ON HYPERFINE INTERACTION IN Re (VI)

N. S. GARIF'YANOV

Physico-technical Institute, Kazan' Branch, Academy of Sciences U.S.S.R.

Submitted to JETP editor June 14, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 1819-1821 (December, 1963)

The anisotropic hyperfine structure of EPR lines from nuclei of Re¹⁸⁵ and Re¹⁸⁷ in sulfuric acid and dioxane low temperature glasses containing ReOCl₄ is investigated at $\nu = 9320$ Mc and 77°K. An analysis of the hyperfine structure spectra yields the anisotropic hyperfine splitting constants (A_{||} = 480 Oe, A_⊥ = 400 Oe) and also the values g_{||} = 1.90 and g_⊥ = 1.77.

LOW and Llewellyn^[1] reported observation in single-crystal $K_2[PtCl_6]$ containing as an impurity tetravalent rhenium $(5d^3, S = \frac{3}{2})$, at $T = 77^{\circ}K$, of a six-component isotropic hyperfine structure of the EPR lines from Re¹⁸⁵ and Re¹⁸⁷, with constant $A = 109 \pm 0.3$ Oe, and with a spectroscopic splitting factor $g = 2.050 \pm 0.005$. Griffiths et al have previously observed^[2] at $T = 20^{\circ}K$ in the same crystal, also containing Re⁴⁺, six weak lines with g= 1.8. Finally, Ingram et al^[3] observed a single asymmetrical EPR line with $g_{||} = 2.00$ and g_{\perp} = 1.95 in an investigation of the hexavalent oxyanion of rhenium ReO₄⁻² at 20°K.

In the present investigation we studied at ν = 9320 Mc and 77°K the anisotropic hyperfine structure of the EPR lines in low-temperature glasses (supercooled solutions) containing 0.1 mole/liter hexavalent rhenium (5d¹, S = $\frac{1}{2}$).

The low temperature glasses were obtained by rapidly cooling, in liquid nitrogen, solutions of rhenium oxychloride ReOCl₄ in concentrated sulfuric acid or in dioxane. A supercooled sulfuricacid solution of ReOCl₄ displays a complicated EPR spectrum, consisting of two overlapping anisotropic hyperfine structures from the isotopes $\operatorname{Re}^{185}(37.07\%)$ and $\operatorname{Re}^{187}(62.93\%)$. The centers of these hyperfine structures correspond to values of lines with factors g_{\parallel} and g_{\parallel} . It must be noted that inasmuch as the nuclear magnetic moments of Re¹⁸⁵ and Re¹⁸⁷ are nearly equal $(\mu_{185} = 3.1714 \ \mu_{nuc} \text{ and } \mu_{187} = 3.2039 \ \mu_{nuc}), \text{ and }$ the spins are equal to $\frac{5}{2}$, the hyperfine components which have identical projections of the nuclear spin m_1 coincide for these isotopes. In supercooled dioxane solution of ReOCl₄, like in acid glass, the EPR lines from Re¹⁸⁵ and Re¹⁸⁷ have a complicated hyperfine structure. As can be seen from the figure, in dioxane glass the hyperfine components are better resolved at lower

intensities of the constant magnetic field H_0 , while in acid glass they are better resolved at higher H_0 .

As is well known, the orbital energy levels of $\operatorname{Re}^{6+}(5d^1, S = \frac{1}{2})$ are similar to the levels of $\operatorname{Ti}^{3+}(3d^1 \ S = \frac{1}{2})$, that is, the ground state is ²D. We assume that in low-temperature glasses the Re^{6+} ion is in an octahedral field with a strong axial component along the Re = 0 axis, and the observed spectrum is described by a spin Hamiltonian of the form

$$\mathcal{H} = g_{\parallel} \beta H_z S_z + g_{\perp} \beta \left(H_x S_x + H_y S_y \right)$$

 $+ A_{\parallel} I_z S_z + A_{\perp} (I_x S_x + I_y S_y)$

with $S = \frac{1}{2}$, $I = \frac{5}{2}$ for the Re¹⁸⁵ and Re¹⁸⁷ nuclei, $g_{\perp} = 1.77 \pm 0.01$, $g_{||} = 1.90 \pm 1.01$, $A_{\perp} = 400 \pm 20$ Oe, and $A_{||} = 480 \pm 20$ Oe. At room temperature the isotropic hfs of liquid solutions of ReOCl₄ is not resolved, owing to the short spin-lattice relaxation time.

In liquid solutions of Re(VI) there should be observed an isotropic hfs with average constant $A_{av} = \frac{1}{3} |A_{||}| + 2 |A_{\perp}|$. Depending on the signs of $A_{||}$ and A_{\perp} , A_{av} should equal either 426 or 106 Oe. As was shown earlier^[4], in the case of an isotropic hfs, the value of the constant remains unchanged on going from the liquid to the solid state. In addition, the values of the constants A in liquid solutions change insignificantly when a paramagnetic ion^[4] goes into a different valence state. Therefore, comparing the values of A_{av} with the value of the isotropic constant A = 109 \pm 0.3 Oe, determined by Low and Llewellyn for tetravalent rhenium, we find that the anisotropic constants $A_{||}$ and A_{\perp} have opposite signs.

Finally, it must be noted that we observe in the glasses only the EPR spectrum due to hexavalent rhenium, with an electron spin $S = \frac{1}{2}$, since no EPR signal can be observed from the lower va-

Spectra of isotropic hfs EPR lines from Re¹⁸⁵ and Re¹⁸⁷ in low-temperature glasses containing 0.1 mole per liter of ReOCl₄ (ν = 9320 Mc, T = 77°K): a—sulfuric-acid glass, b dioxane.

lence states of rhenium with $S > \frac{1}{2}$, owing to the large line width resulting from the unresolved fine structure.

In conclusion, it can be deduced on the basis of many investigations $[5^{-12}]$ devoted to EPR in glasses containing ions of the iron group $(n = 3: Ti^{3^+}, VO^{2^+}, Cr^{5^+}, and Cu^{2^+})$, the palladium group $(n = 4: Zr^{3^+}, Nb^{4^+}, Mo^{5^+}, Ag^{2^+})$, and the platinum group $(n = 5: W^{5^+}, Re^{6^+})$, having a ²D ground state, that with increasing principal quantum number n of the single d-electron in the unfilled shell of the transition-group ions, the hyperfine interaction with the nucleus, which is due in turn to the "S-configuration interaction," $[1^3]$ increases. At the same time, we observe in the series n = 3, 4, 5 a shortening in the spin-lattice relaxation time and an increase in the deviation of the g-factor from the

pure spin value 2.0023. This is due to the increase in the spin-orbit coupling constant with increasing atomic number of the element.

¹W. Low and P. M. Llewellyn, Phys. Rev. 110, 842 (1958).

² Griffiths, Owen, and Ward, Proc. Roy. Soc. A219, 526 (1953).

³ Corrington, Ingram, Schonland, and Symons, J. Chem. Soc. 4710 (1956).

⁴ N. S. Garif'yanov, DAN SSSR 138, 612 (1961).
⁵ N. S. Garif'yanov and E. I. Semenova, JETP

41, 337 (1961), Soviet Phys. JETP 14, 243 (1962).
 ⁶N. S. Garif'yanov, DAN SSSR 103, 1222 (1955).
 ⁷N. S. Garif'yanov, FTT 4, 2450 (1962), Soviet

Phys. Solid State 4, 1795 (1963). ⁸ N. S. Garif'yanov and R. S. Yafaev, JETP 43,

1978 (1962), Soviet Phys. JETP 16, 1392 (1963).

⁹ Fedotov, Garif'yanov, and Kozyrev, DAN SSSR **145**, 1318 (1962).

¹⁰ N. S. Garif'yanov and V. N. Fedotov, JETP **43**, 376 (1962), Soviet Phys. JETP **16**, 269 (1963).

¹¹Garif'yanov, Kozyrev, and Semenova, DAN SSSR 147, 365 (1962).

¹² N. S. Garif'yanov and V. N. Fedotov, FTT 4, 3538 (1962), Soviet Phys. Solid State 4, 2589 (1963).

¹³ A. A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. A05, 135 (1951).

Translated by J. G. Adashko 288