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Some new data for the Cs131 nucleus are inconsistent with the theoretical assignment of all 
Cs 131 levels to a single rotational band of an asymmetric nucleus. [9J A new transition is ob­
served at 907 keV; the half-life of the 1039-keV level is T1; 2 < 2 x 10-9 sec; the y transi­
tion intensity ratio Iy918/Iy907 = 14.5 ± 3 is determined. T 1; 2 = (13.5 ± 0.5) x 10-9 sec is 
confirmed for the 133-keV level. However, the probabilities B ( E2) of the 124- and 133-keV 
transitions, and also the ratio B(E2)exp/B(E2)shell-mod > 1 for the 495-keV transition, 
indicate collective effects in the Cs 131 nucleus. A more adequate model should take into ac­
count the interactions of rotational, vibrational, and single-particle motions. 

Measurements of the Cs 133 438-keV level half-life and the ratio B ( E2 )exp/B ( E2 )shell-mod 
for the 356-keV transition are presented. 

INTRODUCTION 

IT has been shown by the study of even-even nuclei 
in the regions A :::; 150 and A :::: 190 that the proper­
ties of their excited levels can be accounted for by 
considering the rotational motion of nonaxial (non­
axially symmetric) nuclei [t~ or nuclear vibrations. 
[ 2•3J Table I gives the probability ratios B ( E2 )exp/ 
B ( E2) shell-mod of experimental and calculated 
shell-model transitions from the first excited 
levels of even-even nuclei in the region of A close 
to Cs 131. [4-6] 

The analogous treatment of odd-A nuclei is 
complicated by the fact that the energy states of 
the odd nucleon must be taken into account in addi­
tion to collective nuclear motion. One method con­
siders the coupling between internal motion and 
quadrupole vibrations. [3, T] The properties of odd­
A nuclear states are greatly dependent on the cou­
pling parameter. Attempts have recently been 
made to use the Davydov model [t] to describe the 
energy levels of odd-A nuclei as rotational states 
of nonaxial nuclei. [8•9] 

Person and Rasmussen [9] have studied in detail 
the levels and electromagnetic transitions of Cs 131 , 

and have attempted to assign all Cs131 levels to a 
single ground-state rotational band of a nonaxial 
nucleus. They assumed the strong-coupling ap­
proximation in which the internal nuclear structure 
is unaffected by the rotational motion. Hecht and 
Satchler [8] have made a similar investigation of 
odd-A nuclei close to A = 190. Both investigations 
employed the odd-nucleon energy states calculated 
by Newton [to] assuming for the independent-parti­
cle model that the Hamiltonian consists of an aniso­
tropic oscillator potential plus the spin -orbit terms 
Cls and Dl2 • Person and Rasmussen disregarded 
vibration-rotation coupling. It is of interest to 
compare the theoretical results with experiment. 

EXPERIMENT AND DISCUSSION OF RESULTS 

Figure 1 shows the Cs131 level scheme including 
our present results. Person and Rasmussen used 
the positions and spins of the 124- and 133-keV · 
levels and the ground-state spin to obtain the para­
meters {3 and y for their model as a basis for 
calculating the spins and energies of succeeding 
states. The two principal doubtful assumptions of 
their model are the characteristics of the 1039-
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FIG. 1. Cs131 level scheme. 

and 133 -ke V levels and the types of transitions 
from these levels. If the Person-Rasmussen 
model is correct the 7 /2+ 1039-keV level should 
decay mainly to a (supposedly) 7 /2+' 133-keV 
level. [9J Although 918-124-keV y -ra~ coinciden­
ces had previously been observed, [1L Person and 
Rasmussen suggested the existence of a 907-133-
keV cascade. 

After the half-life Tu 2 = (13.3 ± 0.5) x 10-9 

sec of the 133-keV level was measured, l 12 J it be­
came possible to determine accurately the decay 
curve of the 1039-keV level, keeping in mind also 
that the half-life of the 124-keV level is (4 ± 0.3) 
x 10-9 sec. [11 ] The delayed coincidences of the 
918-124-keV and 907-133-keV cascades were 
plotted. Two Nai(Tl) crystals and an FEU-33 
photomultiplier were used to detect y quanta of 
about 910 and 130 keV. One channel registered 
918-907-keV coincidences, while the other channel 
registered 124-133-keV coincidences. Both chan­
nels were connected to a fast-slow coincidence 

20 If!__ D 10 20 30 40 50 50 

l978-907 keV 

circuit with the resolving time 2T = 1 x 10-8 sec. 
The measurements are represented in Fig. 2, 
which indicates two half-lives: 

T•t,I24 = (3,8 ±O,l)·I0-9 sec, T•t, 133 ='(13 ±I)· I0-9 sec; 

this indicates a 907 -keV transition between the 
1039- and 133-keV levels. Figure 2 shows the 
y -intensity ratio of the 907- and 918-keV transi­
tions. 

The calculation of the delayed coincidence 
curves requires the knowledge of two parameters: 
the photomultiplier time fluctuation ~tf and the 
number K of photoelectrons resulting from a 1-keV 
y -ray energy loss in the crystal. [11 •13 ] Assuming 
~tf = 4 x 10-9 sec and K = 2, we obtain good 
agreement between the calculated curve and ex­
periment for simultaneous coincidences (Co60) with 
the resolving time 2T = 10-8 sec (curve 1 of Fig. 
2) , and for delayed 918-124-keV coincidences with 
T112 124 = 3.8 x 10-9 sec. Curve 3 of Fig. 2 was 
calculated for 907-133-keV coincidences with 
T112 133 = 13.5 x 10-9 sec. 

The calculated sum curve 4 is found to fit the 
experimental points if we assume 

N coinc 918-124/ N coi.nc 907-133 = 18.5 ± 4. 

This ratio yields 

I Y918 _ N coinc 918-1241 + C:t124 

I.,. 907 - N c oinc 907-133 1 + c:t1aa • 

Assuming that the 124-keV transition is of the type 
M1 with the total conversion coefficient a 124 = 0.5 
and that the 133-keV transition is E2 with a 133 

= 0.9, we obtain the intensity ratio 

FIG. 2. Delayed 918-907-keV and 124-133-keV y-y 
coincidences for Cs131 • Curves 1-3 were calculated; 
curve 1 for simultaneous coincidences, curve 2 for de­
layed coincidences with T ,1, = 3.8 x 10-9 sec, and curve 
3 with Ty, = 13.5 x 10"" sec. The areas under the curves 
are equal. Curve 3' was derived from curve 3 by taking 
into account the 918-kev/907-keV y-transition intensity 
ratio and the conversion coefficients of the 124-keV 
(M1) and 133-keV (E2) transitions. Curve 4 is the sum 
of curves 2 and 3' passing through the experimental 
points. 

70 t, 10-" sec 
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Table II 

Nucleus I I i If 

5oCs'"' 7 /z+ 5/z+ 
1/z+ •;2+ 

c51ss 5/2+ 7/2+ 
1 /z+ s;z+ 

Csl35 5/2+ 7/2+ 

This ratio disagrees with the result derived from 
the Person-Rasmussen model. 

Since the spin of Ba131 is 3/2 or 1/2 and elec­
tron capture into the 1039-keV level is weak, the 
spin of this level is large (7 /2+). [9l If the 124-keV 
level has spin 7/2, a 918-keV transition with a 
short half-life is possible. We verified this by 
measuring the half-life of the 1039-keV level using 
delayed coincidences. By studying the slope of the 
Xcapt (30 keV) - y 1039 keV coincidence curve we 
obtained 

T•;, 1o39 < 2 · 1 o-9 sec. 

Our results thus indicate that a large spin does not 
belong to the 133-keV level but to the 124-keV 
level, and that its probable value is 7 /2+ (see also 
below). 

Collective effects in a slightly deformed odd-A 
nucleus can result in accelerated E2 transitions 
like those encountered in neighboring even -even 
nuclei. (See Tables I and II for Z close to 55.) 
Table II shows that decays of the first excited 
levels of Cs 133 and Cs 135 [ 14 ] are M1 + E2 transi­
tions, where the M1 transitions are hindered and 
the E2 admixture is accelerated 25-38 times. 

In order to determine whether the 356-keV E2 
t.ransition of Cs 133 is accelerated, we measured 
the half-life of the 438-keV level, obtaining 

which gives 

B (£2) exp 356/ B (£2) shell-mod 356 > 4,5. 

The technique was the same as that used in meas­
uring the lifetime of the Cs 131 620-keV level (see 
below). 

Accelerated E2 transitions should be observed 
in C s 131 • This follows from the calculations of 
Person and Rasmussen, who give the probabilities 
B ( E2) for the 1/2+-+ 5/2+ and 7 /2+ __.. 5/2+ tran­
sitions as functions of the parameters y for the 
deformation {3 = 0.3. For the 7 /2+ - 5/2+ 133-
keV transition they find that the E2 transition is 
accelerated 400 times compared with the shell 
model; this is large compared with corresponding 
results for neighboring nuclei. The experimental 

Transition I B (E2)exp I B (Ml)exp 
enkerVgy, B (E2)shell- B (MI)~hell-

e mod mo 

124 
133 
81 

356 
250 

19 
6 

25 
>4.5 

38 

1/530 

1/600 

1/340 

result does not approach this value even if we as­
sume a pure E2 133-keV transition. However, if a 
5% M1 admixture is assumed, we find that 
7 /2+ ~ ke V 5 /2+ is hindered by a factor of 
4 x 103 compared with the shell model; this is 
also too large (see Table II).[11 •15 J Therefore, as 
suggested in [9], the lifetime of the 133-keV level 
had to be determined more precisely. 

The half-life of this level was measured by 
means of the 907-133-keV coincidences (Fig. 2). 
A similar measurement, but with better statistics, 
was performed using 480-133-keV y -y coinciden­
ces; this yielded 

r./,133 = ( 13.5 ± 0.5). 10-9 sec. 

The result given in [t2] was thus confirmed within 
experimental error. 

It can therefore be affirmed that the pure rota­
tional model of Person and Rasmussen does not 
account for the characteristics of the 133-keV 
level if the assignment 7 /2+ is made. We have 
already mentioned that the 907-keV y transition 
is weaker than the 918-keV transition; this also 
conflicts with the 7 /2+ assignment to the 133-keV 
level. 

A different assignment can be based on the 
measurements of the angular 495-124-keV y -y 
correlation in [16 ]. These results indicate that the 
124-keV level has spin 7/2 and that the 124-keV 
transition is of the type M1 (97%) + E2 (3%), thus 
indicating an acceleration of the order 20 for the 
E2 transition, in agreement with Tables I and II. 
The M1 component is forbidden; this situation can 
be accounted for by assuming that the 124-keV 
level has independent-particle character. [11 •15 ] 

Correlation measurements show that the 495-
keV transition is of the E2 type. [16 ] 

For the purpose of determining the probability 

B(E2)exp of Xcapt 30 keV- 1'495 keV- 1'124 keV 
triple coincidences we measured the half-life of 
the 620-keV level. This procedure was used to 
exclude coincidences between 495-keV y rays and 
x rays from internal conversion of the 124-keV 
transition with T 1; 2 = (3.8 ± 0.1) x 10-9 sec; we 
have described a very similar procedure in [t?] 

Figure 3 shows the experimental results for 
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the triple coincidences and simultaneous 30-495-
keV y -y coincidences in the case of Na22 (the con­
tinuous curve). A shift of the center of gravity 
yields 

T./.620 <I ,5 .IQ-10 sec, 

whence 

B (£2) exp m/B (£2) shell-mod 495 > 1. 

Then, by assigning 7 /2+ to the 124-keV level, we 
can account for the 918-keV /907-keV transition 
intensity ratio, the y- y correlation measure­
ment, L16 J and the acceleration of 124-keV and 
495-keV E2 transitions (Table ID. It should be 
noted that if we assign 1/2+ to the 133-keV level 
with T 1; 2 133 = (13.5 ± 0.5) x 10-9 sec we find that 
the E2 transition is accelerated 6 times compared 
with the independent-particle model. A comparison 
with the Person-Rasmussen model yields 

B (E2) exp/B (£2) PR = 1/a· 

For a better understanding of the C s 131 decay 
scheme it is important to know the properties of 
M1 transitions, which are not discussed in [9]. It 
is difficult to account for the forbiddenness of the 
620-keV M1 transition on the basis of the indepen­
dent-particle model if 3/2+ is assigned to the 
620-keV level. [9 ,t 6 ~ 

In the collective (vibrational or nonaxial) models 
of even-even nuclei we find that M1 transitions are 
highly forbidden, although they are allowed by 
parity and angular momentum. Similar forbidden­
ness can also be assumed for odd-A nuclei. The 
forbiddenness of the 279-keV M1 (3/2 - 1/2) 
transition in the odd-mass nucleus T1203 is ac­
counted for by de Shalit [18 ] on the basis of the fact 
that M1 transitions cannot occur between states 
connected by phonon transitions. In the specific 
case of Cs 131 it would be desirable to have quan-

N (triple coinc.) 

TOO 

50 

5 0 5 10 t, 10"9 sec -l495keV XjokeV 

FIG. 3. Xcapt (30 keV)- Y495 keV - Yl24 keV triple coin­
cidences for Ba131 (experimental points), and Y30 keV- Y495 keV 

simultaneous coincidences for Na22 (curve). 

titative results regarding M1 transitions. 
For the magnetic moment of the Cs 131 ground 

state (~-texp = 3.48 nuclear magnetons [9 J) a calcu­
lation based on the Person-Rasmussen model gives 
~-t = 2.82 if it is assumed that the proton has 
gs = 4, which Person and Rasmussen consider 
the most suitable gs-factor to account for the mag­
netic moment of the odd-Z nucleus. The value of 
~-t cannot be calculated using the model of 
Choudhury, [7J who considered a nucleon having 
angular momentum j coupled with the nuclear vi­
brational motion. He calculated the wave functions 
of the system, the energy states, and the magnetic 
moments as functions of the coupling parameter X 
for the case j = 5/2 (which corresponds to Cs 131 ), 

and obtained a series of energy levels with spins 
5/2 (the ground level), 7/2, 1/2, 9/2, 3/2, and 
5/2. Assuming intermediate coupling with the 
parameter X = 1 , we obtain for the ground state 

1-t = 3.52 (with gs =4), which is close to the ex­
perimental result. 

CONCLUSION 

The observed E2 transitions of C s 131 ( 124 , 133 , 
and 495 keV) are accelerated compared with the 
independent-particle model, thus indicating the 
existence of collective effects in the Cs 131 nucleus. 
In the present work it has been shown that the in­
tensity ratio of 918- and 907-keV y transitions 
from the 1039-keV level and the characteristics 
of the 133-keV level are not accounted for by the 
pure rotational model of Person and Rasmussen. 
It has been fairly well established that the 133-keV 
rotational level in the latter model cannot have the 
assignment 7 /2+. 

Our measurements together with those in 1161 

yield the assignment 7 /2+ for the 124-keV level 
(T 1; 2 = (3.8 ± 0.1) x 10-9 sec). From the forbid­
denness of the 124-keV M1 transition, representing 
an Z-forbidden M1 transition (g7; 2 - d 5; 2 ) [ 11 • 15 ] 

we conclude that the internal structure of the nu­
cleus is changed when it decays from the 124-keV 
level to the ground state. It would be interesting to 
repeat the calculations of Person and Rasmussen 
taking into account the existence of two close-lying 
independent-particle levels (the ground state and 
the excited 124-keV level). 

One should also take into account the vibration­
rotation interactions that are observed in asym­
metric even-even nuclei. [19 ] An attempt can also 
be made to account for the characteristics of Cs 131 

levels using a pure vibrational model that takes 
into account interactions between vibrations and 
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single particles; the properties of this model de­
pend on the degree of coupling. [3 ' 7 J 

For any model one must know the probabilities 
of Cs 131 M1 transitions, particularly for the 620-
ke V transition. Angular y- y correlations are 
being measured in a further study of the 124- and 
620-keV levels. 

In conclusion the authors wish to thank A. I. 
Alikhanyan for his interest, and E. Muradyan, 
A. A. Tashchyan, and N. Demekhina for assistance 
with the measurements. 
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