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An equation is derived for the time dependence of the radiation intensity of a laser. A solu­
tion of the equation is obtained in two extreme cases, for small and for large amplitude os­
cillations. The waveform and period of strong intensity oscillations are determined as func­
tions of the amplitude. The waveform is very different from sinusoidal. The oscillation damp­
ing law is deduced. 

1. INTRODUCTION 

QBSERVA TIONS of oscillations in the intensity 
of laser radiation, having a frequency of the order 
of 105-106 cps, have been reported in the experi­
mental papers on optical quantum generators (for 
example [1' 2]) • Several papers [2- 5] have dealt with 
the theory of this effect. The papers of Hellwarth[3 J 
and Samson and Savva [.t] are based on a model of 
a laser having the form of an infinite slab of the 
active medium with plane parallel end walls. Such 
a model can hardly serve as a good approximation 
since it does not give certain important properties 
of the laser; in particular the directionality of the 
laser output does not follow from this model. 

The papers of Sorokin [2] and Kaiser et al [5] 

treat a laser with end mirrors of finite dimensions. 
However only small oscillations in the output in­
tensity are treated in the above papers, while the 
experimentally observed oscillations have large 
amplitude and are decidedly non-sinusoidal in 
shape. Actually the results obtained this way 
amount to an investigation of the stability of the 
stationary laser mode. In the above papers no ac­
count was taken of the dependence of the coefficient 
of amplification on frequency, and this omission 
leads in certain cases to qualitatively incorrect 
results. 

The present paper treats the oscillations in the 
intensity of the directional radiation from a laser 
with reflectors of finite size and, in contrast to the 
previous papers [2•5], takes account of the depend­
ence of the amplification coefficient on the fre­
quency of the light and treats·the related variation 
in the spectral composition of the output with time. 
It is shown below that taking account of this de-

soidal form. The waveform and period of the os­
cillations as a function of amplitude are found, as 
are other characteristics of the oscillating mode. 
Small oscillations in the radiation intensity are 
also considered in investigating the stability of the 
stationary mode. 

In order to simplify the calculations it is as­
sumed in the present paper, as in the previous 
papers [2, 5], that all points in the active medium 
experience identical conditions and therefore that 
at each instant of time the radiation energy den­
sity is everywhere the same. In other words it is 
assumed that all of the radiant energy in the reson­
ator oscillates as a whole. This assumption seems 
to be rather well founded since, during the duration 
of a period of the oscillation, the radiation usually 
has sufficient time to redistribute itself in the 
cavity. 

2. EQUATION FOR THE RADIATION INTENSITY 

Let the working transition occur between two 
impurity levels ·1 and 2 (with 2 higher than level 1). 
The laser transition is characterized by an ab­
sorption band and a luminescence band; the shapes 
of these bands are conveniently described by the 
functions P 1(w) and P 2(w) respectively, normal­
ized to unit area [6]. Let the absorption coefficient 
in the impurity band 1) be denoted IJ.(W) • 

We designate by c 1 and c 2 the concentrations of 
impurity centers in states 1 and 2 (i.e., their num­
ber per unit volume), and by c 0 the total concentra­
tion of impurities. One usually has the relation 

pendence leads to a new damping mechanism for tlin order not to complicate the formulae, we assume that 
the oscillations. The present paper considers the sample is uniform and optically isotropic; and that the 
large oscillations in the intensity having non-sinu- laser output is correspondingly unpolarized. 
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( 1) 

and it will be assumed to hold in what follows. 
The interaction of the light with the active med­

ium in the resonator is conveniently described by 
an effective absorption coefficient [7] 

(2) 

Here K is the reflection coefficient of the end 
mirrors, l is their separation, K0 is the absorp­
tion coefficient of the host material, and KDl is 
the relative diffraction loss for one reflection. 
The first term in square brackets in Eq. (2) des­
cribes the active (i.e., accompanying the laser 
radiation) absorption of light by the impurity cen­
ters, the second term describes the amplification 
of light due to the stimulated transitions 2 - 1 , 
and the last term in (2) describes the passive ab­
sorption of light by the host material and mirrors, 
as well as the diffraction losses. Let the pump 
power absorbed in the sample be denoted by N , 
and the radiant energy in the resonator by E (N 
and E are defined per unit volume). Let w p be 
the average light frequency used for pumping, 
and let w0 be the operating frequency of the laser. 
In order to write down equations relating c 2 and E, 
we note that c 2 increases owing to the pump and to 
the active absorption of part of the energy E, and 
decreases owing to spontaneous emission. Thus 
we have 

dcJdt = Nj1irop- c2/T + (Ej1iro0) v [x (ro0, C2)- Xt] (3) 

(where v is the velocity of light in the medium, 
and T is the lifetime of the spontaneous transition 
2 ~ 1). Here K(w, c 2) is a function of c 2 given by 
(2). We have put w = w 0 in the argument of K , 

making use of the small spectral width of the laser 
radiation compared to the width of the (spontan­
eous) band of the impurity luminescence. 

In order to write a second equation for c 2 and E 
we introduce the spectral energy density p (w, t) , 
which is related to E by the relation 

E(t)=~p(ro,t)dro. (4) 

We have the following equation for the spectral 
density 

iJp (ro, I)= c.;iro I)Q p (ro)- vx (ro) p (ro, t) (5) 
at T 2n 2 

(Here orl is the solid angle within which the direc­
tional laser radiation is contained.) In Eq. (5) orl 
is divided by 2rr instead of 4rr since, within the 

element of solid angle centered on a given direc­
tion n, there is light emitted not only in the direc­
tion n but also in the direction symmetric to n in 
the plane perpendicular to the optical axis of the 
laser. 

(In the case where the angular spread of the 
radiation is comparable with the diffraction angle, 
the quantity M2/2rr should be considered as an in­
dependent parameter, giving the relative fraction 
of the spontaneous emission which remains in the 
resonator and is added to the energy of the direc­
tional emission. In this case orl is of the same 
order of magnitude as the solid angle of the laser 
emission.) 

The first term on the right hand side of (5) rep­
resents the fraction of the spontaneously emitted 
radiant energy falling within the small solid angle 
oQ and in unit frequency interval 2>; the second 
term describes the losses of radiant energy within 
the cavity due to absorption effects. 

We will assume that the pump is turned on at 
time t = 0 , after which its intensity is independent 
of time. Taking this into account we can solve Eq. 
(5) for p 

t t 

p (ro, t) = _§E_ 1iroP2 (ro) \ cz(t') exp [- v '~ x (ro, t") dt"] dt'. 
2nT .) t' 

0 (6) 

Integrating expression (6) over frequency and 
inserting it in equation (3), we obtain an equation 
with just one unknown, c 2 • In order to integrate 
(6) explicitly we will consider two cases separ­
ately. 

A. The impurity absorption band connected with 
the working transition does not overlap the corre­
sponding luminescence band, so. that in the neigh­
borhood of the peak of the luminescence w 0 , ex­
pression (2) takes the form 

(7) 

The parameter ji does not depend on frequency 
since P 1(w) reflects the shape of the absorption 
band. In order of magnitude ji coincides with the 
maximum value of 11 ( w). 

B. The absorption and luminescence bands 
corresponding to the working transition coincide 3 l, 

i.e., P 1 (w) = P 2(w). In this case 

'Z!We recall that the function P,(w) gives the shape of the 
spontaneous luminescence spectrum. 

3lThe absorption band due to the working transition must 
not be confused with the pumping band which, naturally, must 
not overlap with the luminescence band. 
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Case A usually applies to two and four level 
lasers, whereas case B applies to three level la­
sers. We will make the calculation for case A 
only; for case B we will simply give the final re­
sults. 

Let us turn to consideration of case A . Near 
the maximum of the luminescence w0 , the function 
P2(w) may be represented in the form 

have the role of the small parameters of the theory; 
it will be clear from what follows that lln E I pri­
marily determines the amplitude of the oscillation, 
and (3 and E determine its damping. 

3. THE STEADY STATE AND ITS STABILITY 

Equation (11) may describe the steady state of 
the laser. To see this we put y' = const in (11) and 
let u go to infinity. Carrying out the integration 
over u', we have 

(13) P2 (w) = P2 (w 0) exp [- (w- w0) 2/A2 l 

= P 2 (w 0)[1-(w-w0) 2/A 21 (9) From this it is clear that y' is a quantity of sec­
ond order in E • From this we find, accurate to 

(usually the Gaussian shape of the luminescence 
spectrum persists for some distance from the 
maximum, in which case A equals the half-width 
of the luminescence band multiplied by 0.6). We 
insert (9) in (7): 

x (w) = x (w 0) + ~c2 (w - w0) 2 I coA 2 • 

(10) 

Using the small spectral width of the laser ra­
diation compared to the width of the luminescence 
spectrum, we insert the expansion (10) for K (w) in 
(6). Integrating (6) with respect to the frequency 
and substituting in (3) we obtain an equation for 
c 2 • It is convenient to write this equation in terms 
of dimensionless variables 

t 

y = v ~X (w0 , t') dt', 

where t is a parameter characterizing the amount 
by which the pump power exceeds threshold, 
t = (N- Nthr) /Nthr. In terms of the variables 
u and y , the equation for the radiation intensity 
has the form 

y" (u) + I + ~y' (u) 
~ 

- 8 (1 - ~y') e-Y ~. [1- f3y' (u')] eY(u') du' ' = 0. (11) 
,\ {(u- u') + f3 (y (u')- y (u)]} /, 
0 

Here we have introduced the notation 

~ = (N- Nthr)/N thr {12) 

(Nthr = hwpc0K 1/jiT is the threshold pump power). 
The magnitude of E is small because of the 

smallness of the solid angle o!J. It will be shown 
below that oscillations in the output occur only for 
small values of the parameter (3. Hence E and (3 

cubic terms, 

y' = :ne2. (14) 

Using the expansion (10) and putting y = rrt:: 2u 
in (6) we find the spectral distribution of energy in 
the steady state 

(15) 

In order to investigate the stability of the steady 
state we look for a solution of (11) of the form 
y = 7TE 2u + 1)(u) (17- O). Linearizing (11) in 1) we 
have 

'1'\" + ~'1'\' + 8~ ~ e"•'(u-u') {'1'\'(u) + '1'\'(u') 
~ J Vu- u' 

-00 

+ [i-- u ~5u,] ['1'\ (u)- '1'\ (u')J}du' = 0. (16) 

We assume that at the instant u = 0 the con­
centration c 2 varies smoothly under the influence 
of the momentary perturbation, i.e., the quantity 
17' takes on a non-zero value 1)~. Correspondingly, 
we solve (16) for the initial conditions 7)(0) = 0, 
TJ'(O) = 1)~. Using the Laplace transform method 
we find 

'1'\ (u) = 2:~i a+r eT1u [p2 + p~ ( 1 + +)- /n~! p + 1 r dp 
a-zoo (17) 

(terms of order pE(3 have been omitted in the de­
nominator of the integrand). 

Let p 0 be the integrand pole with the largest 
real part. Displacing the contour of integration to 
the left we see that for u- oo the solution (17) has 
the asymptotic form const ePoU. Setting the de­
nominator of the integrand equal to zero we obtain 
an equation for p0 which may be solved with the 
help of the small parameter E. Finally (u- oo) 

TJ = const exp { ± iu Y I- ! ~2 (1 + 1/~)2 

- u [ {~(I+ 1/~) + e -vnJ8]}. (18) 
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Thus the oscillations damp out in time and the 
stationary state is stable. The rate of damping of 
the vibrations is the sum of two terms, propor­
tional to {3 and E • The term proportional to {3 
increases without limit as the passive coefficient 
of absorption K 1 , describing the dissipation of 
radiant energy, goes to zero. Energy dissipation 
is therefore a necessary requirement for the os­
cillations. The physical meaning of this, initially, 
rather strange result, will be explained in the next 
section. The term proportional to E is connected 
with the fact that spontaneous emission is con­
stantly adding new energy to the radiant energy in 
the cavity and with the fact that this spontaneous 
emission has a different spectral composition. 
(We recall that the fraction of the spontaneously 
emitted energy remaining in the cavity is propor­
tional to the solid angle oQ, i.e., to the small 
parameter E .) 

When E == 0 Eq. (18) coincides with the result 
of Kaiser et al [5]. In their paper the rate of damp­
ing of the oscillations does not contain a term 
proportional to E since the spectral dependence 
of the amplification coefficient was ignored, with 
the result that the time variation of the energy 
does not depend on its spectral composition. 

4. THE OSCILLATING MODE 

As has already been pointed out, the experimen­
tally observed oscillations in the laser output have 
large amplitude and non-sinusoidal shape. The 
reason for the occurrence of such oscillations may 
be easily understood in terms of the following 
qualitative considerations. 

First we note that according to (2) the quantity 
K - K 1 represents the active part of the effective 
absorption coefficient, related to the absorption 
and stimulated emission of light by the impurity 
luminescence centers. For K- K 1 > 0, it is clear 
that the absorption of light by unexcited lumines­
cence centers predominates over stimulated emis­
sion from the excited centers, and hence that c 2 

increases under the influence of the radiant energy 
in the resonator (for the time being we are not con­
sidering the effect of the pump). On the other hand 
for K- K 1 < 0, stimulated emission predominates, 
and the effect of the radiant energy is to decrease 
c2. 

We assume that the pump was turned on at 
time t == 0 . The concentration of excited centers 
begins to increase, and at some instant t == t 1 

reaches a value c 2* for which K(w 0) becomes 
zero (Fig. 1). Beginning at time t == t 1 , induced 
(directional) radiation will begin to build up in the 

cavity. Since initially the stimulated transitions 
are caused only by the spontaneous emission, of 
which only a small fraction remains in the cavity, 
the intensity of the directional emission is initially 
extremely small-although it increases exponen­
tially with time. When the energy of the directional 
emission reaches a sufficiently large value (t == t 2), 

the probability for stimulated emission from the 
impurity centers exceeds the probability for their 
excitation by the pump, after which c 2 begins to 
decrease. The energy however continues to grow 
until the moment t == t 3 , when c 2 becomes less 
than c 2*, and K becomes negative. For t > t 3 

the energy begins to decrease, and c 2 continues 
decreasing, since the quantity K - K 1 remains 
negative for some time. When, as a consequence 
of the damping of the energy, the probability for 
stimulated emission becomes less than the proba­
bility for exciting the centers by the pump (t > t 4) , 

c 2 again begins to increase; however the energy 
continues to decrease exponentially and very 
quickly falls essentially to zero. After this the 
next period begins. In view of the fact that the 
energy of the directional emission initially in­
creases very rapidly and then dies out very 
rapidly, the radiation spike occupies only a small 
fraction of the period. 

It is clear from the foregoing that for the ex is­
tence of oscillations it is necessary to satisfy 
simultaneously the inequalities .E < o and c2 < o 
in some interval (t3 , t 4 ). This is possible only for 
the condition 0 < K(w 0) < K 1 • Physically this re­
quirement means that although the interaction of 
the radiation with the impurity centers leads to 
its amplification, it is nonetheless damped because 
of the predominance of passive absorption. Since 
K depends linearly on c 2 , the greater the range of 
variation of K in the interval t3 < t < t 4 the deeper 
the corresponding dip in the curve for c 2 • Hence 
the larger K 1 , the stronger in general will be the 
oscillations in the output. For K1 == 0 oscillations 
would be impossible since the derivatives E and 
62 could not simultaneously be negative. 

In this section we will find the solution of (11) 
describing output oscillations of large amplitude. 
In what follows we assume that y » 1, where y 
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is the amplitude of the oscillating quantity y . In 
solving (11) we also make use of the small para­
meters E and {3 • 

We consider the instant of switching on the 
pump, u = 0, to be the perturbation which causes 
the oscillations in the laser output. (After being 
turned on, the power of the pump is constant.) We 
seek a solution of (11) in the form of a periodic 
function whose period and amplitude are slowly 
varying functions of the number of the period. Us­
ing this property of the solution we give equation 
(11) the simple form: 

y" (u) + 1 _ e-Y-Y (u) = O, 

where y is some y-dependent functional whose 
value varies slowly from period to period. 

(19) 

We will show later that y determines the <nn­
plitude of the vibration: y :::::; y + ln y. At the in­
stant the pump is turned on y :::::; lln E l ; as time 
goes on y decreases. From the smallness of E 

it follows that within a short interval after turning 
on the pump y » 1 , y » 1 . 

In solving (11) we first fix the value of y and 
find y during a single period; then putting this 
solution for y (found for each period for the cor­
responding value of the parameter y) in (11) we 
obtain an equation for y. 

We divide the u axis into periods as shown in 
Fig. 2. We call the mid-point of the n-th period 
lin , the point corresponding to the minimum of y , 
and we call the left hand boundary of the period, 
corresponding to the maximum, un . We define 
Yn = Y -y (un); clearly max {yn} = 0 within the 
n-th period. 

In the n-th period Eq. (11) can be put in the form 

Y~ (u) + 1 - e-Y.n-Yn + ~ (u) = 0. (20) 

Here 

un 

e-Yn = e~ eYn(u'>(un-u')-''•du'. (21) 

0 

The small terms in (20) responsible for the damp­
ing of the oscillations are designated ~ ; they have 
the form 

Un 

-e C [ 1 , - -1 J eYn<u'>-Yn<u> du' (22) 
.l Vu-u ~~ 0 run -u-

[only the terms of lowest order in E and {3 have 
been kept in (22)] . In (20) we neglect terms of or­
der E and {3 which do not lead to damping, 

!I n-th 
period 

I {n+l)-, s t I 

: period : 
I I 

' ,,., "·~ 

FIG. 2. 

In expressions (21) and (22) it is permissible to 
change the upper limit of integration u - u n. In 
fact the integral term in ( 11), proportional to E e -y, 
~ontributes only in the neighborhood of the point 
un, giving the minimum of y (we are using the 
fact that by definition the amplitude y of the os­
cillation is large). The integrand of the same ex­
pression makes a significant contribution only in 
the neighborhood of the point u n, where y is close 
to its maximum. Elsewhere, with the exclusion of 
the neighborhood of lin, the integral term in (21) 
and_ (22) is not significant, and in the neighborhood 
of un replacing u by Un in the upper limit of the 
integral does not affect its value. 

Initially we neglect the term ~ in (20); the 
equation then goes over into ( 19), which has the 
form of the usual equation of mechanical vibration 
in a potential field. In general the solution of such 
an equation describes a vibration of arbitrary am­
plitude; in our case, however, the amplitude is 
fixed by the condition that max {y n } = 0 in the 
n-th period. Using the fact that y » 1, we find 
finally 

The function y n given by (23) can be tabulated 
for different values of the parameter y. The fam­
ily of curves y(u) corresponding to different y is 
shown in Fig. 3. The envelope of this family is the 
parabola y = - u2 /2, which is the solution of (19) 
when the exponential term e-y-y is dropped. 
This exponential term, which is proportional to 
the energy of stimulated emission stored in the 
cavity, begins to contribute at a time which comes 
later, the smaller the fraction ofl/271" of the spon­
taneous emission energy contained in the cavity. 
It will be shown below that y increases with de­
creasing 6Q. Therefore, the larger y, the later 
the solution bends away from the envelope (see 
Fig. 3). 

The dependence of the period of oscillation b 
on y is shown in Fig. 4. For large values of y 
the asymptote of the function b ( y) has the form 
b = -f8Y + o ('Y-112 ), where y = y + ln y ~ 
r + ln y is the amplitude of the quantity y' i.e. 
Y = Yn max - Yn min = I Yn min I · 
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-y 

0 u 
FIG. 3. Solutions of Eq. (11) corresponding to different val­

ues of the parameter y. The abscissa is dimensionless time 
counted from the beginning of the period; the ordinate is the 
function y taken with opposite sign and counted from its max­
imum value. The dash-dot lines show the symmetry axes of 
the curves. The envelope of the family of curves is a para­
bola, whose extension is shown dashed. 

Except for a constant multiplying factor, the 
intensity of the directional radiation is propor­
tional to the function e-Y. ill Fig. 5 we show graphs 
of this function for various values of y. It is clear 
from the figure that the radiation spike occupies 
a small fraction of the period. The ratio of the 
half-width of this spike (i.e., its width at half­
maximum height) to the period for large y has 
the form 0.88/y + o (y-2) . 

We now turn to the solution of the second part 
of the problem, the determination of the dependence 
of the parameter y on the number of the period n. 
The parameter y is a functional, depending on the 
function y; its form is given by (21). The inte­
grand in this expression is large only in the neigh­
borhood of the points u n, corresponding to maxima 
of y. Hence the integral in (21) can be expanded in 
a sum of integrals taken over the neighborhoods of 
the points u k . ill the neighborhood of these points 
it is simple to find y from (19), in which the ex­
ponential term can be dropped; yn(u) = y(uk) 
- y(un) - (u - uk) 2/2 . Putting this in (21) and tak­
ing the above into account, we obtain the functional 
(21) in the form 

e-Yn = e Y 2:n: ~ (un- ukr'1• exp [y (uk) - y (un)l. (24) 
k 

Thus the functional y depends only on the maxi­
mum values of the function y . 

We have obtained n equations connecting the 
2n unknown quantities y(uk) and y k (k = 1 , 2 , ... , 
n). ill order to obtain the missing n equations we 
will find the damping of the oscillation during a 
period .D.yk = y (uk + 1) - y (uk). This damping is 
related to the "dissipative" term ~ in (20), which 
we have so far neglected. 

We integrate (20) over a single period as an 
equation of mechanical vibration of a material 
point with unit mass located in a potential field 
U = y + e-Y -y and subject to a small dissipative 
force ~ (u). The variation in the maximum value 

1Gkftl1 
0 5 10 15 20 l 

FIG. 4. Graphs of the dependence of the period, in units 
of )TfvK,(, on the parameter y. 

FIG. 5. The intensity of the laser output against time, ex­
pressed in units of a period, for different y (the curves are 
normalized so that their maximum ordinate is unity). 

of y over a period, .D.yn = y (un + 1) - y (un), can 
be easily related to the change in the energy of 
vibration .DoH, caused by this dissipation. Clearly 
we have H = U (Ymax) + const. = Ymax 
+ exp (- y - Ymax) + const. Neglecting the expo­
nential term (for large y), we find 

11H = 11ymax = y (un+l) - y (un) = 11Yn• (25) 

On the other hand, the variation in the energy of 
vibration during the period due to the effect of the 
small dissipative force ~ is equal to the integral 
over the period of - g)~dy. Thus 

un+l 

l'lyn = Y (un+l)- Y (un) = -~ 'gdy =- ~ 6 (u) y'(u) du. 
un 

. ~~ 
Calculatmg the integral with the hel 

we have P of (19), 
_ n y(uk)-g(un) 

!lyn = - 2'/,~ ( 1 + + )<p (Yn) - vr TebneYn k~l (un- uk)'"' 

where we have introduced the notation 
(27) 

fmax 

<p(r)= ~ Yr-t-e-tdt. 
tmin 

(28) 

Equations (24) and (27) constitute a complete 
system. Combining them we obtain equations for 
the 'Yn: 

!lyn = Yn+l- Yn =- 2'1'~ (1 + t)<p (Yn)- 6eb-;.'1'eYn. 
(29) 

ill this equation we have omitted terms which may 
be neglected because of their smallness after n 
has become of the order of a few units (it will be 
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seen from what follows that for small E and {3 the 
oscillations damp out over a large number of per­
iods, so that the above restriction is unimportant). 

As will be clear from what follows, for n ex­
ceeding several units, D.yn « 'Yn; using this, we 
put D.yn = dy/dn and put (29) in the form 

dy!dn = - 2'1'~ (l + In) cp (r)- 6eey !Vb-(y). (30) 

The solution of this equation has the form 

Yi { [ b l'/, }-1 
n = \ 2'1'~(1 + _!_)cp (y) + 3 - 1-J e-Yt+Y dy(31) 

•. \; nb(y) 
y 

( y i and bi are the initial values of the parameteL' 
y and the period b , connected by the relation 2y i 
= ln (bi/ 47fE 2 ) ) • 

In order to investigate the damping of the os­
cillations we make use of the asymptotic expres­
sion for cp(y), applicable for large values of y: 
cp(y) ~ 2y312/3(y=y +lny~y +lny). We 
consider two limiting cases. 

1. a{3,.:::; 5e-yi where a= 25/ 2 3-1 (1 + 1/l:) 
(usually a ~ 2-3). In this case one may neglect 
the first term in the denominator of the integrand 
of (31), and the dependence of y on n takes the 
form 

r = r 1 - In (l + 3n!Vn). (32) 

We define (arbitrarily) the number of periods n* 
over which the oscillations damp out such as to 
make y (n*) = 1. We find 

n·=0.2eY1 • (33) 

2. a{3 ;<, y i -3/ 2 • Neglecting the second term in 
the denominator of the integrand, we put (31) in the 
form 

n' = 2/a~ = 1.06/~ (1 + In). 

(34) 

In the intermediate case, when 5e-Y i « a{3 
« y i -3/ 2 the dependence expressed in (32) holds 
for small n, and the one shown in (34) holds for 
large n, while n* is always given by expression 
(34). For a{3 = 5e -y i the expressions for n* in 
the first and second cases coincide, apart from a 
factor of order unity. 

A comparison of (33) and (34) with the results 
of the preceding section indicates that the oscilla­
tions with large amplitude damp out at about the 
same rate as the small oscillations ; however, 
in the case of strong oscillations the amplitude de­
creases with time according to a different law than 
the amplitude of the small oscillations. 

Using (6), it is not difficult to estimate the spec­
tral width of the output radiation: 

llw ~A/ Y vx1t. 

In this and the preceding section we have con­
sidered case A, where the absorption and lumines­
cence spectra P 1 (w) and P 2 (w) do not overlap. 
However, the results of these sections remain valid 
also for case B [where P 1 (w) = P 2 (w)) , if we 
make the following changes in the parameters in 
all the formulas: 
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