note that (2) -(5) contain as unknown func
tions U i ( S, X) , C 1 ( S, X) , and C2 ( St, S2, X) • 

The u i ( s , x) are known only for x = - mi, where 
they represent the cross sections for the interac
tion between real particles; the quantities Ct, 2 

can be regarded as known only for s 1 = s 2 = m2 

where they are related to the elastic scattering 
amplitude. 

Thus, when we use expressions (2) and (3) or 
(4) and (5), the question arises of extrapolating 
u ( s, x) or C ( s, x) to regions where they are not 
directly observable. In this connection there is a 
large quantitative difference between the different 
Regge trajectories. Indeed, in the physical region 
of the inelastic processes x > 0 ; the main contri
bution is made by the region I xI « m 2 (see be
low). Therefore, if the pole of the function I i ( x) 
is located near the point x = 0 (this occurs, for 
example, in the pion trajectory, where xp = -J.L 2 ), 

expressions (2) and (3) are more "physical," 
since it is more convenient to use the quantities 
u ( s i , - J.L 2 ) and continue them into the region 
x > 0 . On the other hand, if the pole of I i ( x) is 
far from the point x = 0 (as, for example, in the 
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case of a vacuum reggeon, when it is located near 
x ~ -1 BeV 2 ), expressions (5) and (4) are pref
erable, since the quantity C 1 ( s = m 2 , x) is known 
for the region x > 0 from elastic scattering. We 
shall not concern ourselves, however, with the con
tinuation of the functions a ( s , x) and C ( s , x) , 
and focus attention on the factors I i ( x) and 
P l i ( x ) ( z ) . In this connection, we shall assume 
henceforth that C 1, 2 are constants of the order of 
unity. 

The main condition for the effectiveness of MPM 
is that z should tend to infinity with increasing en
ergy s . It is only in this region of values z - oo 

that effects connected with the motion of the poles, 
corresponding to elementary particles, can appear. 
However, in inelastic processes, the kinematically 
allowed region of x, s, s 1 , and s 2 is such that 
both large and small values of z are possible in it 
(details will follow). Therefore, under the condi
tion z » 1 we can describe only some of the 
possible inelastic processes, involving part of the 
kinematically allowed region. 

More specifically, we confine ourselves to the 
region 

(6) 

Here v -arbitrary parameter in the range 0 < v 
< 1 . We can always put here P z i ( x) ( z ) = z l i ( x). 
The asymptotic energy region in which the effects 
connected with the motion of the pole appear, is 
determined from the condition 

a In z =vaIn (s/2m2) ~I. (7) 

It follows therefore that the parameter v cannot 
be close to zero, or else the asymptotic region of 
s will move too far away. If v is equal to unity or 
is close to it, then condition (6) singles out too 
small a fraction of the inelastic processes (see 
below). We shall therefore put v ~ ( 1 - v) ~ 1 . 

3. Before we proceed to direct calculations by 
Eqs. (4) and (5), let us consider the kinematics of 
the inelastic processes in nucleon-nucleon collis
ions. As is well known (see, for example [TJ), the 
region of the variation of s 1 , s 2 and x , which is 
allowed by the conservation laws for two-jet proc
esses, lies between the planes s 1 - m 2 = 2mJ.L + J.l 2 

and s 2 - m 2 = 2mJ.L + mJ.L 2 (here J.l is the mass of 
the pion, the lightest of the possible generated par
ticles) and the surface given by the equation 

(s1 - m2 + x) (s2 - m2 + x) 

for single-jet processes we should put s 2 

everywhere). 

(8) 

By substitution of (8) in (1) we can verify that 
the identity I z I = 1 holds over the entire sur
face (8). In this lies the main difference between 
inelastic and elastic processes. In the latter 
s 1 = s 2 = m 2 and the value of z is 

z = I - 2sj(x + 4m2 ) 

and tends to infinity asymptotically for forward 
scattering 3 l. 

Let us examine expression (1) for single-jet 
processes in two limiting cases. 

1. Region where s 1 - m 2 » x . Here 

(9) 

Z=-.1- x (I-2s-4m'). (10) 
V x + 4m2 s1 - m-t. 

This region can be arbitrarily called the region of 
large excitations. 

2. Region where s 1 - m 2 < x. From (1) we 
have in this region 

z = I - 2sj(x +4m2), (11) 

i.e., it has the same form as in the elastic process. 
We shall henceforth call it the region of small ex
citations. 

Accordingly, for the two-jet processes we have: 
1. Region of large excitations, where s 1,2 - m 2 

» x. Here 

(12) 

2. Region of small excitations, where either 
both s 1, 2 are small, s 1, 2 - m 2 < x, and then z is 
given by (11), or else one of the s is small and the 
other large: s 1 - m 2 < x, s 2 - m 2 > x. Then 

Z=-./ .x (I+s,-m2 _2s-4m2). (13) v X T 4m2 X S2 - m2 

4. Let us consider the contributions from dif
ferent regions. In single-jet processes, as can be 
readily verified, the region of small excitations 
plays an insignificant role in the asymptotic region 
of s . Indeed, the total cross section (after integra
tion in formula (4) over the region under consider
ation) is 

00 

<tl _ _S_ I dx 
0 i, M - s2 .\ 

Xmin=2m~J-+P.! 
m'+x 

X \ ds1 1 !, (x) 1
2 Pt (x)(z) [(s1 - m2+ x) 2 + 4m2xl'1' 

(m+l'-)' 

3lThis difference is due to the fact that at the point s, - m2 

= s 2 - m2 = x = 0 the limiting values of z depend on the path 
followed on approaching this point. For example, for Is, - m2 1, 
ls2 - m2 1 < x -> 0, Eq. (9) applies at the point x = 0. As x <Is 1,2 

- m2 1 -> 0 we have z = 1 at x = 0. This circumstance is con-
nected with the fact that at this point z is not an analytic 
function in its variables. 
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r- [ :rt J ( 5 )2(b; -cu) x l/ 4m2x sin-2 2 (b; - ux) 2m2 

-- v~ ( s )2[b;-l-2>mp.] 
~cl -- -

32m 2m2 

( s \-2[· :rt J-2 x In 2m2 ) sm 2 (b;- 2o:mf.t) . (14) 

We see therefore that the contribution from this 
region decreases in power-law fashion in all cases, 
since b i ,s 1 for all trajectories. 

In the region of large excitations, condition (6) 
assumes a major role, and can be written in the 
form 

V·--x- (1 2s) 4 v-2 ( s ) 1 -..._ ( s )v z= -+42 --:::::::: mx-22-~-2". x m s1 m St m (15) 

This determines the upper limit of s 1 : 

S1max = 4 V tn2X (s/2tn2) 1-v. (16) 

We see therefore that when v = 1, s 1 max does 
not depend on s and is bounded 4). 

Integrating (4) with respect to s 1 and with re
spect to x , we get 

[ J-2 -2v(1-b ·) 
a<I) = 2C1 sin _!!:__ b · (-5-) ' 

' 2 ' 2m2 

00 

X \' xdx ( s )-2vo:x 
j (1 - b; +ax). 2m2 ' 

X min 

(17) 

Xmin tends to zero with increasing s . 
It is seen from (17) that the contributions from 

all the non-vacuum trajectories, for which b i < 1, 
will decrease in power-law fashion with increasing 
s , although not as rapidly as the contributions 
from the small-excitation region: 

(1)- Ct ( _s_)-2 (-s-)-2v(1-b;) ( . :rtb,)-2 (18) 
a, - 4v2a2 (1- b) In 2m2 2m2 sm 2 · 

The contribution from the pion trajectory will be 
larger than that from the kaontrajectory, since 
I b1rl is appreciably smaller than I bK I. Namely. 
U1f ~ s-2v <t + p2jm2)' whereas uK ~ s-2v (1 + mk_fm2J. 

In addition, the pre -exponential factor of the type 
sin2 ( 1rb i/2) will in the case of pion exchange be 
( mf<:fp 2) 2 times larger than in the case of kaon 
exchange. 

4lThe situation is analogous to the case of small excita
tions. In this case there is no region of large excitations. We 
have therefore put 1 - v ~ 1. 

The vacuum trajectory for which bv = 1 makes 
a logarithmically decreasing contribution to the 
cross section: 

ov = C1/vu2 In (s/2m2). 

The ratio of the contribution of the pion trajectory 
to that of the vacuum is 

()~ _ ( S )-2v(Hp.'/m') [( [12 ) :rt2 [14 S J-1 
av -· 2m2 1 + m2 4 m• 2v In 2m2 

2m4 ( s ) -zv 
= v:rt2[14 ln (s ;2m2) 2m2 · (19) 

This ratio decreases with increasing energy in 
power-law fashion, but contains a large coefficient. 
Therefore there exists an energy interval in which 
the pion exchange is more significant than vacuum
reggeon exchange. At v f':j 0.7-0.8, this occurs at 
energies on the order of several times 10 BeV. It 
is possible that this is the reason why diffraction 
inelastic processes appear in pronounced fashion 
only at energy E l.s ~ 20 BeV[sJ. 

The situation in two-jet processes is analogous. 
The region of small excitations makes a small 
contribution; we shall not present an expression 
for this contribution. 

In the region of large excitations, the condition 

(20) 

determines the upper limits of integration with 
respect to s 1 and s 2 . Taking this into account, the 
contribution to the cross section assumes the form 

00 

\Z) _ ( • _~!_ ·)-2 (-!__)-2v (1-b;) \' (.!.-)-2vo:x __ x~ 
a, -- C2 sm 2 b, 2m" .\ 2m2 (1 - b; + ax) 

X min 

X [In-x ---1 -] 
xmin 2(1-b,+ax)' (21) 

where X min = 2m2s-1 (s/2m2) v. 
Processes consisting of a large number of 

"jets," can be represented as two-jet processes 
by combining the jets in two groups; their contri
bution is given by (21). It follows therefore that, 
as in the preceding (single-jet) case, all but the 
vacuum trajectory make a contribution which de
creases in power-law fashion. The vacuum trajec
tory makes a contribution that decreases logarith
mically with the energy. 

Thus, in the considered region of inelastic proc
esses ( z » 1) the main contribution is made by 
the process due to the exchange of the vacuum 
reggeon. However, it cannot ensure constancy of 
the total cross section of the inelastic processes. 
This is to be expected. Indeed, the cross section 
of the elastic scattering which gives rise to in
elastic diffraction interactions due to exchange of 
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the vacuum reggeon decreases itself logarithmic
ally with increasing energy 5l. We can therefore 
conclude that the main contribution to the total 
cross section is made by the region of small 
z ~ 1. The moving pole method is not effective 
in this region, since the quantity P z ( z) which is 
basic to it is small: P z ( z) ~ 1 for all trajector
ies. We need therefore estimate only the influence 
of the factors I I i ( x) I 2 = sin-2 [ 1r( b i - ax) /2] . 
At small x, the quantities I~ are inversely pro
portional to the fourth powers of the 111asses of the 
quanta that carry the interaction. Therefore the 
main contribution will be made by the process due 
to the exchange of the lightest (among the strongly
interacting) particle, i.e., the pion. The same re
sult is obtained in ordinary field theory if the 
propagation function as x - 0 is represented in 
the form Di (x) = (x + m2ir1 . Thus, in the main 
region of the inelastic processes, at z ~ 1, the 
effects connected with the motion of the pole, des
cribing the exchange quantum do not play any role. 
The previous results obtained in the OMA without 
account of the effects, remain in force here. 

5. Let us ascertain the characteristic features 
of the inelastic processes in the region 
z ? ( s/2m2 ) 11 » 1, and let us compare them with 
the characteristics of the process in the region 
z ~ 1. 

A. Values of the excitations s 1 and s 2 (on which 
the multiplicity, etc. depend) are limited from 
above by conditions (16) and (20). The effective 

values of s 1 and s 2 are close to the largest values, 
while the effective values of x are of the order of 
[ 2 v cdn ( s/2m2 )r1. Therefore St.eff 
~ m 2 ( s/2m2 ) 1- 11 in single-jet processes and 
(s 1s 2)eff ~ m2 ( s/2m2 ) 1-v in the case of excitation 
of both nucleons (we are presenting estimates with 
logarithmic accuracy). 

The corresponding values for single-meson 
processes with z ~ 1 have been considered prev
iously CsJ. Their order of magnitude is 

S1 ·eff, OMA ~ S, 

Thus, even "large" excitations are much smaller 
in the exchange of vacuum reggeons (by a factor 
( s/2m2 ) 11 ) than excitations in single-meson proc
esses. In this connection, the diffraction mechan-

5lit must also be noted that if inelastic processes of this 
type were to make the principal contribution to the total cross 
section, then the elastic process would be due essentially to 
the exchange of two vacuum reggeons. Such an elastic process 
would not have the usual Regge properties, and in particular 
the corresponding partial amplitude in the crossed channel 
would, according to [8 ], have a branch point in the l-plane. 

ism of the inelastic processes (exchange of vacuum 
reggeon) can be appreciable only for relatively 
"lean" jets. 

B. The condition (6) imposes a limitation on the 
components of the momentum transfer k. Indeed, 
let us write x in the form x = k2 = ki + K2 , 

K2 = ky1 - k~ (where k1, k 11, and k0 are the 
transverse, longitudinal, and time components of 
the four-momentum k in the c.m.s.). We take ac
count of the fact that (see, for example, [sJ) 
K2 = sj m 2 /s2 in single-jet processes, K2 = s 1s 2/s 
in two-jet processes, and ki = s e 2 ' where e is 
the angle between the momenta of the primary par
ticle and one of the jets. We can then represent z 
in the form z = ...fXlK2 = /1 + kf/K2 in single-jet 
processes and z = x/K2 = 1 + k 1 /K2 in two-jet 
processes. The condition z ;G (s/2m2 )11 » 1 
means that in both cases ki » K2 , and accordingly 
02 » S1S2/s. 

The existence of interactions in which this in
equality is satisfied can be checked experimentally. 
By the same token, we can verify whether the in
teraction with z » 1 is actually realized. 

We note also that in single-meson processes 
(in the OMA) ki ~ K2 and e2 ~ s 1s 2/s. This cri
terion can be used in the interpretation of the ex
perimental data. 

C. It must be noted that in the- case of exchange 
of a vacuum reggeon an azimuthal asymmetry can 
arise in the distribution of the secondary particles. 
It is connected with the possibility of the transfer 
of the angular momentum and consequently, with 
the fact that the Treiman and Yang conditions [1oJ 
are not satisfied in this case. The occurrence of 
azimuthal asymmetry follows from the formulas 
obtained by Ter-Martirosyan [4], who, however, 
did not discuss this asymmetry. This circumstance 
can also be used to ascertain the mechanism of a 
given specific inelastic process. 

In conclusion the authors are grateful to E. L. 
Feinberg for very fruitful discussions. 
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