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It is shown that the drift instability in an inhomogeneous plasma (with zero temperature grad­
ient) that has been pointed out earlier [1•2] is not excited if the ratio of plasma pressure to 
magnetic pressure exceeds a critical value {3 = ( 8rrp/B2 ) > 0.13. The boundaries of the drift 
instability region in the pressure-perturbation wavelength plane are determined. 

1. INTRODUCTION 

IT has been shown earlier [1, 2] that an inhomoge­
nous low-pressure plasma ( {3 = 8rrp/B2 « 1) is un­
stable against perturbations with phase velocity 
w/k of the order of the particle Larmor drift ve­
locity v0 ~ vTp/a( VT is the particle thermal ve­
locity, p is the particle Larmor radius and a is 
the characteristic scale length of the inhomogene­
ity in density and temperature). This instability 
has been called the drift instability.[1] 

In the present work we investigate the drift in­
stability in a high-pressure plasma {3 ~ 1. This 
question is of interest because it is these values 
of {3 that would be required to realize a con­
trolled thermonuclear fusion reaction. 

It will be shown below that the drift instability 
does not occur if {3 is not small compared with 
unity, in any case, when {3 ~ 1. The mechanism 
responsible for stabilization of the drift instability 
in a dense plasma can be understood as follows. 
This instability is due to the interaction between 
the wave and resonance electrons, i.e., electrons 
whose velocity along the lines of force Vz (the z 
axis is in the direction of the magnetic field B ) is 
approximately the same as the longitudinal phase 
velocity of the wave w/kz. It has been shown in [2] 
that with a zero temperature gradient ( V'T = 0) 
drift instabilities are excited at a frequency 
w ~ kzCA/!2 ~ kxvo ( CA = ( B2/4wn0mi )112 is the 
Alfven velocity, n0 is the equilibrium plasma 
density). It is found that the relative number of 
resonance electrons is small, going as cA/VTe 
~ ( me/mif3) 112 ( VTe is the thermal velocity of the 
electrons while me and mi are the electron and 
ion masses respectively), as does the growth rate 
y = lm w when compared with the frequency. 

On the other hand the plasma ions interact with 
the wave, extracting energy from it and damping 
the oscillations. 

The wave damping arising from the resonant 
interaction with the ions is due to two mecha­
nisms: 

1) The longitudinal phase velocity of the wave 
w/kz can be approximately the same as the ve­
locity along the lines of force of the ions; in this 
case the wave damping is characterized by an ex­
ponential of the form (- w2/kiv~i) ~ exp( -1/{3 ). 

2) The phase velocity of the wave in the drift 
direction w/kx can be approximately the same as 
the magnetic drift velocity of the ions 

u~ = - (v}_l2wB) a In B!ay, (wBi = eBfm;C). 

Since Bln B/By = -%f3a ln n 0/ay, the wave 
damping due to this interaction is characterized 
by an exponential of the form exp ( -w/kx u k) 
~ exp ( -2/{3 ). 

At low values of {3 both of these effects are 
exponentially small so that the electron excitation 
overrides them and the instability is excited. 
However, if {3 is not too small (although smaller 
than unity), the importance of these exponentially 
small terms increases. Even when {3 < 1 the ion 
damping can be greater than the electron excita­
tion since the electron terms in the dispersion 
equation are multiplied by the small coefficient 
( me/mi )112 indicated above. 

It is evident from these qualitative considera­
tions that the drift instability will be stabilized at 
values of {3 greater than some critical value {3 0 

< 1. It is shown in the present work that {3 0 ~ 0.13. 

2. FUNDAMENTAL EQUATIONS 

In describing small oscillations of an inhomog­
eneous plasma we shall find it convenient to intro­
duce the dielectric tensor Ea~, which character­
izes the induced currents j ( €a{3 = 6af3 + 4rriw- 1 x 
&af3• where ja = &a{3Ef3 while ~he time depend­
ence of the wave is given by e-lwt). It is also con-
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venient to introduce the polarizability vector X a, 
which relates the charge density p and the elec­
tric field associated with the wave E, p = xaEa. 
It is clear that the vector Xa is related to the 
tensor ia{3 in a definite way by virtue of the con­
nection between the current and charge given by 
the equation of continuity. 

Introducing ta{3 and Xa we write Poisson's 
equation and Maxwell's equations in the form 

div E = 4n:X"E", 

(rot rot E)" = w2c-2e11~E~. 

(2.1) 

(2.2)* 

The field E is expressed in terms of the scalar 
and vector potentials cp and A: 

E = - V<p + iwc-1A, 

where A satisfies the condition 

divA= 0. 

It then follows from (2.1) and (2.2) that 

(2.3) 

(2.4) 

~<p = 4n:X"V"<p- 4n:iwc-1X"A", (2.5) 

- (~A) 11 = w2c-2~11~A~ + iwc-1~ 11 ~V~<p. (2.6) 

If it is assumed that the magnetic force lines 
are along the z axis and that the plasma inhomog­
eneity is along the y axis the spatial dependence 
of the field on the ''homogeneous'' coordinates x 
and z can be written in the form ( ikxx + ikzz ). 
If the wave length is small compared with the 
characteristic scale size of the plasma inhomog­
eneity a, "Ay « a, the dependence of the field on 
the "inhomogeneous" coordinate y can be written 
in the semi-classical ( WKB) form 
exp [ ijky( y) dy]. We then have from (2.5) and 
(2.6) 

k2<p = - 4n:i;lk<p + 4n:iwc-1x.A, 

k2Au = w2c-2ey~A~ - wc-1ey~k13 <p, 

k2 Az = w2c-2Ezf3A~ - WC-1Ezf3kl3<p· (2.7) 

Here, X a and f. a{3 are functions of A k, w, ~d y, 
obtained by applying the operators Xa and £a{3 to 
expressions of the form { ikxY + i J ky dy + ikzz }. 
These functions have been given earlier.[3] 

In the WKB approximation with kz « k1 the 
condition in (2.4) becomes 

(2.8) 

Expressing Ay in terms of Ax in Eq. (2.7) and 
setting the determinant of this system equal to 
zero we obtain the eikonal equation [4] which, for 
low-frequency oscillations w « wBi ( WBi 
= eB/mic is the ion cyclotron frequency), can be 

*rot= curl. 

written in the following symmetric form: 

(- k2eo, iwc-1 cx2, wc-1 cta, 

) =0. - iroc-1CJ.2, k2 - ro2c-2 e2, i w2c-2 ct2a, (2.9) 
roc-1 cxa, - i w2c-2 CX2a, k2- ro2c-2ea 

Here we have introduced the notation 

Eo = I + 4nix.klk2 , e2 = Eyy- Eyxkulkx. e3 = Ezzt 

a2 = iey13k~cos 'iJ = 4n: (Xu cos 'iJ - 'Xx sin 'I'), 
a23 = ieyz/COS'iJ =- i COS'iJ (Ezy-Ezxkyfkx), 
a3 = Ezf3kf3 = 4ni'Xz, 'iJ =arc tg (kylkx). (2.10)* 

The quantities £ 0, £ 2 etc. are of the form 

rx - - ~ 4_n_e2 (I + _k_x_T_ ~) n \ _ _:vz::._,v.e:-'-_JoJ_:~~fo_d,__v_ . ( 2 .11) 
23- . Tro mroroB ay 0 .\ ro-kxuM-kzvz 

'· e 
Here 

dv = v .1 dv .1 dvz; 

J 0, J 1 are Bessel functions, Jn = Jn ( k1_v 1/ WB), 
UM = -( vi/2wB) B ln B/By is the magnetic drift 
velocity, WB = eB/mc, w5i = 4rn0e2/mi, k1_ 
= Vk~ + k~; the summation in Eq. (2.11) is taken 
over the ions and electrons. 

The relation in (2.9) is the basic equation for 
describing low-frequency oscillations of an in­
homogeneous plasma with an arbitrary ratio of 
gas pressure to magnetic pressure. 

To obtain the required information concerning 
the plasma oscillations and stability it is sufficient 
to study Eq. (2 .9) in the vicinity of an arbitrary 
fixed point y = y* with an arbitrary real value of 
the wave number ky = ky ( y* ) . [5 ,s] This is the 
"local" approach (in contrast with the "integral" 
method [7] which is equivalent to it in many ways) 
and will be used below. 

3. BOUNDARIES OF THE DRIFT INSTABILITY 
REGION IN A DENSE PLASMA 

We now apply the results of the preceding sec-

*arc tg = tan -1 • 
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tion to the analysis of the drift instability of a 
dense plasma with zero temperature gradient 
( V'T = 0 ) . Below we shall find the boundaries of 
the instability region in the pressure-perturbation 
wavelength-plane. 

It is assumed that the boundary of the drift 
instability lies in the region {3 « 1. Then, keeping 
terms which are exponentially small [as exp 
( -1/{3 )] , taking kzVTi « w « kzVTe and 
w » kxliM, and using Eqs. (2.9) and (2.11), we ob­
tain 

( 3.1) 

or 

S = I_ (~w-)2 1- ! 0e-z (I_)_ kxvo). (3.2) 
~~ Z I (!) 0 

00 

Q = ~ J~(V2ze) exp{-e- m1
2 (w- kxu:We) 2 }de, 

0 2Tk2 

T1= T, = T, 
k2 T 

Z=~ 2 , 
miwBi 

-. T olnB 
U' ------
M- miwBi oy ' 

T o In no 
Vo=-----, 

miWBi oy ( 3.3) 

v 0 is the electron Larmor drift velocity, and I0 is 
the Bessel function of imaginary argument I0 = 

I0 ( z ). 
The imaginary terms in this equation describe 

the effect of the resonant interactions between the 
wave and the electrons (given by the w/kzVTe 
term) and the ions (given by the term with the in­
tegral Q). 

At the stability boundary, i.e., where Im w = 0, 
the real and imaginary parts of Eq. (3.2) yield 

( 3.4) 

( 3.5) 

It is evident from Eq. ( 3.4) that w = w ( k) has 
three branches. Of these, it is shown in [s] that 
only one branch satisfies the condition 1 -kxv0/w 
< 0; if one neglects ion damping (the terms in Eq. 
(3.2) containing the integral) this mode is unstable. 
However, the ion damping can compensate the 
electron excitation and the instability can be 
stabilized. It follows from Eq. (3.5) that the ion 
damping is a minimum at the maximum value of 
w/kz; hence the hardest perturbations to stabilize 
are those for which k~ satisfies the relation 

(3.6) 

As indicated by Eq. (3.4), the dependence of k~ 
on z and {3 is 

X= a In nolay,(3.7) 

while the corresponding value of the frequency 
w = w ( k 0 ) is z 

where 

( 3.8) 

A= A (z) o=: ( 1- ~:e=-z Ioe-z r (3.9) 

In particular, as z - 0 

A= I, 

whereas when z » 1 

A=+, (k~) 2 = +x2~ (kxfk JJ2, W = kxV0/4 V2nz. ( 3.11) 

Eliminating the oscillation frequency from Eq. 
(3.5), using Eqs. (3.7) and (3.8), we obtain the 
critical value of {3 as a function of the transverse 
wave number: 

= ( :.~ r r J~ ( Jf 2ze) ex p {- e - z (AI oe-z - [3e/2)2 } de. 
0 /.[3(1-/oe-z) 

(3.12) 

It is evident from Eq. (3.11) that the longitudinal 
damping exceeds the transverse damping (due to 
magnetic drift) when z < z 0 = 8n. When z » 1 

exp (- m1w2/2Tk;) = exp (- 1/8n~). 

exp(-wfkxu:W) = exp (- l/2Y2:rtz~), (3.13) 

whence follows the expression written above for 
z 0• Hence, up to these values of z we use the fol­
lowing simplified equation in place of Eq. (3.12): 

1 - 1.1 oe-z = ( mi )'/, I e-z e-~J.(z)/~ (z) = zl. (I oe-z)2 . ( 3.14) 
1 + A!0e-z me 0 ' f.t 1- Ioe-z 

When z > z 0, omitting the longitudinal damping 
and taking account only of the transverse damping, 
we have approximately 

(3.15) 

Here we have used the approximate expression 
for J~(x) at large values of x: J~(x) = 1/nx. 

The expression for the stability boundary 
{3 = {3 ( z) obtained from Eqs. (3.14) and (3.15), is 

~ = f.t (z)jln {( mi )'/,I e-z 1 + I.Ioe-z} for z < Sn, 
me 0 1- I.Ioe-z 

~ = V ~z I In { ( :} ~~} for z > S:rt. 

The function {3 = {3 ( z) is shown in the figure. 
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The region above 
the curve f3 = f3(k,_p) 
corresponds to 
stability. 

When z f'::j ( mi/me )213 the imaginary terms in 
the eikonal equation are of the same order as the 
real terms and the stability boundary can only be 
determined qualitatively. In this case w ~ kxuk; 
on the other hand, w f'::j kxv0/4 .J2rrz, whence we 
find that when z f'::j ( mi/me )2/3 the function {3 ( z) 
decreases as z -t/2• This functional relation 
f3 = {3 ( z) will hold as long as w ~ kzVTi i.e., 
(see [8] ) up to z f'::j mi/2rrme; beyond this value 
the instability disappears for all values of f3. 

Thus, in the present work we have shown that 
if the ratio of plasma pressure to magnetic pres­
sure f3 = 8rrp/B2 > 0.13 is an isothermal plasma 
( V'T = 0) the plasma is stable against drift per­
turbations. 

The authors are highly indebted to B. B. 

Kadomtsev for discussion of the results of this 
work. 
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