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The spin structure of the amplitude for photoproduction of pions from nucleons is examined 
under the Regge hypothesis of moving poles in scattering amplitudes as functions of the 
orbital angular momentum j. Classification of the Regge poles by various quantum numbers 
is carried out. Polarization of the recoil nuclei in photoproduction of pions from polarized 
targets, and polarization of photons in the process of stopping of fast pions by interaction 
with nucleons, are calculated. It is shown that the contributions of various poles give rise to 
qualitatively different results for the polarization. The amplitude for the photoproduction of 
pions from nucleons at zero degrees is examined. 

1. INTRODUCTION 

A new and promising direction has been given 
recently to the theory of strong interactions by the 
hypothesis of moving poles in the scattering ampli­
tude as a function of orbital angular momentum j. 
It has become clear that in relativistic theory, just 
like in nonrelativistic theory, the interaction am­
plitude is an analytic function of the angular mo­
mentum j and may have moving poles in the right 
half plane of the complex variable j. [1 J The pole 
lying farthest to the right determines the asymp­
totic behavior of the amplitude for the transforma­
tion of two particles into two, A ( s, t), for large 
energies fS and fixed momentum transfer ~. 
In the case of elastic processes for small It I 
such a pole is the vacuum pole, or the Pomeran­
chuk pole, which for t = 0 has j = 1, which ensures 
the constancy of total interaction cross sections at 
high energies. In the case of inelastic processes 
the asymptotic behavior of the interaction ampli­
tude is determined by a pole whose quantum num­
bers differ from those of the vacuum. The study 
of the properties of such poles and of the location 
of their trajectories relative to that of the vacuum 
pole is of considerable theoretical and experimen­
tal interest. 

In this work we consider the spin structure of 
the amplitude for pion photoproduction on nucleons, 
whose asymptotic behavior is governed by non­
vacuum poles. As will be shown, the amplitude 
under consideration receives contributions from 
three sets of poles, which give rise to qualitatively 
the same results for the differential photoproduc­
tion cross section; hence these results can not be 
used to experimentally distinguish the various 
types of Regge poles. The spin structure, however, 

turns out to be different for each of these groups 
of poles giving rise to a qualitatively different de­
pendence of the polarization of recoil nuclei on the 
polarization of the target nuclei. Study of the re­
action inverse to photoproduction shows that the 
resultant photons will be completely linearly po­
larized in the plane of the reaction, or perpendicu­
lar to it depending on the location of poles with dif­
ferent quantum numbers. 

Investigation of the amplitude for the photopro­
duction of pions on nucleons at zero degrees and at 
arbitrary energies leads to an expression for the 
amplitude that is totally different from the asymp­
totic one-pole expression; consequently the polari­
zation effects are different too. This is due to the 
inapplicability of the asymptotic formulas in the 
region of momentum transfers It I ~ m2m~/s 2 • 

Consequently a study of the polarization effects 
by means of experiments with polarized beams and 
targets permits one, in principle, to clarify the 
order of appearance of trajectories of various 
poles relative to the vacuum pole and verify 
Chew's hypothesis on the influence of various 
quantum numbers on the position of Regge poles.C 2J 

2. PARTIAL AMPLITUDES IN THE ANNIHILA­
TION CHANNEL N + N- 1r + y 

The photoproduction amplitude Arry depends in 
general on four invariant functions Ai ( s, t) [ 3] 

and, in accordance with the requirements of rela­
tivistic and gauge invariance, may be written in 
the annihilation channel in the form 1 > 

A"Y = iu (- p2) [y5 (A1 + A2k) (eq) + (A3 --l- A4k) (en)] u (p1), 
(1) 

1>We use the metric in which the scalar product of 4-vectors 
is (ab) = a0b0 - a · b. 
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where Ai are functions of the kinematic invariants 
t = ( Pt + p2 ) 2 and s = ( p1 - k) 2, p1 is the 
4-momentum of the nucleon, p2 is the 4-momentum 
of the antinucleon, k is the 4-momentum of the 
photon, and e is the polarization vector of the 
photon in the transverse gauge, 

q .. = Q .. /VQ 2 , Q , =Pia. (p2k)-p2a. (Pik), 

We shall assume that the bispinors describing the 
spin states of the nucleon and antinucleon are nor­
malized such that u ( p) u ( p) = p0/l Po I. and the 
amplitude Arry such that the differential cross sec­
tion is expressed by the formula 

(2) 

where k1 and k2 are the absolute values of the 
particle momenta before and after the collision, 
W is the total energy and n is the solid angle 
element in the center-of-mass system ( c.m.s.). 

To discuss the photoproduction channel 
( s -channel) one must replace in (1) p2 by - p2, 

and k by - k. To discuss the inverse photopro­
duction channel ( u-channel) 1r + N - N + y one 
must replace in (1) p2 by - p2 and s by 
u = ( P2 + k) 2• 

Equation (1) presupposes a definite projection 
of isospin T3 in the annihilation channel 
( t-channel). The experimental analysis of the 
asymptotic cross sections of the processes y + p 
- p + 1r0 (mixture of states with T = 0 and T = 1 
in t-channel, T3 = 0) and y + p- n + rr+ (pure T 
= 1 state in t-channel, T3 = 1) gives one informa­
tion on the isotopic spin of the right-most Regge 
pole in the photoproduction amplitudes. As is 
known,C 4J Regge poles characterizing the strong 
interactions are described by quantum numbers: 
parity P, signature or j -parity Pj, isotopic spin 
T and G-parity. In our case the electromagnetic 
interactions cause T and G to have no meaning as 
quantum numbers and only the third component of 
isospin T3 is a good quantum number. In the case 
of the neutral system in the t-channel ( T3 = 0) the 
charge parity C is a good quantum number also. 
Thus in photoproduction it is convenient to classify 
the Regge poles by the following quantum numbers: 
P, Pj and C. As will be seen, in the case of in­
terest to us specifying the C-parity is sufficient 
to determine the remaining quantum numbers 
( P and Pj) of the Regge poles that contribute to 
the photoproduction of pions. 

In order to analyze the photoproduction ampli­
tude by the Regge-Gribov method it is necessary 

to obtain the expansion of the amplitudes Ai ( s, t) 
in partial waves in the c.m.s. in the physical re­
gion of the t channel. In the following we shall ob­
tain this expansion by making use of a technique 
proposed by Berestetsky.[ 5J To that end we go 
over to two-component spinors by making use of 
the explicit form of u(p): 

u PI -r= , ( ) - 1 (VE+mv )· 
V 2m V E-m (an1) v 

( ) - 1 (-VE-m(an2)w') u -P2 --= , 
V2m, VE+mw 1 

where a are the Pauli matrices, E = /t/2 is the 
nucleon energy in the t channel, n1 is a unit 
vector in the direction of motion of the nucleon 
in the c.m.s., and m is the nucleon mass. Using 
two-component spinors the amplitude (1) deter­
mining the polarization of the nucleon may be ex­
pressed in the form 

A,y= fl'x (eni) + !2 (nix) (n, [en2l) + !3 (e [xn,l) 

+ f4[n [nixll [n2el, 

where x = w*v, X = w*av, n2 is a unit vector in 

(3)* 

the direction of emission of the photon; x describes 
the singlet, and X the triplet, state of the NN sys­
tern; f1 is the amplitude for NN annihilation from 
the singlet state and f2, f3, f4 are amplitudes for 
annihilation from the triplet state. 

Comparing (1) and (3) makes it easy to find the 
connection between the invariant amplitudes Ai 
and the amplitudes fi which, in essence, are com­
binations of helicity amplitudes and are convenient 
for expansion in partial amplitudes: 

im Y 1 - z~ [ mz1 (fa- z1f•) J 
Aa = f2- • 

P E (1- z~) 

A 4 = Vim (fa- ztf.), 
Effi 1 -z~ 

(4) 

where w is the photon energy and 

2 Vt(s-m2+(t-m~)/2) 
Zt = (nin2) = -------=------:===--

(!- m~) V t- 4m2 

Expressing Ary in the form 

Any = X (eF) + XtekFtk (5) 

*[en2 ] = ex n2 • 
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and making use of well-known formulas (see, e.g. 
[ 5,6]) we find the expansion of the functions F and 

Fik: 
F = 4n 2J f~1- (t) Y;1 (n2) YiM (n1), 

iM1-

F;k = 4n 2J f~1- (t) w;1 (n2)]k [Y/M (n1)];, (6) 
JM1-o 

where YjM is a spherical harmonic and Yk is a 

vector spherical harmonic. The index A. takes on 
two values corresponding to the two photon polari­
zations (index 2-electric photon, index 3-mag­
netic photon). The index a takes on three values 
corresponding to the three polarization states of 
the NN system in the triplet state, and a= 0 for 
the singlet state of the NN system. In the notation 
of Berestetsky[ 5J 

Y}M (n) = n YiM (n), 

Y2 (n) - 1 VY ( ) 1M - -v j (j + 1) iM 0 , 

YJM Vi(~+ i) [n V]Y iM (n), 

where the operator \7, by definition, acts as 

VYiM = p :p yiM c: I) 0 

Introducing these relations into Eq. (6) and using 
the addition theorem 

2J y;M (02) yiM (nl) = (2j! 1) pi (Zt) 
M 

( Pj is the Legendre polynomial) we obtain for 
A7f"Y the expansion 

~ 2j + 1 { i 0 A ,y = k.l V. . ( en1) Xfo2 (t) Pi (z,) 
i I (J+1) 

+ ([en2 ] n1) (xnl) t{3 (t) p;. (z,) 

1 . 0 i " + V (e lxn11) lt~2 (t) (ztPi (zt))' + f23 (t) Pi (z,)l 
i(i+1) 

+ V 1 [n2el [n1 [n1xJJ Uta (t) (ztP; (zt))' 
i(i+1) 

+f,2 (t)P;(zt)l} (7) 

(the dash denotes differentiation with respect to 
zt), which compared with (3) yields 

f ~ 2j + 1 fi (t) Po ( ) f ~ (2j + 1) fi (t) Po ( ) 
1 = f y j (j + 1) 02 i Zt , 2 = f y j (j + 1) 13 i Zt , 

2"+1 f s = 2J i (~ + 1) [f'2 (t) (ztP; (zt))' + ft3 (t) P; (Zt)l, 
I 

The indices of the amplitudes fj correspond CTA 
to the indices in Eqs. (6). In particular, the ampli­
tude fj corresponds to NN annihilation from the 

02 
singlet state into a photon of the electric type and 

a pion; the amplitude fi 3 corresponds to NN anni­
hilation from the longitudinal triplet state ( projec­
tion of total spin onto the direction of momentum 
ms = 0) into a photo~ of the magnetic type and a 
pion; the amplitude fL corresponds to NN annihila­
tion from the transverse triplet state ( I ms I = 1) 
into an electric type photon and a pion, and the am-

plitude f~3 to NN annihilation from the transverse 
triplet state ( I ms I = 1) into a magnetic type pho­
ton and a pion. 

Taking also into account that C is the parity of 
the pp system, given by 

C = (- l)I+S, (9) 

where S is the total spin and l = j in the singlet 
state (a= 0) and the transverse triplet state with 
a = 3, while l = j ± 1 for the transverse triplet 
state with a= 2 and the longitudinal triplet state 
with a = 1, !t is easy to see that for C = 'F 1 the 
amplitude f~2 describes transitions between states 
with quantum num~?ers P = ± 1, Pj = 'F 1, C = 'F 1 
( a Regge pole), f~ 2 describes transit!ons wit!l P 
= 'F 1, Pj = ±1, C = =F1 ({3 pole), and fL and f~3 
correspond to transitions with P = 'F 1, Pj = 'F 1, 
C = 'F 1 ( y pole). The state pp is a pure C = -1 
state, the state pn is a mixture of states with 
C = 1 and C = - 1. 

We note, in particular, that among the poles of 
type y are the poles with the quantum numbers of 
w and p 0, p+, p- mesons. It is to be expected that 
the leading photoproduction Regge pole will de­
scribe the reaction up to It I :S m 2.CsJ 

3. CONTRIBUTION TO THE PHOTOPRODUCTION 
AMPLITUDE FROM POLES WITH VARIOUS 
QUANTUM NUMBERS 

Considering separately the symmetric and 
antisymmetric parts of the functions fj ( s, t) (de­
pending on the signature Pj) and passing over from 
the summation over j to the Sommerfeld-Watson 
integral, we easily find the cootribution from the 
pole with largest Re j to the amplitudes fj (s, t) 
and therefore, with the help of Eq. (4), to Aj ( s, t). 
At that we assume that the only moving singulari­
ties of f~A. ( t) in the complex j plane are in the 
form of poles lying to the right of the line Re j 
= 0. Passing to the limit I zt I » 1 ( s » m 2 ) and 
continuing the amplitudes Aj ( s, t) from the t 
channel to the scattering channel ( t < 0) one can 
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obtain asymptotic expressions for the photopro­
duction amplitudes. In the process of continuation 
one must, in particular, cross the line ( -t} 
= ( -tmin> ~ m2m~/s 2 for s » m 2, on which I Zt I 
~ 1 and asymptotic behavior is not reached. Appa­
rently the continuation can be performed in the 
complex j plane, bypassing the dangerous line 
( - t) = ( - t) min. However this circumstance has 
not been rigorously proved and requires additional 
investigations. This same difficulty is encountered 
in the investigation of the asymptotic behavior of 
the backward scattering amplitude.C 9J In this 
fashion our investigation of photoproduction makes 
sense in the region 

(- t)min ~ (- t) ~ m2• 

A. The pole a is contained in the amplitude 
f~ 2 . According to Eqs. (8) and (4) it contributes 

only to the amplitudes f1 and A1• In this case the 
matrix element for photoproduction in the c.m.s. 
for I zt I » 1 may be written as 

A~y = u (p.) r.u (p1) 

x 2ms'!. (en2) / 1 (s, tVV t (t -4m2) (m; - t). (10) 

Here n2 = p2/l p2 l and mrr is the mass of the pion. 
Thus the pole a contributes only to the pseudo­
scalar covariant. 

The form of f1 ( s, t) for I zt I » 1 follows from 
the Sommerfeld-Watson integral: 

t ( t) etC± (et) + (t) <>-1 
1 S, = - :rt . P02 Zt , sm net 

(11) 

where a ( t) is the position of the a pole in the 
complex j plane, with the residue being 

± ± 
r 02 (t) =va(a + 1)p02 (t), and 

C± (a)= (2cx +I) r (2a + 1) (I ±e;,'")/2"+1 [f (ex+ l)l2• 

The ± signs correspond to positive or negative 
signature. 

Based on Eqs. (2) and (10) it is easy to obtain 
the expression for the differential photoproduction 
cross section in the c.m.s.: 

!!':_ = 2 (- t)(t + ~.) s I f1l" = (1 +Sa) s2Re<>-1<p" (t). (12) 
dQ (4m2 - I) (m~ - 1)2 

Here ~ 3 is the Stokes parameter that determines 
the linear polarization of the incident photon. 

The polarization 4-vector of the recoil proton 
is given by the formula 

a~> = -a~>·+ 2t-1q~'- (a(l)p2), (13) 

where q!J. = ( p2 - p1 ) IJ. and a~) is the polarization 
4-vector of the target proton. 

From Eq. (13) there follow for the polarization 

vector b 2 of the recoil nucleon the asymptotic 
( I Zt I » 1) relations: 

~~) =- ~~>, ~~2) = ~~1)' ~~·) = - ~~1). (14) 

Here the z -axis was taken along the direction of 
the vector n1, the x-axis lies in the reaction plane, 
and the y-axis is perpendicular to the reaction 
plane. It follows from Eq. (14) that the longitudinal 
polarization of the recoil nucleon, as well as one 
of the components of transverse polarization, has 
a sign opposite to the sign of the corresponding 
component of the initial nucleon. 

In the u channel, i.e. in the channel of the re­
action 1r + N- N + y, the expressions for the 
analogous quantities are obtained by the substitu­
tion s - u (accurate up to unimportant numerical 
factors related to averaging over photon polariza­
tions). 

In this case the relations (13) and (14) for the 
polarization of the recoil nucleon are preserved. 
It is easy to show that the photon in such a reac­
tion is fully linearly polarized in the reaction 
plane, i.e., that the Stokes parameter is 

(15) 

This result is independent of the initial polariza­
tion of the nucleons. 

B. The pole {3 is contained in the amplitude 

f{ 2. According to Eqs. (8) and (4) it contributes to 
the amplitudes f3 and f4, and, consequently, to all 
tp.e Ai. However, taking it into account that 
J II ( ) f32 and f4 appear in front of the functions Pj zt , 

and that the scalar and pseudoscalar covariants 
contribute to the cross section by a power s less 
than the vector and pseudovector, we obtain using 
(4) for I zt I » 1 

- ' 4m ll/ (en2) f• (s, I) 
Any = u (p2) r • k u (p1) y: " , 

I- 4m2 (m;- 1) sine, 

/ 3 = - n~c.±: (~) r~ (t) z~-1/(1 +~)sin :rt~, (16) 

where (} s is the angle of emission of the photon in 
the s channel, rf2 ( t) is the residue of the {3 pole, 
{3 ( t) is the position of the {3 pole, and the ± signs 
correspond to positive or negative signature. 
Thus the {3 pole contributes predominantly to the 
pseudovector covariant. 

In this case the expression for the differential 
cross section does not differ qualitatively from 
the previous one and is obtained from (12) by the 
substitution f1 - f3. 

The polarization 4-vector of the recoil nucleon 
depends on the polarization 4-vector of the target 
nucleon according to the following formula: 
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_ (a(l)k) (P•P" + m2 ) k 
(kp,) (kpz) 1'" 

(17) 

From Eq. (17) result the following relations be­
tween various components of the polarization vee­
tors of the initial and final nucleons for I zt I » 1: 

The coordinate axes are chosen here in the 
same way as in the derivation of Eq. (14). 

It is seen from Eq. (18) that the transverse 
polarization of the recoil nucleon is opposite in 
sign to the polarization of the initial nucleon, 
whereas the longitudinal polarization is preserved. 

For the u channel the situation is as in the case 
A, the recoil nucleon polarization being determined 
as before by Eqs. (17) and (18). The photon in such 
a reaction is polarized in the reaction plane, i.e. 
~ 3 = 1 independently of the initial polarization of 
the nucleons. 
. C. Th_e pole y is contained in the amplitudes 

f~ 3 and f~3 . Arguing as ~nder B we arrive at the 
conclusion that the y pole for I Zt I » 1 contributes 
to the amplitudes A3 and A4, which in this case 
have the form, according to Eq. (4), 

Then 

where n = n1 x n2• 

Thus the y pole contributes predominantly to 
the scalar and vector co variants. 

On the basis of Eqs. (19) and (20), and taking 
into account that the functions A3 and A4 have the 
same complex parts[s] for t < 0 and s » m 2, we 
obtain the formula for the differential cross sec­
tion with only the y pole included, which differs 
from (12) by the substitutions I f1 12 -- I f2 12 

+ I f4 12 and ~ 3 -- - b where 

(21) 

{4 = -nrc± (r) ria (t) zi-1/(1 + r) sin nr. (22) 

Here y ( t) is the position of the y pole, the resi­
due at the y pole of the amplitude fl 3 is rf3 ( t) 
=Vy(y + 1)pt3 (t), r~3 \t) is the residue at they 
pole of th€ amplitude fJ , and the ± signs refer to 

23 
positive and negative signatures. 

From (20) we obtain an expression for the po­
larization of the recoil nucleon assuming that 
( -t)min « ( -t) :S m 2: 

~~2) = <I fzl 2 - I f•l 2l ~i'> + 2 Im M:~~1> 
I fzl 2 +I f•l 2 

~~2) = ~~). (23) 

Thus if the y pole dominates for I zt I » 1 
then the polarization of the nucleon in the plane 
perpendicular to the reaction plane is preserved. 

Passage to the u channel is accomplished, as 
usual, by the substitution s-- u. The polarization 
of the recoil nucleon for ( - t) min « ( - t) :S m 2 

is determined by the relation (27). The photon, in 
contrast to cases A and B, turns out to be polar­
ized in the plane perpendicular to the reaction 
plane, i.e. the Stokes parameter of the photon is 

£3 =-I. (24) 

In conclusion of this section we note that the 
angles of emission of the pions in the laboratory 
system in the photoproduction reaction for ( - t) 
:S m 2 are of the order of eL :S .../ -t/wL ~ m/wL 

( WL-photon energy in the laboratory system); 
eL ~ 10° for WL = 5 BeV. The situation is the 
same in the inverse photoproduction process. For 
not too large photon energies the effects here dis­
cussed are fully accessible for experimental 
studies. 

4. PION PHOTOPRODUCTION ON NUCLEONS AT 
0 DEGREES 

The amplitude for the photoproduction of pions 
on nucleons in the forward direction (cos Bs = 1) 
is determined, because of the selection of the 
unique direction, by a single invariant amplitude 
instead of four. This is easy to understand since 
of the four independent helicity photoproduction 
amplitudes [ 9] 

( ~ o I A I~, 1), (~ o I A I~, -1), 

( -~ o I A I h 1), (- ~ o 1 A I~, -1), 
all but the last one vanish for cos e s = 1 as a 
consequence of conservation of the component of 
the total angular momentum along the direction of 
relative motion.[io] 

Expressing the helicity amplitudes in terms of 
the invariant ones and making use of the behavior 
of the d-functions for co.s Bs -- 1 it is not hard to 
see that all the Ai ( s, t) have a kinematic singu­
larity of the form 1/ sin e s• and that there exist 
between them the following relations: 
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A/A4 = 2pi (EI +PI) (£2 + Pz)/m (EI +PI + Ez + Pz). 
(25) 

It follows from (25) that for cos 9s = 1 the ampli­
tude ArrA. is of the form ArrA. ~ f ( s) (]'·e. Since 
only one of the invariant functions is independent 
the polarization states of the final particles are 
given in terms of only the polarizations of the ini­
tial particles. 

Thus, for the photoproduction reaction and in 
the notation of Sec. 3 there follows: 

t r(I) , • ,-(1) 
~(2) _ ;,t;,y T \;2;,x 

y - - 1 + ~~l)S3 (26) 

and for the inverse reaction 

(27) 

All remaining components of the vectors ~ and 
~ (2) vanish. It is seen from (27) that the exact 
formulas for the polarization vectors for cos e s 
= 1 are substantially different from the asymptotic 
expressions obtained on the assumption that the 
process is dominated by some one leading Regge 
pole. As was indicated above, all the asymptotic 
formulas are applicable only for I zt I » 1 or for 
It I » m2m~/s 2 and, consequently, are not valid 
for the description of photoproduction at 0 degrees. 

We note that the physical regions in s and t 
channels of the photoproduction process are deter­
mined by the same equation of the form (see [i1 J) 

s2t + t 2s- st (2m2 + m;) + tm2 (m2 -m~) + m;m2 = 0. 
(28) 

Taking into account Eq. (28) and making use of 
the law of conservation of the projection of the 
total angular momentum onto the direction of rela­
tive motion in the t channel one can show that the 
reaction amplitude in the s channel at zero de­
grees is the analytic continuation in s and t of 
the reaction amplitude in the t channel at 180°. 
At that only the partial amplitudes f~ 2 ( t) and 
f~3 ( t) contribute to the invariant amplitudes, and 

f~ 2 ( t) and fL ( t) do not contribute and are in this 

sense special. 
On the basis of theTesults of Gribov and 

Volkov,C 4J who clarified the location of the Regge 
pole trajectories for t = 0, one can satisfy the 
exact relations (25) by imposing limitations on the 
behavior ot the residues at the poles of the partial 

photoproduction amplitudes for t ::::J cm 2m~/s 2 - 0, 
I c I » 1. However experimental confirmation of 
relations (26) and (27) cannot serve as verification 
of the picture of location of the poles obtained in 
[4] 

5. DISCUSSION OF RESULTS 

The analysis of the amplitudes for photoproduc­
tion of pions on nucleons and photon emission in 
the stopping of fast pions in collisions with nu­
cleons based on the Regge-Gribov method shows 
that Regge poles with different quantum numbers 
give rise to qualitatively different polarization ef­
fects in the processes here considered. This cir­
cumstance allows one to determine experimentally 
the order in which the Regge poles are distributed 
depending on their quantum numbers, to show 
which of the poles give the dominant contribution 
to the asymptotic photoproduction cross section, 
and to test the Chew[2] hypothesis on the relative 
importance of different quantum numbers in the 
determination of the asymptotic behavior of cross 
sections for various interaction processes between 
high-energy particles. 

In particular, if the a pole dominates photo­
production at high energies then the longitudinal 
component of the polarization of the recoil nucleon 
has opposite sign to that of the target nucleon; if 
it is the {3 pole then the longitudinal polarization 
of the recoil nucleon is the same as the longitudi­
nal polarization of the target nucleon, and the 
transverse polarization changes sign; if it is the 
y pole then the recoil nucleon conserves the mag­
nitude of the polarization of the incident nucleon 
perpendicular to the reaction plane. The polariza­
tion effects for the recoil nucleons in the reaction 
inverse to photoproduction turn out to be the same, 
except that in this case the produced photon is 
fully linearly polarized in the plane of the reaction 
(a or {3 poles) or perpendicular to it ( y pole). 
Photoproduction at zero degrees at any energy is 
determined by partial amplitudes of type {3 and y, 
which gives rise to substantially different polariza­
tion effects than the ones obtained on the basis of a 
single pole. 

In this manner experiments with polarized 
beams and targets at high energies, namely exper­
iments on determination of the polarization of the 
secondary particles, are of exceptional importance 
for the verification of the Regge pole hypothesis and 
for the study of the pole properties. 

The authors are grateful to V. N. Gribov, B. L. 
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