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Equations are obtained for the changes in the longitudinal and transverse ion thermal ener­
gies and also the energy of an electromagnetic field in an instability due to anisotropy of the 
distribution function. Conditions are obtained for the applicability of the equations, and re­
duce to the requirement of smallness of the deviation of the initial plasma parameters from 
the critical values at which instability sets in. The equations are employed to determine the 
state which the plasma finally assumes as a result of development of the instability. 

CoLLECTIVE motion connected with the 
ion oscillation mode [1] is excited in a collision­
free plasma placed in a magnetic field when the 
anisotropy of the temperatures (longitudinal and 
transverse) is sufficiently large. The excitation 
of the collective motions is accompanied by an in­
crease in the longitudinal thermal energy in the 
plasma at the expense of the transverse one (or 
vice versa), until the plasma reaches a state 
which is stable relative to the collective inter-ac­
tion. In the present paper we analyze this process 
in the quasilinear approximation. 

A very important feature of the instabilities 
under consideration is the fact that they are aperi­
odic (the real part of the frequency wr vanishes ) . 
Usually (see for example, [2]) the quasilinear 
theory is used when the condition that the incre­
ment be small compared with the frequency ( Yk 
« wk) is satisfied. However, as shown in the 
present paper, the quasilinear theory can be ap­
plied also to aperiodic instabilities, provided the 
condition Yk « kzVTII is satisfied (vT 11 -longi­
tudinal thermal velocity of the ions ) . The latter 
condition, as applied to the instabilities connected 
with the anisotropy of the distribution function, 
signifies that in the initial state the plasma pa­
rameters deviate little from the critical values 
at which instability sets in. Under this assump­
tion, we obtain here the plasma temperature that 
sets in during the saturation stage and the collec­
tive-interaction energy of the magnetic field gen­
erated in the plasma. 

1. According to [3], the dispersion equation for 
the ion oscillation mode takes when I w I < wHi the 
form 

cos2 cpn4 - (811 + 8 22 cos2 cp) n2 + 8 118 22 + 8~2 = 0, (1) 

n = ck/wk, cp -angle between k and H0, and ky 
= 0. 

We confine ourselves henceforth to excitation of 
the low-frequency part of the spectrum I w I « wHi, 
when E12 "' <lw l/wHik22 « E22 , and consider col­
lective motions in which the electric field is per­
pendicular to the plane containing k and H0• In 
this case we have from (1) 

(2) 

Substituting E22 from [3] and assuming the follow­
ing conditions to be satisfied 

(3) 

we reduce (2) to the form 

Following [1], we consider separately two cases. 
(a) k 1 = 0. We have for wk from (4) 

2 k~ T II - T 1_ -~H~ /4rtN 

ffik = - 1 + H~ /4rtN Mc2 M 

2 Til =- kz Y. 
M (1 + H5!4nN Mc2) 

Here 

T=M\2fd II N .\ Vz o V, 

y = T 11 - Tl_ -H5!4nN 

Til 

(5) 

When Y « 1 (we henceforth confine ourselves to 
this case) we have I Wk 12 « k~v~ 11 • The condition 
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for the occurrence of instability (wk < 0 ) reduces 
to T11 > T1 + H5147rN. 

(b) k1 >" 0. In this case it is sufficient to retain 
in the dispersion equation only the terms that are 
linear in Wk. Calculating the integral with respect 
to Vz in (4) under the assumption that I Wk I 
« kzvT11 , we obtain 

~ ( H2 )] __ z_ Tj__j__o __ Tu 
2k3_ I 4rtN 

(6) 

Since for any function f0 which has a maximum at 
Vz = 0 we have 

the condition for the occurrence of instability in 
this case reduces to 

M I vi afo H~ 
- 8N J ~ a;;_ dv > T j_ + 8rtN . 

The instability arises thus, unlike in case (a), only 
when the transverse temperature is sufficiently 
large. 

The condition 'Yk « kzVTII' as follows from (6), 
is satisfied when 

Hg J I M I vi afo + T j_ + SrtN 8N .l ~ ~ dv ~ I. 

It also follows from (6) that when Y* « 1, the 
greatest growth occurs in the oscillations with 
kz « k 1 ( k~ lki "' Y *). In the case when the dis­
tribution function f0 is Maxwellian with two differ­
ent temperatures 

fo = N 'M'/, 'I exp [- Mv}_ - Mv~] ' (7) 
(Zrt) ;, T j_ T 11• 2T j_ 2T II 

the increments obtained from (5) and (6) coincide 
with those obtained in [l]. We retain in the dis­
persion equation only the terms of lowest order 
k 1 VT 1 I wHi. Account of the finite Larmor radius 

shows [4•5] that when ki v~ 1 I win .<:. Y* the inves­
tigated instability becomes stabilized. Thus, in 
our case, when Y * « 1, we have ki v~ 1 I win « 1 
for the entire unstable part of the spectrum. 

2. We now turn to the derivation of the equa­
tion of the quasilinear approximation. We break 

up the ion velocity distribution function, which is 
a solution of the nonlinear Boltzmann-Vlasov equa­
tion, into two parts-one oscillating in space and 
characterizing the collective motions of the plasma 
excited during the instability, and one homogeneous 
and monotonically time-varying, characterizing the 
"background" against which these motions occur: 

f = fo (t, v) + f1 (t, r, v). 

If all the quantities characterizing the collective 
motions of the plasma are represented in the form 
of a superposition of Fourier harmonics 

f1 = + ~fkelkr + C.C., 
k 

iJEk . ar= -trokEk, 

E=-i-~Ekelkr+ C.C., 
k 

By averaging the Boltzmann-Vlasov equation over 
distances that are large compared with the oscilla­
tion wavelength we obtain for f0 = (f) the follow­
ing equation (in the averaging it is necessary to 
take it into account that (E) = 0, (H) = H0 II Oz, 
and that f0 does not depend on .J -the azimuthal 
angle in velocity space ) : 

In this equation it is convenient to go over to the 
polar coordinates v 1' v z and e; e = J - 4>; J and 
4> are the azimuth angles of the vectors v 1 and k 1· 
In this case, when Ek does not depend on 4>, inte­
gration with respect to 4> in the right half of (8) is 
equivalent to averaging over e. The dependence 
on J in the diffusion coefficients of (8) then drops 
out, and the axial symmetry is time-invariant. 
Equation (8) is reduced to the form 

J2 = - 2~ [ ( 1 - k~~z - k ~~ j_ COS 6) £~ {k + C. C.] • 

(9) 

We have used here the fact that Ek is perpendicu­
lar to k and H0; fk in (9) depends on the "back­
ground" distribution function f0• To find the spe­
cific form of this dependence we use two assump­
tions that are customary in the quasilinear theory. 

A. We assume that the variation of f0 is adia­
batic: 
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I 1 afo / ~ 1 
(w-k2 v2 +nwH)fo Tt ' n = 0, ± 1 ... , 

(i) =(Or+ iy 

(see [6]). In the case under consideration, when 
the instability is aperiodic ( wr = 0) and the ther­
mal scatter is the small ( kzVTII « WHi) we ob­
tain the strongest condition when n = 0. Inasmuch 
as I f01 8f0 /Bt I ~ y, this condition can be written 
in the form 0 y « kzvT 11 . From (5) and (6) it fol­
lows that this condition is satisfied when Y or Y* 
« 1, i.e., when the deviation from the critical 
plasma parameters at which the instability sets 
in is small. 

B. We also assume that we can confine our­
selves to the linear approximation in the descrip­
tion of the plasma collective motions. In Sec. 5 we 
shall clarify the condition under which we can neg­
lect the nonlinear interaction between the different 
harmonics of the collective motions. 

Under these assumptions we have for fk the 
usual formula of the linear theory 

e 'V ' exp i (n- n') () [ afo 
[k =-hi L.J ln·(f.,2) ln (f.,2) nw .-k v + wk Ek av..L 

n, n' Hz z z 

(10) 

Substituting (10) in (9), averaging over e, and sim­
plifying the obtained expression by using the fact 
that wr = 0 and conditions ( 3) are satisfied, we 
reduce (9) to the form 2> 

(11) 

!)It is assumed here that the essential region of the quan­
tities averaged over the velocities is Vz "-' VT 11 • This is sat­
isfied for all the averages with the exception of 

4 
\v..l a6f d'l, 
J vz avz 

in which the region v z "-' vT (W 00 )'!. is significant as t ~ "" 
[see (28)]. However, as can be readily seen, when t ~"" the 
condition v z >> yk/kz is satisifed also for these v z· 

2lin the derivation of (11) we have neglected the resonant 
particles with velocities Vres ~ (w + WH)/kz » VT11 • An ac­
count of these particles in the dispersion equation leads to a 
new type of anisotropic plasma instability, considered in [']. 
However, since the number of resonant particles is small 
(v » VT ) these instabilities cannot lead to any ap-

res Jl ' 
preciable change in the plasma parameters. 

3. To solve (11) we consider separately, as in 
the solution of the dispersion equation, the two 
cases k1 = 0; k1 » kz. 

When k 1 = 0 the instability is connected with 
all the plasma particles and not with some pre­
ferred group of resonant frequencies: the incre­
ment is determined by the average quantities T11 
and T1 [see (5)] while the diffusion coefficients in 
(11) are smooth functions of v z and v 1 when k 1 
= 0. For this reason it is sufficient to confine the 
analysis of this case to the change in the quantities 
averaged over the velocities, i.e., the moments of 
the distribution functions relative to the velocities. 
From (11) we have 

~~dv = 0 
.\ at ' 

(' afo 
\ V 2 Ttdv = 0, 
.J 

i.e., as expected f0 remains in time an even func­
tion of Vz. 

·For the second-order moments we have from 
(11) for k1 = 0 the following equations 

(12) 

2 T -T j2 
N dT II - ~ M 2 }h_ d = - __!__ ~ ""V r I H 12 n l. 

dt - Vz at V n 2 L.J k k Mc2 
WH k 

IHkl2 ( T..L) 
=- 4N~n--2- T11 --2- · 

k Ho 
(12') 

The change in the energy of the electromagnetic 
field is determined from 

d ~1Hkl2 + I Ekl 2 = __!_"' IH 12 ( 1 + r!). (12") 
lit LJ 8n 4n L Yk k k2c2 

k k 

From (12)-(12") we get the law of energy conser­
vation 

(13) 

The electrons make no contribution in this prob­
lem to the energy conservation law, because the 
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maximum electron current is in a direction per­
pendicular to the electric field (and in this direc­
tion the electron current cancels the ion current ) . 
The electron current in the direction of the elec­
tric field is 1-' = Me /Mi times smaller than the 
ion current. 3> Therefore the energy absorbed by 
the electron in the case of instability is smaller by' 
a factor /-' than the variation of the ion energy. 

From (12)-(12") we can easily find the varia­
tions of T 11 , T 1 , and 

W = ~rC1 ~H;-2 1 Hk 12 

k 

during the instability. Dividing (12) by (12') and 
replacing T 1 and T11 by their initial values Ti 
and Tf1 in the right halves of the obtained equa­
tions, which is equivalent to neglecting terms 
"' Y, we obtain 

dT .1/ dT 11 ~ ~ T~1 12 (2T~I - T~). 

From this we have a relation between the changes 
of the longitudinal and transverse temperatures in 
the instability: 

T~l 
6T .l = - 6T II 2 (2To - yo ) ' 

II .l 
(14) 

On the other hand, for saturation, when 
have 

'Yk- 0, we 

Tu = T'J_ + H'g/4nN. (15) 

From this we get one more relation between the 
total changes in the longitudinal and transverse 
temperatures: 

(15') 

From (14) and (15') we have for oTIJ' and oTf 

yo2 
6T"" = Y 11 • 

l_ 5T0 - 2T0 ' 
II .l 

Analogously as t-oo, we have from (12") for W, 

(17) 

(I Ek 12 = Yk/k2c21 Hk 12 - 0 as t- oo when 'Yk- 0 ). 
As already noted, the quasilinear theory does not 

hold when Y "' 1. However, in view of the lack of a 
more rigorous theory, it is of interest to extrapo­
late the solutions of (12) and (12') to the region 
Y "' 1. In this case we have from (12) and (12') 

dT 11 2T 11 - T .l 
~=-2 . 

1_ 2T II - T .l - H~ 14nN 
(18) 

3)It is assumed that the electron velocity distribution is 
isotropic. 

Solving (18) with the conditions T 1 = Ti when T11 
= Tf1 and using the fact that (15) is satisfied when 
t - oo , we obtain for the transverse temperature 
during the saturation stage the following equation: 

00 H~ T'L + 9H~ I 20nN 
T.1.. - --In -----="---,,---=----,-------

30 nN 2T~1 - Tj_- H~ I 20nN 

(19) 

When Y « 1 we obtain from (19) formula (16) 
for oTf, but we must note that (16) and (19) gives 
results that are quite close when Y "' 1. Thus, for 
example, for Ti = 0.5 Tr1 and Y = 0.4 the value of 
oTf determined from (19) is 0.12 Tf1 and that de­
termined from (16) is 0.1 TfJ. 

4. We now consider an instability with k1 "" 0, 
which arises when the transverse temperature is 
sufficiently high. Confining ourselves in the dif­
fusion coefficients of (11) to the contribution from 
the most unstable part of the spectrum, for which 
kz « k1"' k [ k~"' kiY*, see (6)], we obtain an 
equation for the time variation of f0: 

ato - 1 "V I Hk I' { 1 a [ ( Vl ato ar- 2 L.J H2 v- a-v v.1 rk -z-av 
k 0 j_j_ j_ 

3 h k; vz iJf0 )] a ( k; vi rk at )} 
-Vj_k2v2+,_2 i)v +au- -2-k2v2+,_2 i)v: • 

z z lk z z z z ik ... 

(20) 

From this we get for the change in the ion trans­
verse temperature 

N d:t = ~M~l ~~0 dv = ~Yk ~:~I'(~ Mvl fodv 
k 0 

(21) 

The last integral in (21) is equal to 

We thus obtain ultimately for T 1 the equation 

(22) 

Analogously, for the time variation of the longi­
tudinal temperature we have from (20) 
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dT 11 1 ~1 \Hk\ 2,(~Mv}_ ato N- =-- .LJYk --- --dv 
dt 2 k H~ vz avz 

(23) 

From (22) and (23) we obtain the law of energy 
conservation-the change in the ion thermal energy 
is equal to the energy of the magnetic field gener­
ated during the instability: 

(24) 

Substituting in (24) Yk from (6) and neglecting the 
terms 4> proportional to k~jk]_ we find that the in­
tegral in the right half of (24) vanishes. Neglect 
of the change in the energy of the electric field 

2}1 Ek 12 = L}r~ k-2c-2 l H k [2 

in (24) is equivalent to neglecting in the dispersion 
equation the terms quadratic in Yk [ see (16) ] . 

We now proceed to solve (20). When Vz ~ VTII 
we can solve (20) by successive approximations. 
Substituting f0 in the form f0(v) + Of0(t, v ), where 
f~(v) = f0(0,v) is determined by (7), and assum­
ing I Of0 /f0 I « 1 we obtain for M0 the relation 

6fo = 2nW [__!__~ (__!__- -1-)- - 1- ~ __!__] Mv}_ fZ. 
v ..L av ..L T 0 2T0 2T0 av vz 

II ..L II z (25) 

In the case considered, when Y* « 1, W « 1, and 

we have 

6fo/fo~ 1. 

When Vz « vT11 the last term ~ 1/v~ in (25) 
becomes large and this method cannot be used to 
solve (20), because the third term of (20) has a 
sharp maximum when Vz « VTII• so that in the 
region of small Vz the value of f0 can change ap­
preciably, although the values of T11 and T1, av­
eraged over the velocities, vary little when Y* 
« 1. In the region of small Vz (20) must be solved 
exactly with only the highest-order third term re-

4l An account of these terms would correspond to an ac­
count of small corrections - k~!k3_- Y* in the equations for 
T1 and Tu. 

tained. In this case we have for Of0 the equation 5> 

a6fo _ _1_ ~ I Hk I" ~ ( k~v}_ a6fo) 
at 4 .LJ r k Jf2 av k2v2 + .y2 av 

k 0 z z z lk z 

(26) 

We shall henceforth be interested in the solution of 
(26) as t-oo when 'Yk - 0. Substituting M0 as 
t - oo in the form 

6fo = ~ J Hk 12 H~2F (v ..L• Vz), 
k 

we obtain for F ( v 1, v z ) the equation 

a•F 2 aF 1 v~ p _ M o 
av; - vz au;- nW00 v}_ - - 8nW00T~1 fo (v ..L• O). (27) 

From (27) we have 

(28) 

Here In ( z ) is the modified Bessel function, v * 
= ..[c; v 1 .../ 47TW 00 , and a an arbitrary large con­
stant; for a » 1 we have for 'IF+ (a) and >IF_ (a) 
the asymptotic expansions 

00 00 

1 ( ~ (2n)l 'V (2n + 1)! ) 
'F±(tX)=--v. l:pf,(a).LJ~+I±'!,(a).LJ ct2n+1 • 

ct oct o 

The constants in the solution (28) are chosen such 
that for sufficiently large Vz [ Vz » v 1 (W 00 ) 114 ], 

the value of M0 given by (28) goes over into the 
highest-order term in (25), equal to 
7TW 00 (Mvi/Tr1 v~;) f~(v1 , o ). This can be readily 
verified by noting that when z » 1 

z 

("/±'/,(z') ~:;, = 'P'± (z)- 'I"± (a), 
.\ z 
a 

and by using for ~3;4 (z) or ~ 1;4 (z) with large z 
the known asymptotic expansions [see, for exam­
ple, [B]]: 

In (z) = 1 (e2 + e-rti(n+'f,Je-2 ) ( l +O (_1_).) . 
V2nz z 

5lEquation (26) can be used for small V2 ~ vT 11 , and we 

have therefore replaced tg (v ..L• V2) in the right half of this 
equation by tg (v .l' 0). 
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All the remaining terms in (25) remain small also 
when Vz- 0, provided woo« 1. Therefore, com­
bining (25) and (28), we obtain for Of0 a relation 
valid for all Vz(O<Vz ~VT) with W00 « 1: 

of= 2rr:W -- --- Mvj_+-V2-{ 
co 1 a ( 1 1 ) 4 1t - MvY' 

o v ..L av 1_ y~1 2Yi 4 Y~l 

Now, having a solution of (20), we can determine 
the variation of T1 , T 11 , and W during the insta­
bility. Replacing in the right half of (22) f0 by f&, 
which corresponds to limitation to the highest­
order terms in Y *, and discarding the last term 
~ 'Yk• we get 

(30) 

For the time variation of W we have the equation 

(30') 

Dividing (30) by (30') we obtain a relation between 
the variation of the transverse temperature and 
the magnetic field energy in the instability: 

dT j_ldW = 8rr: Ti (1- 2Ti!T~I), T. e. oT j_ 

On the other hand, as t - oo , when Yk- 0, we 
have 

M ~vi at~ oo 2 - --dv +NT1_ +Hof8rt=O. 8 V 2 av2 

( 31) 

Substituting here f;' = f~ + Of0 and Tl = Ti + oTl, 
we obtain one more equation relating oTf and W00 : 

oToo + ~ \ vi a&to dv = y•(To )2/To . (32) 
j_ 8N .l Vz avz j_ II 

Subsituting in (32) the value of oT1 from (31) and 
Of0 from (29), and going over in the integral with 
respect to v to the dimensionless variables 

X= y M Vj_ 
2Y0 , j_ 

we obtain the following equation for W00 : 

8rr: Woo Ti ( 1- 2Ti!T~I) 

where G is a constant equal to 
00 co 

~ (' dz a G = x 6 e-x'dx \ ----=--a [!_,1, (z) <D+ (z)- J,1, (z) <D_ (z}l = 1, 
.J Yz z 

0 0 z 
[ \. dz' ] <D± (z) = -;/±'/, 2 , 1, + 1{1'± (a) z'l•. 

a 

We have used a = 3 in the calculations. 
It must be noted that in the integral with re­

spect to Vz in (32), the most essential region is 
that of small Vz [ Vz ~ v 1 (W 00) 114 ], which makes 
a contribution ~ (W 00 ) 114• The region of large Vz 
(Vz ~ VT) makes a small contribution ~ W00 , which 
we neglect. With the same accuracy we can neg­
lect the first term in (33). We then obtain for W00 

the formula 

(34) 

Using (31), we obtain for the total variation of the 
transverse temperature 

oTOO = - 128 Y'4 <Y~, )2 ( ZYi - 1) . 
..L 1t2 yo yo 

l_ II 
(34') 

Analogously we have from (23) for the total varia­
tion of the longitudinal temperature 

(34") 

5. In order to justify the possibility of using the 
quasilinear approximation in the problem under 
consideration, we must demonstrate that the linear 
interaction between the harmonics is insignificant 
at the saturation amplitudes Hk , determined by 
relations (17) and (34). This interaction will be 
considered in the present section. We start from 
the nonlinear kinetic equation for the electrons 
and ions (a = e, i) in the form 

ar at'k 
at+ i (kj_Vj_ COS 6 + kzVz) f'k- (f)Ha ----a!J 

ea [at~ ( kzvz) kzv j_ at~ ] +-Ek - 1-- +-.-Ma av l_ wk wk avz 

= - ~: { ( a:j_ + v ~ ) ~ Ek-k,fk' sin 6 ( 1 - (kz ~-:~) 02
) 

1 a ~ [ ( (kz- k:) vz) + --a" L..J Ek-k'fk' cos 6 1 - ----
v j_ v k' (J)k-k' 

1 k 1_- k~ 1 v 1_ J + __!____ ~ E fa . " (k2 --: k:) v 1_ \ 
- a L..J k k' k' sm I] J . (J)k k' v - (J)k k' 

- z k' - (35) 

For simplicity we assume that k, k' and H0 lie in 
one plane G>. 

6lSince our prohlem reduces to an order of magnitude esti­
mate of the interaction between the harmonics, this assump­
tion does not limit its generality. 
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In this case of aperiodic instability the interac­
tion between the harmonics leads to a change in 
the time dependence of the amplitude Hk even in 
the second order of the oscillation amplitude. In 
order to find Hk ( t) in this approximation, we sub­
stitute f~ from (10) in the nonlinear terms of (35), 
which we transfer to the right side. Solving the 
resultant equation and simplifying the result under 
the assumption that I Wk-k' I, I Wk' I « wHi and 
that conditions ( 3) are satisfied for k and k', we 
obtain after straightforward but laborious calcu­
lations the following expression for the nonlinear 
addition to the ion distribution function fk: 

We do not present here the very cumbersome ex­
pressions for As, since they make no contribution 
t . . 7) 
o Jx or Jy . 

Using Maxwell's equations, we obtain the fol­
lowing equations for the determination of Hk 

1 azHk 2 4n:, aHk 4n:. ~a.\ . "fa.d --+kHk-l--c;22 -=--tkLJe VJ.SID•Jk V, 
c2 atz l cZ at C a. • 

Here Hk is the amplitude of the magnetic field in 
a plane cont~ining k and H0, arising during the 
instability, Hk is the amplitude of the magnetic 
field perpendicular to this plane, resulting from 
the interaction of the harmonics, while &11 , and 
&22 are the components of the electric conductivity 
tensor in the linear theory, in which Wk must be 
replaced by i 8/8t. 

Substituting f~> from (36), we calculate the in­
tegrals with respect to v in the right half of (37), 
under the assumption that I Wk I « kzvT 11 • We as­
sume that the electron velocity distribution func­
tion is isotropic. Then the contribution to 
j~onl, j¥onl is made only by the ions. It must also 

7lWe note that the presence in (36) of a term with s = 0 
denotes that the interaction between harmonics leads in the 
approximation under consideration to the occurrence of j z• and 
consequently also E\\H0 • However, in view of the fact that 
f 33 is large at low frequencies, 'E 11 is small. 

be noted that the terms proportional to e±ie van­
ish from f~> when k1 = 0. In this case only one 
component, jnonl_ j~0nl, differs from zero, i.e., 
when k1 = 0 the interaction between two trans­
verse modes can lead only to the occurrence of 
longitudinal oscillations with E II H0 8>. However, 
as already noted, in view of the fact that E33 is 
large at low frequencies, the magnitude of the 
field in these oscillations is negligibly small. Thus, 
in the second approximation in the amplitude Hk, 
interaction between harmonics actually appears 
only when k1 ~ 0, i.e., for the instability due to 
the high transverse temperature. In this case we 
have from (37) 

2 ' ( iJHk kz ~ kz- kz Hk-k' 
-- y H -- LJ H k' -- 3T .1. - T 11 

at -- k k rtk .1. k' 1 k J.- k~ 1 Ho 

+ ~ \ v.S_ :!" dv) / ~ I vj_ azt; (v J.• 0) dv J.; (38) 
.) vz L-z .\ avz 

(39) 

The quantity 'Yk in (38) is determined by (6). In 
the quasilinear theory account is taken only of the 
first term in the right half of (38), the magnitude 
of which is of the order of kzvT 11 Y*Hk. The sec­
ond term of the right half of (38) is connected with 
the interaction of the harmonics. For amplitudes 
Hk' determined by relation (34) this term is small, 
of the order of 

kzVT II k;H~jkj_ H o - kzVT II y*3H k· 

Thus, the interaction of the harmonics cannot be 
appreciable after a time ~ 1/y and can be neg­
lected in the analysis of the establishment of the 
stationary amplitudes (34). 

It follows from (39) that the interaction between 
the harmonics leads also to the occurrence of a 
magnetic field perpendicular to the ( k, H0 ) plane, 
but the amplitude Hk of this field is small com­
pared with Hk: 

- 2 *'/ Hk-kzHklk.1.H0 ~Y 'Hk. 

Thus, when k1 ~ 0 we can neglect the interaction 
of the harmonics if Y * « 1. 

When k 1 = 0 the interaction of the harmonics 
appears only in the third order in the amplitude 
Hk. Carrying out calculations in accordance with 
the usual scheme (obtaining the nonlinear addition 

8lin accordance with the previously obtained results (see 
[•]). 
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to the distribution function f~>, determining with 
its aid the values of j~onl and j~onl, and substi­
tuting the result in Maxwell's equations), we find 
that in this case the nonlinear interaction of the 
harmonics is more appreciable than when k1 ,r. 0. 
The reason is that although when k1 = 0 the inter­
action of the harmonics appears only in the third 
order and Hk, the small terms "' 'Yk in the left 
half of (37) are significant in this case. The con­
dition under which the nonlinearity of the collec­
tive motions in the plasma can be neglected when 
k1 = 0 reduces to I (( T11 - T1 )/Till « 1. This is 
equivalent to the requirement Y « 1 only for small 
magnetic fields H0, when H5/47rNT « 1. The con­
ditions for the applicability of the quasilinear the­
ory of instability for k1 = 0 thus reduce to Y « 1 
and H5/47rNT « 1. 

In conclusion the authors consider it their 
pleasant duty to thank Ya. B. Fainberg for valuable 
advice and A. A. Vedenov for a discussion of the 
results. 
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