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The boundary of the physical region of the five-point function is obtained in explicit form in 
the space of the Lorentz -invariant variables that the amplitude depends on. The structure 
and relative location of the physical regions in various channels are discussed for an arbi­
trary inelastic process. 

l. The dynamics of the interaction process between 
the particles determine the singularities of the in­
variant amplitude for that process (as opposed to 
kinematic singularities). Such an amplitude de-
pends only on the Lorentz invariant combinations 
of 4-momenta of the particles Pj. Sij = (Pi ± Pj )2. 
It is in terms of the Sij that one obtains, for ex­
ample, the limitations on the masses and the fixed 
invariants for which it is possible to establish dis­
persion relations for the amplitude in perturbation 
theoryC1J. The amplitude is related to experimen­
tally observable quantities (except for the coupling 
constant) only in the physical region for the proc­
ess. The unitarity condition, with which the ana­
lyticity properties must be combined is defined 
also only in the physical region. It is obvious that 
for these reasons it is necessary to know the 
boundary of the physical region in the space of the 
invariants. For the process corresponding to the 
transition of two particles into two particles (four­
point function) this problem is trivial. [2] The well 
known diagram with triangular axes s, t, u repre­
sents the physical region in all three cross chan­
nels. 

In this work we describe the physical region of 
the five-point function. In particular we present a 
physical interpretation of the equation for its 
boundaries. We also obtain a number of facts re­
lating to the structure and the relative positions 
of the physical regions of various cross channels 
of an arbitrary inelastic process. 

2. The physical region is determined by the re­
quirements that inside it: 

a) The 4-momenta of initial and final particles 
should be on the mass shell: pj = mj. 

b) The squares of the 3-momenta of all par­
ticles should be nonnegative. 

c) The cosines of all angles between 3-momenta 
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should be real and should not exceed unity in mag­
nitude. 

The invariant amplitude for the process p1 + p2 
-- p3 + p4 + p5 (Fig. 1) depends on five independent 
Lorentz -invariant variables which can be chosen 
as S12 = (pl + P2)2, S23 = (p2 -p3)2, S34 = (p3 + P4)2, 
s 45 = (p4 + p5)2, and s 15 = (p1 -p5)2. The remain­
ing Sij. with (i,j) = (1,3), (1,4), (2,4), (2,5), 
( 3, 5 ), can be expressed in terms of the chosen 
ones (see [3J). In order to fulfill the requirements 
b and c it is sufficient to require in the overall 
center of mass system (Pt + P2 = 0, P1 + P2 = P3 
+ P4 + Ps ): 

pi;>O, Pi> 0, p~;>O, (1) 

- 1 < zw< + 1, (i, j) = ( 1.5), (2.3), (3,5), (2) 

where Zij =cos (pi, Pj ). To determine the bound­
ary of the physical region in the space of the in­
variants it is sufficient to substitute p~, Zij• ex­
pressed in terms of the invariants, into equation 
(1), (2) and solve the resultant inequality. The ex­
pressions have the form 

p~ === (4s12)-1 A (s12 , m~, s34) o= A6/4s12 

(we have introduced the notation A (a, b, c) = a 2 
+ b2 + c2 - 2(ab + ac +be)), 

+ (mi- mD (m~- Sa4)} 

(3) 

X {A (s12 , mi, m~) A (s12 , m~, s34)}-'1' o= M 1s (AlA»)-'1', 
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+ (mi - m~) (m~-s4s)} 

X {A {s12, m~, m~) A (s12, m;, s4s)}-'1• = M2a (A2As)-'/,, 

Z3s =- {si2 + S12 {2m! - mi - m~ - Sa4 - S4s) 

- (m; - S45) (m~ - Sa4)} 

X {A (s12, mi, s45) A {s12 , m~, s34) }-';, = M 3s (AaA•) -'I•. 
(4) 

The inequalities (1) give respectively 

s12 > (ml + m2)2, sa4 < (Vs12 - ms)2 ,S4s < (V8;.2 - ma)2, 

(5) 

and (2) are equivalent to 

-4si2 Lis (si2• Sis• Sa4) = A1As - Mis > 0, (6a) 
-4sl2 L2a (sl2• S2a. S4s) = A2Aa - M~a > 0, (6b) 

N • w~ -4s12 {s12, s34, s45) = A3As - M 3s > 0. 

The curvb L15 = 0 is nothing but the Landau curve 
which determines the singularities of the three­
point functions of Fig. 2, a. [4] This is a hyperbola 
in the variables s 15, s 34 (Fig. 3, a); the region that 
is allowed by the inequalities (5) and (6a) corre­
sponds to the inside of the lower branch that has 

,(-) 
as horizontal and vertical tangents s34 
= ( JS;; - m5 )2 and si5 = ( m 1 - m5 )2 respectively. 
The regions allowed by the inequality (6b) in the 
variables s 23 , s45 is determined analogously. For 
that it is sufficient to replace in the formulas and 
diagrams the subscripts 1, 5, 3, 4 by 2, 3, 5, 4 
respectively. 

a 

The form of the curve N = 0 (6c) is easily found 
after use has been made of the following property: 
[5] if one sets 

then 

It then follows that the horizontal tangents to N = 0 
"(±) ) d '(±) are given by s45 = ( m4 ± m5 an s45 

= ( JS;; ± m 3 )2, whereas the vertical tangents are 
given by interchanging the subscripts 3 and 5. In 
addition N = 0 has as asymptotes s 34 = 0, s 45 = 0, 
and s 34 + s 45 = s 12 - m~ - m~ - m~. The equation 
N = 0 gives the Landau curve of singularities for 
the three-point function of Fig. 2, b. Combining 
Eqs. (6a)-(6c) we obtain for the physical region 
in the s 34, s 45 plane (Fig. 3b) the shaded oval, 
provided that also 

S12 > (ma + m4 + m5) 2• (7) 

3. The boundary of the physical region is given 
by a certain hypersurface Q in the space of the 
five independent invariants, whose choice for the 
purposes of determining Q is absolutely unimpor­
tant. In the preceding section Q was determined 
by its projections on three spaces of the triplets 
of invariants: s12, s15• s34; s12• s23• S45; s12• S34• S45· 
At that the invariant s 12 played a special role. To 
determine the physical region in channel 12, where 
s 12 is the square of the total energy, it was suffi­
cient to require that Eqs. (1) and (2) be satisfied 
for those Pk and Zij which are expressed in the 
simplest, standard manner in terms of the inde­
pendent invariants chosen for that channel. In turn, 
p~ and the remaining Zij are expressed in the 
same manner in terms of the SkZ for a different 
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choice of the independent invariants. 
For example, Pi= (4st2)-1 A(s12• mi, s35), 

s 35 = (p3 + p5 )2, and the equations zi4 = 1 and z~4 
= 1 are respectively the Landau singularities equa­
tions for the three-point functions (see Figs. 2c, d). 
At that the new equations determine the same hy­
persurface Q, except in a different system of co­
ordinates in the space of the five independent in­
variants. The transformation from one system of 
coordinates to another may be accomplished with 
the help of the five known relations between the 
various invariants: 

(the remaining four relations are obtained from 
the above by cyclic permutations of the indices 1, 
2, 3, 4, 5). 

Having noted this fact, we chose for all crossed 
channels the same five invariants as the independ­
ent ones. In the Feynman diagram corresponding 
to the process in question the particles are divided 
into two groups: incoming and outgoing. If for a 
given crossed channel the invariant Sijk ... 
= (pi± Pj ± Pk ± ... )2 is formed out of the 4-
momenta of particles frop1 just one group then 
we shall refer to that invariant as being of the 
energy type; and if the particles belong to differ­
ent groups then the invariant will be called of the 
momentum-transfer type. 

It follows from the results of the preceding sec­
tion that for the energy -type invariants one has in 
the physical region of the given channel 

s,i > (m, + mi)2 , 

and for the momentum-transfer-type 

s,i <: (m, - mi) 2• 

(Sa) 

(Sb) 

Points of the strip (mi -mj )2 < Sij < (mi + mj )2, 
consequently, do not belong in the physical region 
of any channel. 

The distribution of the invariants between the 
energy and momentum-transfer types changes when 
the crossing symmetry operation transfers some 
one particle from one group to the other. By means 
of just such crossing operations one obtains ten dif­
ferent crossed channels for the five-point function 
(they have as the square of the total energy in the 
c.m.s. respectively the invariants with the sub­
scripts 12, 13, 14, 15, 23, 24, 25, 34, 35, and 45 ). 
Consequently, the values of at least one of the in­
dependent invariants allowed in the physical re­
gions of any two crossed channels are separated 
from each other by the forbidden strip. Conse­
quently the physical regions of any two crossed 
channels of the five -point function have no common 

points in the space of the five independent invari­
ants. (The degenerate case when some of the par­
ticles are photons is an exception. ) This result is 
in full agreement with the well-known assertion 
for the four-point function: the physical regions of 
any two (out of the possible three) crossed chan­
nels have no points in common in the plane of the 
two independent invariants. 

4. The last conclusion remains in force for any 
many-point function. It we do not take into account 
the "geometrical conditions" of Asribekov, [3] 
which lower the number of independent invariants 
of the n-point function for n::::: 6, then a trivial 
repetition of the preceding arguments will bring 
us to the assertion that the restrictions (8) remain 
in force for the two types of invariants in any chan­
nel. Since, as has been noted, the choice of inde­
pendent invariants is at that immaterial, and co­
sines of angles are simplest expressed in terms 
of triple, quadruple, etc, invariants, it is conven­
ient to use these latter when determining the bound­
aries of the physical regions. The role of the geo­
metrical conditions reduces to the circumstance 
that only part of the "physical regions" of the 
crossed channels obtained with these conditions 
ignored will constitute the true physical regions; 
namely the part lying on the corresponding hyper­
surfaces whose equations are the geometrical con­
ditions. 

5. The above picture makes it possible to draw 
conclusions about the structure of dispersion re­
lations for inelastic amplitudes. We consider a 
one-dimensional dispersion relation in the square 
of the total energy in the c.m.s. of some one chan­
nel (for example, in s 12 in channel 12). The re­
maining four independent invariants (the case of 
the five-point function) are fixed in the physical 
region of that channel. The antihermitian part of 
the amplitude consists of a sum of six terms. Each 
term may be interpreted as the contribution from 
the absorptive part of the amplitude of a definite 
crossed channel, since in any case it differs from 
zero only when the total energy in the c.m.s. of 
that channel is above threshold.. For example, to 
the right side of the dispersion relation in s 12 con­
tribute the absorptive parts of channels 12, 13, 14, 
25, 35, and 45. 

Recalling that the four independent invariants 
were fixed in the physical region of channel 12 we 
see that the value of at least one of them for every 
channel, except the 12 channel, will be separated by 
the forbidden strip from values that are physical in 
that channel. This means that the right side of the 
dispersion relation will require a not always trivial 
analytic continuation of absorptive parts from the 
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values determined by the unitarity conditions in 
the physical region of the corresponding channel. 

This circumstance, not present in the utiliza­
tion of analytic properties of the four-point func­
tion, may, on the other hand, significantly simplify 
the situation with anomalous thresholds for the 
five-point function. The point is that, at least for 
some of the crossed channels, the analytic contin­
uation in question is in the direction of decreasing 
invariants of the energy type in the given channel. 
It is known from perturbation theory studies [1] 
that the presence of anomalous thresholds is con­
nected with "unstable" values of such invariants. 
Therefore at least a definite class of diagrams will 
contribute to the absorptive part in a manner free 
from anomalous cuts after analytic continuation. 

6. In estimating the contribution to the absorp­
tive part of partial amplitudes from different 
crossed channels, the correspondence of the equa­
tions of the boundary of the physical region to the 
Landau singularities of various three-point func­
tions turns out to be useful. It is customary to 
take into account the contributions from the low­
est few partial waves only. The choice of the an­
gular dependence of the partial-wave decomposi­
tion depends on the angular momentum coupling 
scheme of the three particles. For the diagram 
of Fig. 1 one usually selects the dependence on 
z15 and z34 (or z23 ): this is convenient when par­
ticles 1 and 5 are fermions. The angular momenta 
conjugate to the arguments of these cosines will be 
denoted by J and l. Wishing to preserve the 
scheme of quantization for the crossed channels 
we must select, together with z15, successively 
Zij with (i,j) = (2,3), (2,4), (3,4). The con­
tribution to the l-th partial wave from the l'-th 
partial wave in the crossed channel is then pro­
portional to the integral over the absorptive part 
of the amplitude with the Legendre functions 
Qz' ( Zij) and Qz ( z 34 ). The singularities of this 
integral arise both from the singularities of the 
absorptive part itself and from the branch points 
of the Legendre functions. The latter, when ex­
pressed in terms of the invariants, represent the 

1~5 4 

2~ 
FIG. 4 

Landau singularities for the corresponding three­
point functions of Fig. 3. 

7. If the stability conditions for the masses at 
each vertex of the original diagram of Fig. 1 are 
satisfied, then sis :S s~5 , s2a :S s~3 and, on the con­
trary, s;r> ~ s~4 or s;t > ~ s~5 , where s~j stands 
for the normal threshold in the dispersion relation 
in sij. This means that in the physical region of 
the five-point function the "stability conditions" [1] 
are always fulfilled for the invariants s 15 and s 23 
and always violated for s34 or s45. Consequently 
dispersion relations without complex cuts exist in 
the physical region of the five-point function only 
if its amplitude depends on the variables s 15 and 
s 23 . An example of the corresponding diagram is 
given in Fig. 4. There is, incidentally, also the 
case when the dependence on the variables s34 
and s 45 separates from the dependence on there­
maining variables. 
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