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The results of an analysis of the stability of symmetric equilibrium shapes of the nucleus 
with respect to asymmetric variations of the surface are presented. The results of the 
calculations are compared with experiment on the basis of the quasistatic model of nuclear 
fission. 

1. STABILITY OF EQUILIBRIUM SHAPES 

IN view of the well-known problem of the asym­
metry of fission of heavy nuclei an important place 
in contemporary theory of fission is occupied by 
the question of the stability of equilibrium and 
quasiequilibrium, i.e., those corresponding to 
conditional equilibrium [1], states of the nucleus 
with respect to asymmetric variations of the 
shape of the surface. In a rigorous formulation 
the problem would consist of determining the sign 
of the second variational derivative of the functional 
of the potential energy; however, usually a more 
restricted problem is posed which consists of de­
termining the sign of the second derivative of the 
potential energy with respect to the "parameter 
of asymmetric deformation" (the first derivative 
is, evidently, always equal to zero ) [2 - 4] . 

In view of the obviously limited nature of the 
results of preceding papers [2- 4] in the course of 
calculations of equilibrium solutions of the drop 
model [5] an analysis was also carried out of the 
stability of equilibrium states with respect to 
asymmetric variations of the shape of the surface. 
Such an analysis was carried out for symmetric 
shapes corresponding to absolute and to conditional 
equilibrium and belonging to the usual sequence of 
shapes of type ( 1;1 )-( 2;2) without a neck or with 
a single neck [l, 5] for the usual drop model with 
constant surface tension ( r = 0) and r = ± 0.1 [5]. 

For the construction of asymmetric shapes 
arbitrarily close to the given symmetric shape a 
method was used which followed naturally from 
the iteration method utilized for the calculation 
of equilibrium solutions. Along with a given sym­
metric figure we have also investigated three 
closely similar asymmetric ones: a, b, and c. 
For each of these, as well as for the symmetric 
one, a complete calculation was carried out of all 
the ·significant quantities which were compared 
with the corresponding quantities for the symmet-

ric figure. An analysis of the shape of the asym­
metric figures showed that case a corresponds 
to a simple deformation of the symmetric figure 
which is almost purely asymmetric with respect 
to the center of the neck and which consists fun­
damentally of a proportional change in the linear 
dimensions of the left hand side and the right hand 
side parts of the figure measured from the center 
of the neck. The variations of the surface b and c 
consist of approximately equal contributions of 
symmetrical and asymmetrical components with 
the shapes b and c being fundamentally mirror 
images of each other with respect to the plane 
perpendicular to the symmetry axis and passing 
through the center of the neck ( cf., Fig. 1). 

In the course of the calculations it turned out 
that the stability with respect to asymmetric vari­
ations of the shape can be characterized with the 
aid of the quantity 

TJ=2(Vz-Vr)(Vz +Vrt1 , 

(1) 

where WAs and Ws are the potential energies re­
spectively of the asymmetric and of the symmetric 
shape, Vz and V r are the volumes of the parts of 
the asymmetric figure situated to the left and to 
the right from the center of the neck ( cf. [ 1 • 5 J). 
The parameter 11 characterizes the asymmetry 
in a most natural manner, and it can be directly 
related to the asymmetry of the masses of the fis­
sion fragments if we assume that separation oc­
curs at the "narrowest point," i.e., at the center 
of the neck. 

The change in the potential energy accompany­
ing asymmetric deformation is, of course, deter­
mined not only by the value of Tj, and therefore Q, 
strictly speaking, is not a constant quantity even 
for asymmetric variations of the surface of the 
same type. However, in practice it turned out 
that the quantity Q almost does not change even 
for a relatively large change in the scale of the 
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FIG. 1. Decompositi~n of the asymmetric variation of the 
surface of a figure into antisymmetric (dotted line) and sym­
metric (solid lines) components: A - in the center of mass 
system, and B - with respect to the middle of the neck of 
figure corresponding to an absolute extremum of type (2; 2) 
for X= 0.65, r = 0 (T = 1.7944) for variations of the surface 
of type a; b and c (cf. Sec. 3). Below are shown a symmet­
ric figure (heavy solid line) and trial asymmetric figures: in 
case A - the centers of the necks are made to coincide, and 
in case B - the centers of mass are made to coincide (the 
dots on the horizontal axis denote the position of the centers 
of mass of the figures). 

asymmetric deformation of type a. For absolute 
extrema this occurs also for other asymmetric 
variations of the surface. The value of Q changes 
by not more than 10% when the numerator and the 
denominator in formula (1) change by more than 
an order of magnitude. As a control the calcula­
tion was in each case carried out for several asym­
metric deformations of each type differing in mag­
nitude. 

The results obtained are illustrated in Figs. 2 
and 3 where we show respectively graphs of the 
average value of Q for absolute extrema (saddle 
points), Q* and Qx(P) for conditional equilibrium 
shapes. As in the preceding articles [1•5•6] p is 
the deformation parameter of a symmetric figure, 
while x is the usual parameter of the drop model. 

It can be seen in Fig. 2 that Q* for different r 
are similar to one another and differ little for de­
formations of types a, b, and c. This latter cir­
cumstance enables us to speak approximately of 
a single function Q*(x) for absolute extrema. It 
can be seen that the domain x < 0.4 corresponds 
to an instability of the saddle shape with respect 
to asymmetric variations of the shape of the type 
under investigation ( Q* < 0). For values of x in 
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FIG. 2. The quantity Q* (x) characterizing the stability 
of the absolute extrema with respect to asymmetric varia­
tions of the shape of the pucleus for r = 0, ± 0.1 plotted 
separately for variations of type a(e), b(ll) and c.) in 
units of E~sph). Crosshatching along the x axis indicates 
the region of figures which are transitional from figures 
with a neck for small values of x to figures without a neck 
for x = 0.8. The dotted line shows the stiffness of the nu­
clear surface with respect to variations of shape which are 
octopole in the center of mass system[•]. 

the range 0.75-0.85 the saddle shapes are unstable 
with respect to mixed variations of type b and c 
(Q* < 0 ), and are practically unstable also for 
asymmetric variations of type a, for which Q*, 
although positive, is still very small. For other 
values of x the quantity Q* > 0, i.e., the saddle 
shapes are stable, with the maximum of stability 
lying at x = 0.60-0.65. Such behavior of Q*(x) 
can be easily understood if we take into account 
the change in the shape of the saddle figure depend­
ing on x. As x - 0 the shape of the surface for a 
symmetric absolute extremum tends to two spheres 
touching each other. The instability for x < 0.4 is 
explained by the fact that for x- 0 the asymmet­
ric absolute extremum of type ( 3 ;1) also tends to 
the same figure, with the smaller energy corre­
sponding to the latter case for x < 0.4[5]. 

As x is increased the saddle shape tends to the 
critical shape which corresponds to the maximum 
deformation and which is unstable with respect to 
separation into two fragments [6, 5]. For r = 0 the 
saddle shape corresponds to the greatest deforma­
tion for x = x* = 0.55. As can be seen from Fig. 2, 
the maximum stability of the saddle shape with re­
spect to asymmetric variations of the shape occurs 
at values of x somewhat greater than x*. For still 
greater values of x the deformation decreases, 
since as x - 1 the shape of the saddle figure tends 
to a sphere. 
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The transition of absolute equilibrium (AE) 
shapes from shapes without a neck to shapes with 
a neck occurs at x ~ 0.8; this particular value of 
x is characterized by maximum instability .. For 
x ,2:. 0.85 the saddle shape again becomes stable. 
The spherical shape, with which the absolute ex­
tremum under consideration coincides at x = 1, is 
stable for all x < % [3]. In Fig. 2 we have shown 
for comparison the curve for the stiffness C3 with 
respect to variations of the surface which are octu­
pole in the center of mass system calculated for 
absolute extrema in the paper by Cohen and Swi­
atecki [oi]. It can be seen that for x .2:. 0. 7 there is 
no correspondence whatever between the curves 
for Q*(x) and C3(x). 

An analogous analysis of stability was also car­
ried out for the usual sequence of conditional equi­
librium shapes described in [ 5•6] . In these calcu­
lations it turned out that unique values of Q inde­
pendent of the scale of the deformation are ob­
tained only for the "purely asymmetric" defor­
mation of type a. This should have been expected, 
since variations of the surface of type b and c 
also contain a symmetric component, as a result 
of which in the case of conditional equilibrium 
shapes there also occurs an increment in the po­
tential energy linear in the deformation. 

Figure 3 shows data for the asymmetric varia­
tion of type a (r = 0 ). It can be seen that the sta­
bility increases as the deformation of the symmet­
ric shape is increased and the critical shape is 
approached which corresponds to p = Pcrit = 1.17, 
with the quantity Q for a given x being the larger 
the greater p. These results are in direct con­
tradiction to the results of the papers of Nosov [2] 

and of Bussinaro and Gallone [3]. This contradic­
tion is, possibly, explained by the fact that in the 
papers indicated an investigation was made essen­
tially of arbitrary ellipsoidal shapes which for 
large deformations have little in common with the 
sequence of conditional equilibrium shapes. 

Asymmetric variations of shape for figures 
consisting of two spheres in contact were inves­
tigated by Frankel and Metropolis C7J who showed 
that such a figure is stable for all x > 0.6. Utiliz­
ing formula (31) from C7J one can obtain the fol­
lowing expression for Q in the limiting case of 
two spheres: 

Qco = 0,035 (6/ 3 x- 1). (2) 

The value of Q should tend to this limiting value 
for r = 0 when the figure tends to two spheres in 
contact. 

This occurs for the second (upper) branch of 
the sequence of symmetric conditional equilibrium 
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FIG. 3. The quantity Qx(p) characterizing the stability of 
conditional equilibrium shapes of type (2; 2) (with a neck) 
with respect to asymmetric variations of the shape of type 
a (light lines) r = 0. On the right are shown values of the 
parameter x. Triangles correspond to absolute extrema, the 
values of x are shown alongside. Along the Q = 0 axis cross­
hatching indicates the region corresponding to transitional 

figures, the arrow denotes p = Per ~ 1.17, two circles corre­
spond to p = 0. 795 for spheres in contact. The Roman numeral 
I corresponds to the usual (lower) branch, II corresponds to 
the upper branch of the sequence of conditional extrema. The 
dotted line joins the calculated intervals of Qx(P) for the 
upper branch with points for two spheres in contact. 

shapes of type ( 2;2) [5, 6] which connects the criti­
cal shape ( p ~ 1.17 ) and two spheres in contact 
( p = 0. 795). Unfortunately, calculations for shapes 
close to two spheres in contact can be carried out 
only for small values of x, and therefore in Fig. 3 · 
the graphs of Qx(P) are given for all values of x 
with the exception of x = 0.4 and x = 0. 5 only for 
the usual branch connecting the initial sphere and 
the critical shape. For x = 0.4 and x = 0.5 we 
have also shown Qx ( p ) for that part of the second 
branch which is close to the critical shape. These 
segments are denoted by the Roman numeral II to 
distinguish it from the usual branch denoted for 
these values of x by I. The segments for which 
these calculations have been made are joined by 
a dotted line to the limiting points for p = 0.795 
calculated in accordance with (2). As can be seen 
from Fig. 3 the situation for two spheres in con­
tact has very little to do with conditional equilib­
rium shapes corresponding to a large deformation, 
and in particular for a deformation equal to the 
critical deformation. 

The transition shapes (p ~ 0.6) are unstable 
for all values of x, but the magnitude of I Q I di­
mini shes as x is increased. Apparently, this is 
connected with the fact that the shape of the tran­
sition figure in the region of the neck is the closer 
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to cylindrical shape the larger the value of x, 
while for a cylindrical shape it is natural to as­
sume that Q ~ 0, i.e., absolute equilibrium exists 
with respect to the position of the neck. 

In Fig. 3 triangles denote points corresponding 
for a given value of x to an absolute extremum. 
The heavy curve drawn through them corresponds 
to Q*(x) in Fig. 2 and is another representation 
of this quantity. It can be seen that the character­
is tic variation of Q * in Fig. 2 is related to the 
variation in the shape of the saddle figure. An in­
crease in stability with increasing p explains why 
the stability maximum in Fig. 2 lies at x > x*. 

2. COMPARISON WITH EXPERIMENT 

From data given in Fig. 2 it follows that fission 
of nuclei which, depending on r, correspond to 
x = 0.55-0.75 must be symmetric. Indeed, due to 
the fact that in this case the (symmetric ) fission 
barrier almost coincides with the critical point for 
the loss of stability, the second phase of the fission 
process, the descent from the barrier, is in fact 
absent. Since for these values of x the saddle 
shape is stable with respect to asymmetric varia­
tions of the surface, the greatest probability cor­
responds to fission into two identical fragments. 

Within the framework of the quasiequilibrium 
statistical model 1> of fission one can with the aid 
of data shown in Fig. 2 also give an estimate of the 
width of the distribution of the fragments with re­
spect to mass. For x ~ 0.55-0.65 the distribution 
of the fragments with respect to mass will have the 
form of a Gaussian distribution, and by utilizing (1) 
the probability of a given mass ratio may be written 
in the form 

(3) 

where T* is the temperature at the saddle point; 
while E~sph) is the surface energy of the initial 
spherical nucleus. 

The half-width of the Gaussian distribution (3) 
is equal to 

(4) 

Relation (4) agrees relatively well with available 
experimental data on the distribution of fragments 
with respect to mass if for Q* we adopt values 
corresponding to the maxima of the curve of Q*(x) 
in Fig. 1. The table gives for some reactions the 
values of T* calculated from the experimental 

l)This model is confirmed particularly by data on the 
angular anisotropy of the fragments which are well de­
scribed by the statistical theory[• ], 

T*, MeV 
Target Incident 
nucleus particle 

r = o !r=-O,t 

Bi•o9 He4 (26 MeV) 0.6 0.9 
Pb"'o He4 (43 MeV) 1.0 1,3 
Aui97 C12 (112 MeV) 1.3 1.7 
Bi•o9 d (190 MeV) 2.2 3.0 

width of the mass distribution with the aid of for­
mula (4) for r = 0 (x ~ 0.65) and r = -0.1 
(x ~ 0.70). The values ofT* are quite reason­
able if we adopt for the energy of the saddle point 
(the fission threshold) a quantity of the order of 
10-15 MeV. In the case of the last two reactions 
we must take into account the possibility of evapo­
ration of particles prior to fission. The value of 
T* for r = - 0.1 agrees better with the value of 
the excitation energy at the saddle, and also with 
T * obtained from the value of the fluctuation of 
the charge of the fragment of a given mass in the 
reaction Bi209 + c12 [ 9]. 

In the quasistatic model of fission the value K 
of the average total kinetic energy of the fission 
fragments is approximately equal to the energy of 
the mutual Coulomb repulsion of the two "halves" 
of the nucleus at the critical point E~1t· The quan­
tity EfRJt is proportional to x [5]: 

(5) 

where with sufficient accuracy we have 

kr = 0.43 (I + 1.2 r). (6) 

On substituting into (5) the value of x in accord­
ance with its definition [5] we obtain 

K = £~~~= 1/ 2 Etsph)kr, 

where Eg;ph) is the Coulomb energy of the initial 
spherical nucleus. From this we obtain 

(7) 

where 

(8) 

Relation (7) has been well checked experimen­
tally. The "experimental" value is ar = 0.12 MeV 
[iO]. This value agrees with formula (8), although 
for r = 0 the numerical agreement is obtained 
only for r 0 = 1.5. Formula (8) does not contain 
x and, therefore, it is convenient to utilize it for 
the determination of r. It can be seen that for r 0 

= 1.2 one should take r ~ - 0.15. This value 
agrees with the theoretical estimate 2> [1i] for the 

2 >In[11 J the drop model is obtained ~s an approximation to 
the statistical model of the nucleus. 
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density distribution of the nucleons near the edge 
of the nucleus described by the Fermi function. 

other quantities which can be evaluated in the 
quasistatic approximation are the height of the 
fission threshold Ef and the mass defect ~M. In 
making comparisons with experimental data it is 
convenient to express these quantities in units of 
the Coulomb energy of the initial nucleus, since 
the latter contains only the one parameter r 0• For 
~M we obtain 

/j.m = O.Sx-1 (- 0.260 + 0.740 X+ 0.33 (I +X) f 0 ], 

where r 0 is the value of r for the initial nucleus 
( r ~ A - 113 ). In the specific case of the fission of 
the Po220 nucleus the best agreement with experi­
ment for all three quantities ( Ef, ~M. K) is ob­
tained for r ~ -0.1 and X~ 0.72-0.74 if ro = 1.2, 
and r = o and x ~ 0.67 if r 0 = 1.24. 

For r "" 0 the proportionality between X and 
the quantity Z2/A is approximate, since due to the 
dependence of the surface tension on A the quan­
tity X COntainS the factor ( 1 - r 0) - 1, where r 0 

"' A - 113. Within the narrow domain of fissionable 
nuclei one can, nevertheless, write x in the form 

X= (Z2/A)/(Z2/A)cr(eff )' 

The values of x given above for the symmetric 
fission of Po210 correspond to ( Z2 I A )cr(eff) = 45 
for r 0 "' 1.2 and (Z 2/A)cr(eff) =50 for r 0 = 1.4. 
For the fission threshold for the U238 nucleus for 
r 0 = 1.2, r = -0.1 and (Z 2/A)cr(eff) = 45 we then 
obtain the value 6.5 MeV~5 J which agrees well with 
experiment. In this case we have the values Eg;ph) 
= 960 MeV, E~sph) = 600 MeV. The last value cor­
responds to 47lTo0eff = 16 MeV, if we represent 
E( sph) in the form s 

When the term rH is present in the surface en­
ergy one should redetermine all the constants of 
the semiempirical formula for the nuclear masses 
and, therefore, it is difficult to say whether this 
value of E~sph) is in agreement with the mass 
formula. 

One should also note that for the absolute ex­
tremum for x ~ 0.65 there is good agreement be­
tween the value of the effective moment of inertia 
Jeff evaluated in [S] and the experimental value 
determined from the angular distribution of fission 
fragments of nuclei with A= 200-210[11]. Unfor­
tunately, it is not possible to give an estimate of 
the magnitude of the fluctuation of the mean kinetic 

energy of the fragments since the latter is deter­
mined by specific dynamical conditions at the point 
of separation. One can only assume that, in view 
of the special properties of the critical point where 
stability with respect to breakup is lost, the prob­
ability distribution for the kinetic energy will not 
be symmetric. 

The estimates given above for symmetric fis­
sion are based on the description of fission as a 
thermodynamically quasiequilibrium statistical 
process. Therefore, it would be better to speak 
of the statistical approximation to the theory of 
fission, since the "drop model" is utilized here 
only for the evaluation of potential energy. Since 
in the statistical model the question is posed of 
the probability of one or another type of asym­
metry of shape with respect to the point of sepa­
ration, it is natural to choose for the asymmetric 
variations of the surface those which are asym­
metric with respect to the assumed point of sep­
aration, i.e., the middle of the neck (type a). 

In the case of heavier nuclei the instability of 
the saddle shape with respect to asymmetric de­
formations for x = 0. 77 -0.7 8 suggests that this 
is to a certain extent related to the asymmetry of 
fission of U, Pu, and other nuclei which corre­
spond to x = 0.74-0.77 (r = 0). The available 
data from the calculations give evidence of the 
possibility of asymmetric descent from the saddle; 
however, it is not possible to express in advance 
a preference for asymmetric deformations, since 
the saddle shape is also unstable with respect to 
symmetric changes of shape. Since the deforma­
tion of the saddle shape is still insufficiently great, 
then, evidently, the question of what type of fission, 
symmetric or asymmetric, will be more probable 
will be decided at a later nonequilibrium stage of 
the process. 

In this case for the description of fission we 
require additional physical assumptions which will 
determine the model for the descent from the bar­
rier. Such a model must take into account the 
kinetic properties of the fission process, since by 
considering only the potential energy we cannot 
say anything about the "unprofitable" character 
of the asymmetric descent from the barrier. In 
addition to the magnitude of the potential energy 
we must also prescribe at least one other physical 
quantity which directly characterizes the fission 
process. 

The simplest quantity of such a kind could be 
an element of length which determines the metric 
of the space of generalized variables describing 
the shape of the nucleus [1]. It can be shown that 
the sequence of conditional equilibrium shapes in-
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vestigated in this paper and in [5] is indeed the 
"most advantageous" one in the sense that it cor­
responds to "steepest descent" in the space in 
which the distance between two "points" is defined 
as the change in the deformation parameter. By 
prescribing two or an even greater number of de­
formation parameters one can in principle provide 
a model of asymmetric descent from the saddle. 

In view of the fact that in neighboring deforma­
tions the asymmetry is almost inconsequential 
from the point of view of the quasiclassical 
("drop") potential energy, the position of the max­
imum of the asymmetric peak in the distribution 
of fragments with respect to mass can be deter­
mined by relatively small factors which are acci­
dental from the point of view of the quasiclassical 
model, and in particular by the possibility of for­
mation of shells in the fragments ( cf., for exam­
ple, [12]). 
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