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A perturbation theory in the number of hard quanta is developed within the framework of 
the continual integration method. The contribution of soft photons responsible for the ap
pearance of the doubly logarithmic terms is taken into account exactly to all orders in e2. 

The method is used to obtain various cross sections for high energy particle interactions 
with soft photon radiation taken into account. 

IN connection with the proposed colliding-beam 
experiments that are intended to test electrody
namics at small distances, it is important to im
prove the precision of the perturbation-theory for
mulas for the cross sections. 

The same problem is also of interest from the 
point of view of methodology, since it is here pos
sible to establish a connection between results of 
calculations, tested with the help of a dynamical 
principle, and general results on the behavior of 
cross sections at high energies, obtained recently 
on the basis of accumulation of moving poles of 
the scattering amplitude as function of angular 
momentum-the so called Regge poles. [l] In ad
dition, as will be shown below, a study of this 
problem provides a beautiful demonstration of the 
effectiveness and generality of the functional 
method of field theory. 

As is known, [2] the so called doubly logarith
mic terms play a leading role in radiative correc
tions at high energies in quantum electrodynamics. 
For a whole series of processes in a definite re
gion of angles these leading terms were first 
summed by Sudakov, [3 J Abrikosov, [2 J and then 
by Baier and Khelfets, [oi] by means of directly 
summing the corresponding perturbation theory 
diagrams, 0 and also by Blank[5J by means of an 
approximate solution of the Schrodinger equation 
by the proper time method. We propose below a 
simple general method for the calculation of cross 
sections at high energies, within the framework of 
the continual integration method. 

Various cross sections are obtained for the in
teraction of two fermions at high energies accom
panied by the emission of an arbitrary number of 

*Deceased. 
1'The most complete exposition of the problem and refer

ences to the literature are, apparently, to be found in the 
work of Yennie et al.[6 ] 

soft photons. It is shown that at high energies the 
cross section acquires a "Regge-like" form only 
if there exists a bound state in the annihilation 
channel of the corresponding process. 

1. METHOD OF CALCULATION 

As is known (see, for example, [7,8J), the prob
lem of finding the S matrix by the continual inte
gration method reduces to that of finding the 
Green's functions in an arbitrary external field 
and to the subsequent functional integration with 
appropriate weight. 

It is not possible to find a solution in closed 
form for the Green's function in an arbitrary field 
in the general case. In the case of interest to us 
the behavior of the matrix elements at high ener
gies in electrodynamics is determined by so called 
doubly logarithmic terms; the appearance of these 
terms is due to soft photons. [2] This circumstance 
somewhat simplifies the problem of finding the 
Green's functions in an external field, since it is 
only necessary to find a closed form expression 
for the low-frequency (corresponding to soft pho
tons) part of this field. In the work of one of the 
authors [S] a method was developed which takes 
into account exactly the contributions due to soft 
photons within the framework of the continual in
tegration method; that is, a closed-form expression 
was obtained for the Green's function in an external 
field and the functional integration over the exter
nal fields was carried out, and thus the S matrix 
was found for the case when only soft photons are 
present. 

It is not hard to generalize this method to take 
into aGcount along with the soft photons a finite 
number of hard photons; 2l to this end it is neces-

2lA method similar to that described here, but less exact, 
has also been proposed by Mahanthappa.[10] 
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sary to first generalize the corresponding solution 
for the Green's function in the external field. Con
sider the equation for the Green's function in an 
external electromagnetic field: 

(ia- m + eA (x)) G (x, x' 1 A) = - 6 (x- x'). (1) 

We divide the electromagnetic field into two 
parts: low-frequency At and high-frequency A2 

(A = At + A2 ) and develop a perturbation theory 
in the high -frequency part of the electromagnetic 
field. The structure of the solution for G can be 
seen from the following integral form of the equa
tion for G: 

G (x, x'IA) =Go (x, x' IA1) 

- e ~Go (x, y IA 1)A 2 (y) G (y, x' lA) d4y, (1') 

where G0(x, x' IAt) is the exact Green's function in 
the presence of the low-frequency part At (soft 
photons ) only. 

It is convenient to make use of an operator so
lution of Eq. (1), which may be written in the form 

G(x,x'IA) =- [(ib-m+eA 1) (l+(ia 

- m + eA 1t 1 eA 2)]-1 6 (x- x') 
00 

= .2; [(- ia + m - eA 1t 1 eA 2ln 
n=O 

X i(ia + m- eA 1)-1 6 (x - x'). (2) 

The first term in this sum, not containing A2, has 
been calculated explicitly previously. [S] 

Consider the second term, containing A2 lin
early. It may be written in the form 

0<1> (x x' lA) = (ia + m) 1 
h h 

' - (}2 + m2-eA1 (io + m) 
h 1 h 

X eA 2 h h (iiJ + m) 6 (x - x'). (3) 
- (}2 + m2- (io + m) eA1 

Let us Fourier-transform in the difference x -x'. 
If we also expand A2 ( x) in a Fourier integral and 
make use of the Fock integral representation for 
the inverse operators we obtain from (3) 

00 00 

1\ h h h \\ 
= - (2n)• .) d4 l e-ilx (iiJ + p + l + m) .l ds1 .) ds2 

xexp {is2 [m2+(ia + p + 1)2 

+ eA 1 (ia + r + l + m)]} eA. (l) 

x exp {is1 [- m2 + (ia + p)2 

0 0 

+ (ia +ph+ m)eA'1l} (ph+ m), (4) 

where 

G(l) (x, x' lA) = (2~)• ~ G (x, p 1 A) e-ip <x-x') d4p. (4') 

In this expression p (p is the electron's mo
mentum, as will be seen in the following) and l 
(the momentum of the hard photon) are large. Ig
noring in (4) all terms not containing the large 
quantities p and l we find 

00 00 

G(l) (x, p !A)=- (2~)• ~d4 l e-ux (ib + q + m) ~ ds1 ~ ds2 

0 0 

X exp {is2 [- q2 - m2 - 2iqiJ + eA 1 (q + m)]} eA 2 (l) 

xexp{is1 [-p2 - m2 - 2ipiJ + (p + m) eA 1 )} (p + m), 

(5) 

where q=p +l. 
Further manipulation of this expression is sim

plest accomplished by the techniques given in [ll]. 
The result is 

00 00 

a<l) (x, p lA) = (2!)• ~d4 l e-ux (ia + q + m) ~ ds1 ~ ds2 

0 0 

s, 

X T+ exp [ ie ~ A1 (x + 2qs') (q + m) ds' J eA 2 (l) 
0 

s, 

X T+ exp [ie (p + m) ~A 1 (x + 2qs2 + 2ps') ds'] (p + m). 

0 (6) 

In a number of important cases the expression 
(6) can be simplified. To this end we write the op
erators appearing inside the T+ exponentials in 
the form: 

A1 (q + m) = - 2qA 1 - (q- m)A 1 , 

(p + m) A1 =- 2pA 1 - A1 (p - m). (7) 

The last terms on the right sides of Eqs. (7) 
may be neglected if the momenta p and q lie on 
the mass shell or near it. In that case formula 
(6) becomes 

0<1> (x, pi A) 

= - (2~)2 ~ d4 l e-ux (ib + q2 + m) eA 2 (I) (p + m) 

00 00 

X ~ ds1 ~ ds2 exp {- i [s1 (p2 + m2) + s2 (q~ + m2) 

0 0 

s, 

+ 2e ~ pA (x + 2q1s2 + 2ps') ds' 
0 

s, 

+ 2e ~ q1A (x + 2q1s') ds ]} • 
0 

(8) 

It can be shown that the condition for the appli
cability of this formula is given by the inequalities 
I pqt I » I P2 + m 2 1, I qt + m 2 1. 
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The following expression for G<1l ( q, piA) is 
easily obtained from (4), (4'), and (8) (using the 
fact that in A1(k) k2 < 2pk, 2qk): 

( ) 1 ~ A A A 

G 1 (q, p \A) =- (2n)• J d4x e1<P-q)x (q + m) eA 2 (x) (p + m) 

00 00 

X \ dt ~ ds exp [- it (q2 - m2) - is (p2 + m2) I 
0 0 

t 

X exp {- 2ie [~ qA 1 (x - 2qt') dt' 
0 

s 

+ ~ pA 1 (x + 2ps') ds' ]} , 
0 

>< G (q, p) = (2!)• ~ G (x, x') e-iqX+ipx' d4x d4x'. (8') 

An analogous procedure gives for the third 
term of the sum (2) bilinear in A2, the expression 

00 00 

a<2
> (x, pI A) =- <2~)• ~ d4 l1d4 l2 (ia + ql + m) ~ ds1 ~ ds2 

0 0 

+ 2e ~, qA1 (x + 2q1s') ds'}]eA 2 (!2) (ia + r + m) 
0 

s, 

X r+ exp [ ie ~ A1 (x + 2q1s1 + 2rs') ds' (r + m) J eA~ (/1) 

0 

s, 

X exp [- '2ie ~ pA1 (x + 2q1s1 + 2rs2 + 2ps') ds' J 
0 

x (p + m), (9) 

where r = p + lz, q1 = p + z1 + lz. 
To the same accuracy we obtain for G <Zl ( q, pI A ) 

the following expression: 

00 00 00 

G<2> (q, p \A) =- (2~)• ~ d4xet(p-q)x (q + m) ~ ds1 ~ ds2 ~ ds3 

. 0 0 0 

s, 

+ 2e ~ qA 1 (x - 2qs') ds'} J eA2 (x) (r + m) 
0 

s, 

x T+ exp [ie ~ A1 (x + 2rs') (/+ m) ds'] 
0 

s, 

X eA'2 (x) exp [- 2ie ~ pA 1 (x + 2ps' + 2rs2)ds'] (p -l- m). 

0 (9') 

These formulas were obtained on the assumption 
that q and p lie near the mass shell. Knowing the 
Green's functions in an external field we can pro-

ceed to the calculation of various matrix elements 
for the interaction of two particles. 

2. INTERACTION OF TWO FERMI PARTICLES 

We shall consider such energies of the inter
acting particles for which the photon vacuum po
larization may be neglected. In that case the 
Green's function for two Fermi particles with 
masses m 1 and m 2 (for example, electron and 
t--t meson) is given by the following formula: [7] 

G12 (X1 , x2 ; X a, X 4) = ~ lGm, (X1 , X 3 \ A) Gm, (X2 , x. \A) 

- bm,m, G (xl, x.) G (x2, X a) 1 

>< exp [- +~A (x) 0 A (x) d4x J II dA (x), 

where 

(10) 

In the following we consider for simplicity only 
the case of different masses since the generaliza
tion to the equal-mass case can be obtained from 
the final answer by antisymmetrization in the par
ticle coordinates. Substituting expression (8') into 
(10) we obtain the function that describes the scat
tering process of interest: 

G (q1 , q2; p1, p2) = - (;~~. ~ d4 x1 d4 X2 exp [- i (q1 - p1) x1 

- i (q2 - P2) x2l (ql + ml) D.,.. (xl - X 2) 

X (q2 + tn2) rv (p2 + tnz) 
00 2 2 

X ~ II ds~ dt~ exp {- i ~ [sn (p~ + m~) + in (q~ + m~) 
o n~l n~l 

sn tn 

- 2e ~ ds~pnA (Xn + 2ps~) + 2e ~ dt~qnA (Xn - 2qin) ]} 
0 

sn sm 

X exp [ 2ie2 ~ { ~ ds~ ~ ds',p~Dp.v 
n, m~1 0 o 

tn· 1m 

+ ~ dt~ ~ dt',q~Dp.v (2qmi',- 2qnl~ + Xn - Xm) q';,. 
0 0 

sn tn 

+ 2 \ ds~ \ di~p~D.,.. (2pns~ + 2qmt', + Xn - Xm) q':n}], 
.I " 
0 0 

(11) 

As is easy to see by comparison with perturba
tion theory, the first two terms inside the expo-
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nential with n = m describe radiative corrections 
to one-particle Green's functions, while the terms 
with n = m in the last term inside the exponential 
correspond to the radiative additions to the vertex 
parts ("clothing" of the interaction knots r ), and 
the remaining terms result from the exchange by 
the particles of soft quanta while scattering (so 
called radiative additions of type dr IdA). 

We now take the Fourier-transform in the vari
able x1 -x2. This is done simplest within the accu
racy of the present work by expanding the exponen
tials of (11) in powers of e and integrating over 
x1 -x2• Introducing the integral representation for 
the Green's function of the hard photon: 

00 

D (k) = - 1 -. = i ~ da e-ia.k'-w. (12) 
k2 -tB ~ 

0 

and discarding terms quadratic in the momenta of 
the soft photons, whose contribution is beyond the 
accuracy of our approximation, we obtain 

e2 \ G (q q · p p lA) = -- dx4 e-i(q,-p,+q,-p,)x 
1• 2• 1• 2 (Zn)' • 

x (eli+ m1) r~" cfl1 + m1) (q2 + m2) r~" (P2 + m2) 

co 00 2 2 

x ~ da e-ia.t•-sa ~ II dsn dtn exp [- i ~ {sn (p~ + m~,) 
o o n=1 n=1 

sn 

+ 2e ~ ds~pnA (x + (-!tal+ 2pns~) 
0 
In 

+ 2e ~ dt~ Qn A (x + ( -l)n al + 2qnt~)} J 
0 

2 sn 
>~ exp [ 2ie2 ~ { ~ ds~ PnD (2pns~- 2pms',. 

n; m=l o 

+ 2 (n - m) al) Pm 

In lm 

+ ~ dt~ ~ dt',. QnD (2qmt',.- 2qnt~ + 2 (n - m) al) Qm 
0 0 

sn fm 

+ 2 ~ ds~ ~ dt',. PnD (2pnS~ + 2qmt',. 
0 0 

s" with doubly logarithmic accuracy presents no 
particular difficulty, since in this case the prob
lem reduces to the finding of the region of integra
tion over s' and s" in which the denominator of 
every term is proportional to s's". This region 
has on a logarithmic scale the form of a polygon 
whose area gives the value of the integral in the 
doubly logarithmic approximation. Certain com
plication arise in going to the limit l- 0, and 
also in evaluating the integrals connected with the 
vertex parts. In that case it is necessary for the 
determination of the lower boundary of the doubly 
logarithmic region (for small s' and s") to take 
into account the quadratic in gradient terms that 
were omitted in passing from the exact formula 
(4) to formula (5) and correspondingly in the fol
lowing formulas. 

Indeed, in passing from (4) to (5) we have, in 
particular, neglected the squared gradient, i.e., 
V'2 in comparison with pV'; taking V'2 into account 
makes it possible to determine the lower boundary 
of the doubly logarithmic region. 

We will not give here all the necessary steps 
but will only present a resume of the changes that 
must be made in the obtained expressions, namely: 
it is necessary to replace in formula (3) and all 
the following formulas the terms of the type 

s s 

r pA (x -1- 2ps') ds' ~ _1_\ I pA(k) eikx+2ikps'-is'k'd4kds' 
j ' (2n)'/, J .\ 
0 0 

and correspondingly 

D (2ps' ± 2ps" ± 2al) --+ D(2ps' ± 2qs" ± 2al) 

ipq ( [ i (ps' ± qs" ± af)2 ]) 
= 4n2 (2ps' ± 2ps" ± 2al)2 1 - exp s' + s" +a • 

(14) 
Comparison with perturbation theory shows that 

such a replacement corresponds to the taking into 
account in the denominators of the electron propa
gation functions of additional diagonal quadratic 
terms, i.e., terms of the type 6 kf, and the ignor
ing of terms of type ~- kikj, while up to now we 

j¢1 

were taking into account in the denominators of the 
Feynman diagrams 

+ 2 (n- m) al)qm}]. (13) ~d4k1 ... d4kn {[(p1 + k1 + k2+· .. +kn)2+m2) 

The integral over x yields 4-momentum conserva
tion, and in the case when the external field is ab-
sent we have 

l = + (q1 - P1 + P2 - q2) = qt- P1 = P2- q2· (13') 

Calculation of the indicated integrals of the 
type JJ ds' ds"D( 2ps' + 2qs" + 2al) over s' and 

... [(p2 + k1)2 + m2W1 

;nly terms of the type _6 pki and PI + m 2• Taking 
i 

into account terms of the type 6 ( 2pki + ki ) turns 
i 

out to be sufficient to determine the lower boundary 
of the doubly logarithmic region in the integrals 
over s' and s". 
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Indeed, as can be seen from Eq. (14), taking 
these terms into account has resulted in the ap
pearance of the additional factor (for a.l - 0 ) 1 
-exp{i(ps' +qs")2/(s' +s")} whichvanishes 
for I (ps' + qs" )21 « s' + s". Only in the case 
when 

! {ps' + qs")2 j > s' + s", (15) 

is the additional factor equivalent to unity (since 
the exponential oscillates rapidly). It is the condi
tion (15) that determines the lower boundary of the 
doubly logarithmic region for terms for which 
a.l- 0 or a.l = 0. 

With the help of the obtained Green's function 
we find the matrix element by the standard pro
cedure of passing to the mass shell. However the 
matrix element for pure elastic scattering van
ishes in that case. This is a well known situation 
due to the fact that the photon has zero rest mass 
(the so called "infrared catastrophe"), it reflects 
itself in experiments in the fact that an instrument 
with resolving power .6-E measures the interaction 
cross section for processes involving the emission 
of an arbitrary number of soft photons whose en
ergy does not exceed .6-E. Therefore physical sig
nificance attaches only to "elastic" scattering of 
electrons with the emission of soft photons of en
ergy .6-E (or not in excess of .6-E). This is 
achieved by applying to expression (13) the operator 

respectively for each emitted photon of momentum 
ki and polarization ei, after which one must set 
the external field A equal to zero. 

Carrying out the indicated operations and going 
over in the standard way from the Green's function 
to the matrix element, we find for the matrix ele
ment for the scattering of particles with the pro
duction of n soft photons: 

Mn = e2Up (ql) t~~oUv {pl) U"J,. (q2) r~~oua (p2) 

X lim (p~ + m~) (q~ + mi) {pi+ mi) (qi + m;) IP2_,. -m~ 
' ' q~--+ -mJ 

00 00 2 

X ~ e-ia.k'-ea.da, ~ IT dsndln exp [- isn (p;, + m;,) 
o o n=l 

- itn (q;, + m~)l iexp [ 2ie2 n;~=1 { ~n ds~ sr ds",pnD 

X (2PnS~- 2pms", + 2 (n - m) al) Pm 

In tm 

+ ~ dt~ ~ dt",qnD (2qmt",- 2qnt~ + 2 (n- m) al) qm 
0 0 

sn tm 

+ 2 ~ ds~ ~ dt~pnD (2pns~+ 2qmt~+ 2 (n- m) al) qm}] 
0 0 

. I 

1 In ei 1 { . ~n 
X ,r- I -,1 ,r- - 2teqn dt1 

r n! i=I (2n) ' r 2w 1 0 

sn 

- 2iepn ~ ds; exp [2is;ktPn + i (- Itaktll}. (16) 
0 

The factor 1//llf takes account of the identity of 
the emitted photons. 

Let us calculate the total cross section for scat
tering with the emission of soft photons whose en
ergy in the center of mass system does not exceed 
.6.: 

- 1 '; \' ( ; ) 3 3 '2 da - (2n)' ~ J e ~ - ~ Wt d kl ... d kn I Mn l 
n=O i-=1 

{ 1, x>O 
6 (x) = o, x < o · (17) 

It is convenient to express the integral over the • 
soft photons in the form 

~e ( ~- ~ w1) d3k 1 • •• d3kn 
i=I 

to. 

= ~ dw {) (w- ~w1) ~d3k1 ... d3kn 
0 

(18) 

The remaining calculations are performed under 
the assumption that the quantity .6. is small in 
comparison with the energies of the colliding par
ticles, and that, therefore, one may neglect the 
particle recoil in the emission of a soft photon. 
Under that condition one may neglect the term I: ki 
in the argument of the o function in formula (17). 

Summing over n in formula (17), with (18) taken 
into account and under the assumption made above 
with respect to .6., we find the following expression 
for the cross section for the scattering of two par
ticles accompanied by the production of soft pho
tons whose total energy does not exceed .6.: 
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x exp (i~ (12 + ie) - ia. (12 - ie)] 

00 00 

X exp {2 ~ ds~ ds' [F (a.)+ r (~)- 2<D (1:)l}; (19) 
0 0 

2 

F (a.) = ie2 ~ {PnD [2pns- 2pms' +((-It 
n; m=l 

- (-l)m)a.l] Pm 

+ qnD [2qms- 2qns' + ((- l)n- (- l)m) a.l] qm 

+ 2pnD [2pns + 2qms' + ((- 1r- (- l)m) a.l] qm}; 

(20) 

2 

<D (1:) = ie2 ~ {PnD+ [2pns- 2pms' + (- !)mal 
n; m=l 

+ qnD+ [2qms- 2qns' + (- l)na.l- (- l)m~l + 't] qm 

+ PnD+ [2pms + 2qms' +(-!)ned(- l)m~l + 't] qm 

+ qnD+ [- 2qns'- 2pms' 

+ (- 1ra.1- (- l)m~l + 1:l Pm}, (21) 

where da0 /d!J is the corresponding differential 
cross section in first approximation of perturba
tion theory; r 4 = T, r 1, 2, 3 = 0; 

D ( ) - i \ tkx tFk - i 
+ X - 2 (2rr)3 j e w - 4rr2 (x2 - (t + ie)2) ' 

Dfl. (2ps ± 2pls1 ± 2a.l) = (Z~)• ~ D~. (k) 

x exp [ik (2ps ± 2p1s1 ± 2a.l) - ik2 (s + s1 + a.)l d4k. 

(22) 

In the case of the Feynman gauge DZv = ( k2 - iE) -t x 
of.J.V• and the expression (22) coincides with for
mula (14). 

In conclusion we note that in the derivation of 
(19)-(21) we have made use of the following rela
tion, valid for any finite function: 

00 

lim i\ dsexp [-is (p2 + m2 - ie) + F (s)l 
P1+m1-+0 J 

0 

- _1_eF(oo) 
- P"+m2 . (23) 

3. ASYMPTOTIC BEHAVIOR OF THE INTERAC
TION CROSS SECTION OF TWO FERMI PAR
TICLES 

It is seen from the formulas for the cross sec
tion that the dependence of F and ci> on a and {3 

enters into these formulas along with the scalar 
products of the corresponding momenta of the par
ticles. Since we are interested in the behavior of 
the cross sections at high energies, the correspond
ing scalar products of the momenta will be large 
(excluding, generally speaking, the region of angles 
close to 0 or 1r) and it seems reasonable to ignore 
the dependence of F and ci> on a and {3. In that 
approximation the formulas (19)-(21) simplify 
considerably and take on the form: 

(24) 
-00 

The expression for B ( T) is easily obtained from 
(19)-(21) by setting a= {3 = 0 in F and ci> and per
forming the integration over s and s'. As a result 
we obtain an expression for the cross section that 
differs little from the analogous expression ob
tained by Yennie et al [SJ by an entirely different 
method. To illustrate this it is sufficient to set 
a= {3 = 0 in (19)-(20) and pass to the momentum 
representation for D and D+. Afterwards the in
tegration over s and s' is elementary. As a re
sult we obtain the following simple expression for 
B( T): 

B (1:) = ~ ~ {\ d"k e-iw' (~ _ !!!:._) (--'!!!!_ _ _!!!!!____) 
321t3 LJ ~ w kpn kqn kpm kqm 

n; m=l 

(25) 

The integrations in (25) present no particular 
difficulties; they are carried out most conveniently 
with DZv expressed in the Feynman gauge, how
ever for purposes of gauge invariance it is more 
convenient to use for uzll the transverse gauge, 
i.e., 

Omitting the details we give the asymptotic form 
of the expression for B( T) for large T: 

(26) 
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The expression for A1 is somewhat awkward 
and we therefore give only the asymptotic form 
in the c.m.s.: 

i, i=l 
1 . _ e• (' ln[l/ziEi-Ei+x(Ei+Ei)IJ 

a (pi, Pi) - 4n• (p,pi) ~ (P;- Pi+ x (Pi+ Pi))" dx 
-1 

e• (P;Pj) 

= - 16112 Y(P1Pj)2 - P~Pj 

[ 11 1 1-x .. x In- E·- E· + x·· (E· +E-) jln --'-1 
2 t 1 LJ t I 1 + xij 

( 
(E. + E ·) (1 - x .. ) ) + <!> _ t I 'I 

£ 1 - Ei + xii (Ei+Ei) 

( 
(E-+E)(i+x .. )) (i-+J.)] _ cp ' I LJ + . . , 

Ei- Ei + xii (£,+ Ei) 1-+ t 

X 

<D (x) = (' ~In ] 1 - y \, 
.\ y 
0 

where Ei = vmr +PI. 
Integrating over T we obtain 

da/dQ = (da0/dQ) ~ -•~zA,;r (1 - 2A). 

(28) 

(29) 

Using standard procedures one can obtain from 
these formulas also the cross section for the scat
tering of particles with opposite signs of the charge. 
The formulas are also easily generalized to the 
case of interaction of identical particles. At that it 
is necessary to keep in mind that du0 consists of 
two diagrams (direct and exchange) and the appro
priate procedures must be applied to each diagram. 
Thus, in the approximation here considered the 
cross section has the asymptotic form 

da/dQ = (da0/dQ) (E1/ ~)A(m,, m,) (E2/ ~)A(m,, m,), (30) 

where E1 and E2 are the energies of the colliding 
particles in the c.m.s. At that in the c.m.s. of the 
corresponding processes A has the form: 

1) for electron-electron scattering 

A=_~ [ m•+2p2 sin•(6/2) 
2n2 p I sin (6/2) I V m2 + p.2 sin (6/2) 

X In PI sin (6/2) I + V m2 + p2 sin2 (6/2) 
m 

- m• + 2p• In P + Vfn2+1J2- 1 
pfm"+P" m 

+ m2 + 2p2 cos2 (6/2) 

p 1 cos (6/2) I V m• + p2 cos (6/2) 

X ln p r cos (6/2) I+ v m2 + p2 cos2 (6/2) ]· 
m , (31) 

2) for electron-positron scattering 

A = _ _::__ [ m• + 2p• sin• (6}2) 

2n• pI sin (6/2) 1 V m2 + p2 sin2 (6/2) 

x ln P I sin (6/2) I + V m2 + p2 sin2 (6/2) 
m 

m2 + 2p2 ln p + V p• + m2 

- 1 + --=-========= p Vm"+p• m 

m2 + 2p2 cos (6/2) 

p I cos (fJ/2) I V m2 + p2 cos2 (6/2) 

X ln PI cos (fJ/2) I+ V m2 + p•cos2 (6/2)]. 
m ' 

3) for electron-J..L- meson scattering 

A (m M) = _ _::__ [ m2 + 2p2 sin2 (6/2) 
' 2n• p /sin (fJ/2) I V m2 + p2 sin2 (fl/2) 

I pI sin (6/2) 1· + V m2 + p2 sin2 (6/2) X n -'---'----'-'--'-'--'--'--...:.._: __ .:_:_..:.. 
m 

p• cos 6 + E1Ez 
- 1 + V (p2 cos fJ + E1Ez)2 - m2M 2 

I p2 cos 6 + E1Ez + V (p2 cos 6 + E1Ez)2 - m2M 2 

X n mM 

p2 + E1E2 I p2 + E1E2 + pE1 + pEz] 
- p (E1 + Ez) n mM ' 

4) for electron -J..L + meson scattering 

A (m J\1) =--
e• [ m• + 2p• sin• (6/2) 

' 2n• p 1 sin (8/2) 1 V m• + p• sin2 (8/2) 

I pI sin (fJ/2) I + V m2 + p2 sin2 (fl/2) X n -'--'---'--'--'--' 
m 

_ I + p2 + E1Ez In p2 + E1E2 + pE1 + pEz 
p (E1~+ Ez) mM 

p2 cos fJ + E1E2 

V (p2 cos fJ + E1Ez)2 - m2M 2 

l p2 cos fJ + E1E2 + V (p2 cos fJ + E1Ez)2 - m2M 2 

x n mM 

(32) 

(33) 

(34) 

5) for annihilation of an electron pair into a J..! 

meson pair 

A (m J\1) = _.!:__[E"+p"lnE+p+E"+q•lnE+q 
' 2n2 2E p m 2Eq M 

+ £2-pq cosfJ 
v E2 (p2- 2pq cos (J + q2)- (pq cos fJ)2 

1 £2 + pq cos e + v E2 (p2 -2pq cos 6 + q•)- (pq cos e)• 
X n mM 

_ 1 _ E2 + pq cos 6 

V £ 2 (p2 + 2pq cos fJ + q2) -(pq sin fJ)2 

I £2 + pq cos (J + v £2 (p2 - 2pq cos 6 + p2)- (pq sin fJ)2 ] 

X n mM ' 

where q2 + Mz. = p 2 + m 2• 
(35 

In the case when cos () f:::: 1 the formulas (26)
(28) coincide with the results of Baier and Khelfets~4 J 
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process e~n: 6-0 

e+e ..... e+e 0 
e+ + e- ...... e+ + e-

ll-+ e- ..... It-+ e-
~t++r ..... ~t++e-
e- + e+ -> ll- + ll+ 

- 2ln2 (E!m) 
1/2ln2 [(Er + Ez)2 jmM] 

_Ijz!n2 [(£1 + E2) 2jmM] 
- 1/2ln2 (£2/mM) 

0 
0 
0 
0 

1/2 ln2 (£2/mM) 

Let us note that the cross sections obtained in 
that approximation have the characteristic "Regge
like" form. Indeed if we go over to the Mandel
starn variables s, t, and u we obtain for electron
electron scattering, for example, 

d:; ~duo s2[a(l)-a(s)+ot(u)] 
dQ~dQ ' 

(36) 

where s = - (p1 + p2 )2 is the energy in the c.m.s.; 
u =- (p1 -q2 ) 2 ; t =- (p1 -q1 ) 2 is the momentum 
transfer in the c.m.s. At thaf if we continue the 
initial formulas analytically in t we find 

a (/)=__::..{I + (t- 2m2) [In 12m2- t + V_t (t- 4m2)/] 
4n2 y t (t _ 4m2) 2m2 

+ inS (t - 4m2)} , 

when t < 0 and t >4m2; 

(37) 

e2 { 2(t-2m2 ) _ 1 "1 / t ) 
a(i)=4n2 1+ Vt(4m2-t) tan Jl 4m'-t, (38) 

when 0 < t < 4m2• 

It is seen from (36) that the cross section has 
the "Regge -like" form s a(t) ( s a(u) ) for small t 
(or u); for s ~ t ~ u the cross section has the 
form s 0'( s). At that for the general case of the 
interaction of two particles the behavior of the 
cross section at large energies s and small t 
(or u) is determined by the presence or absence 
of bound states in the t (or u ) channel. Only in 
the case when a bound state exists for the corre
sponding process in the t (or u) channel does the 
cross section have the "Regge-like" form s O'(t) 
(or sO'(U)) for small t (or u ). 

Thus for the e + + e + scattering process we have 
a bound state ( positronium ) in the t as well as in 
the u channels and the cross section has corre
spondingly Regge-like behavior for both forward 
and backward scattering. In the case of electron
positron scattering there exists a bound state in 
the t channel only and consequently only for small 
angle scattering (t small) does the cross section 
behave Regge-like; scattering backward has instead 
the form s 0'( s). In particular for the process of 
annihilation of an electron pair into a P, meson pair 
we have a bound state in the t channel ( J1. + + e- ) 

and, correspondingly the cross section has Regge
like behavior for small angles. Indeed from (35) 
we get 

d1 ~ dcr0 a.(l) (t) 
dll ~ dQS 'C/. 

00 

e2t \' t'-m2 -M2 dl' 
=4n2 j V(t'-(M-m)2(f'-(M+m)')t'(t'-t-iE). 

(m+M)' (39) 

With the help of (38) and (39) it is possible to 
obtain the spectrum of the corresponding Regge 
trajectories (see also [12• 13]), however in contrast 
to the real spectrum in our case l enters (in the 
expression for the spectrum ) in the combination 
( l + v), where v has various values for the vari
ous processes (it is not equal to unity as is the 
case for the real spectrum ) . 

We shall not give here the details of calcula
tions with the more accurate formulas (19)-(21), 
except to note that the expressions for the corre
sponding diagrams obtained with the help of (19)
(21) are, generally speaking, substantially different 
from the analogous results obtained from (25) and 
represent more correctly the situation for the usual 
Feynman diagrams. It is relevant, however, that in 
the final expressions for the cross sections the dif
ferences in the "direct" and "exchange" diagrams 
mutually compensate each other and for the greater 
part of the angular region we arrive at the previous 
result for the cross sections. Differences occur 
only for certain processes for backward ( (} ~ 1T 

- m/E) and forward ( (} ~ m/E) scattering. At 
that, in order to obtain more precise formulas in 
that region of angles it is necessary to slightly 
correct also formulas (20) and (21). 

To put it succinctly, the situation is such that 
with the help of the approximate formulas (24)-(25) 
we obtain the doubly logarithmic terms that are due 
to the photon pole (k2 = 0) only; in formulas (20)-
(21) the fermion pole 3> ( k2 + m 2 = 0) contributes 
along with the photon pole, it therefore only re
mains to take more precisely into account the 

3>As shown by Abrikosov[2 ] the fermion pole gives rise 
to an additional doubly logarithmic term for backward e- + e + 
scattering. 
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spinor dependence of the fermion pole in these 
formulas [i.e., to take approximately into account 
the operator a (i.e., k) along with p in the 
starting formula (4)). 

Details of the more accurate cross sections 
reach beyond the framework of this article and 
will be given in a separate paper of one of the au
thors (E.F.). Here we shall only give for refer
ence a table of the necessary corrections for the 
cross sections (31)-(35) for forward and back
ward scattering 

dojdQ = (do<n>jdQ) e•'514"', (40) 

where dcfn)/dQ is given by the formulas (31)-(35), 
and the quantity 6 is given in the table. 
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