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The probabilities for transition from the states of a discrete spectrum to a continuous spec
trum under the action of an adiabatic perturbation are computed. The calculations are per
formed accurate to a numerical coefficient. 

QuANTUM transitions between discrete-spec
trum states were investigated in the adiabatic ap
proximation by Dykhne [ 1•2]. It was made clear 
that the main feature of the problem is that all the 
terms of the adiabatic perturbation theory series 
are equal in magnitude, and that the entire series 
must be summed to obtain the correct result. This 
difficulty is overcome by considering the SchrCid
inger equation with complex values of the time. It 
is then sufficient to solve the equation in the vi
cinity of some points of the complex t plane, in 
which the adiabaticity conditions wT » 1 are vio
lated ( w -natural frequency of the system and 
T -characteristic time of variation of the exter
nal conditions). Violation of adiabaticity can be 
connected either with singularities of the param
eters of the Hamiltonian as functions of the time, 
with term crossing, or finally with transition from 
the discrete to the continuous spectrum. In the 
present paper we consider precisely the last type 
of singularity. The characteristic difficulty of this 
problem lies in the fact that for the continuous 
spectrum the adiabaticity condition wT » 1 is 
violated for all instants of time, and not only in 
the vicinity of the critical points ( w = 0 for the 
continuous spectrum ) . 

We shall assume that the potential decreases 
sufficiently rapidly with distance, so that the num
ber of negative-energy levels is finite. The case 
when terms condense towards the boundary of the 
continuous spectrum calls for a separate analysis. 
The small parameter of the problem is the quan
tity a = ( wT) - 1 « 1. The meanings of w and T 
are the same as before; w obviously coincides in 
order of magnitude with the distance from the last 
discrete level to the boundary of the continuous 
spectrum E = 0. 

The problem is formulated as follows: let the 
system be described by a Hamiltonian that depends 

parametrically on the time, and is in some state 
E 0 of the discrete spectrum as t--oo. It is re
quired to find the probability a(E) of observing the 
system in a state with energy E > 0 as t -+oo. This 
problem retains the main qualitative singularities 
of the ordinary adiabatic situation, such as the like 
contribution of all orders of perturbation theory. 

There are, however, some essential differences. 
It becomes necessary to take into account the vir
tual transitions between the states of the contin
uum (see [2]). For transition to a state with any 
energy E, the critical point is the root of the equa
tion E0(t) = 0 and not E0(t) = E as in the case of 
the crossing of terms. Finally, the transition prob
ability contains in the pre -exponential factor a 
power-law smallness in the adiabaticity parameter. 

1. Let a particle with l = 0 be in a spherically 
symmetrical potential U(r ), where the time vari
ation of the parameters of the potential does not 
violate the symmetry. We also assume that the 
boundary of the continuous spectrum does not 
shift, i.e., U(r- oo) = 0 for all t. 

We write down the Born-Fock system of equa
tions [3], separating explicity the integrations over 
the continuous spectrum ( 1i = m = 1 ) : 

00 

Gn = ~ Knm (t) am (t) + ~ Kne (t) a (e, t) de, 
m#'n o 

00 

a(E) =~KErn (t) am (t) + ~ KE. (t) a (e, t)de, 
m o 

t 

Knm = ~ ~~'!Jmdq exp [ i ~(En- Em) dt'] , 
t 

KErn=~ ~~'!Jmdqexp [ iEt- i ~ Emdt'] , 

KE• =~~~'F. dq exp [ i (E- e) t], (1) 

where ¢E, 1/Jn -instantaneous wave functions, sat
isfying the equations 
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H1p~) =En (t) 1Vn (t), H1pE (t) = E1VE (t). (2) since the critical values of the parameter U 0L2 

The wave functions of the continuous spectrum 
are assumed normalized to an energy a-function. 

Equations (1) must be solved in the vicinity of 
the point t 0, where any one of the discrete levels 
vanishes. The distance from this level to the other 
negative-energy levels remains of the same order 
of magnitude as that away from t 0 (the terms do 
not condense !) . Consequently, in system (1) we 
can retain only those terms, which pertain to this 
discrete level E0. As T - - oo we should have 
a0 = 1 and a( E) = 0. 

Solving these equations with respect to a( E, t), 
we get 

t 00 

a (E, t) = KEo [I + ~ d-.~ Ko,a (e, -r) de J 
-oo 0 

00 

+ ~ KE,a (e, t) de. (3) 

0 

2. Let us clarify the behavior of the matrix ele
ments KoE and KEe: in the region of t close to t 0 

of interest to us. The wave function of the state E 0 
behaves asymptotically like cr-1 exp (- k0r ), where 
C is a normalization factor and -k3(t)/2 = E0(t). 
As k0(t)- 0, the normalization integral diverges 
at large r, so that we can calculate C from the 
asymptotic expression for lj!0(r ). We get 

(4) 

In the region inside the potential well we can 
neglect k3 ( t) as t - t 0• The Schrodinger equation 
assumes the form 

X~- 2U (r) Xo = 0, Xo (r) = 1p0 (r)!r. (5) 

The potential U ( r) can be written in the form 
U0f(r/L ), where U0 and L are the characteristic 
depth and width of the well, and the function f(x) 
is of the order of unity in the interval x = r /L ~ 1. 
By finding for (5) a solution that vanishes at x = 0, 
and calculating the logarithmic derivative Xo for 
x ~ 1, we obtain a certain function F of a single 
parameter U0L2• 

The eigenvalue k0 is determined from the equa
tion 

(6) 

The zeroes of the function F determine the critical 
values of the parameter E0L2, for which the dis
crete levels vanish from the well. We assume 
these zeroes to be simple, inasmuch as this is 
justified in all the known cases that admit of an 
exact solution of the Schrodinger equation. Obvi
ously, the zeroes of k0(t) will also be simple, 

are attained at the regular points U 0 ( t ) and L ( t ) 
as functions of the time. 

The zeroes of k0(t) are located in complex
conjugate points of the plane, since k0 is real on 
the real axis. We consider first the simplest case, 
when the region of the transition is much smaller 
than the distance between the zeroes. The follow
ing rep res entation then holds true for k0 ( t ) : 

The dimension of the transition region is deter
mined by the condition 

t k2 (-r) k2 (I t )3 
~ ( --T- +E) d-r = 0 ;- o + E (t- t0 ) ~ 1. 
t, 

(7) 

(8) 

There are two possibilities: either the term in 
(8) is much larger than or of the same order as the 
second, and then the transition region is t - t 0 

~ k02/3 ~ a 113 T and does not depend on E, or else 
the second term is much larger than the first. It 
is easy to see, however, that we can confine our
selves only to the first case. In fact, this means 
that we are considering energies satisfying the 
condition E ~ U0a 2/J. On the other hand, it fol
lows from (3) that the amplitude of the probability 
of transition into the state E is essentially propor
tional to exp(iEt0 ) ~ exp(-ET) ~ exp(E/aU0 ). 

Thus, the main contribution is made by states with 
E ~ aU0, and we can confine ourselves to a solu
tion of Eq. (3) for E « U0a 213• 

In the transition region E0 ( t) is of the order of 
U 0a 213• It follows therefore that in the calculation 
of the matrix elements KoE and KEe: the main 
contribution to the integrals will be made by the 
regions of values of r whjch are much smaller 
than the dimensions of th'~ well. We assume that 
the number of discrete levels is of the order of 
unity, i.e., U0L2 ~ 1. This means that 1/k0 

~ U01/2 a-113 » L and 1/k = 1/ -/2E » uij12a-113 

» L. We must therefore replace the wave func
tions lJ!o and lJ!E by their asymptotic expressions. 
For lJ!o the asymptotic expression is given by (4), 
and for lJ!E by 

(9) 

It remains to determine the phase o(k). We see 
that the inequalities obtained above, k0L « 1 and 
kL « 1, are the conditions for the applicability of 
the resonant-scattering theory. In this case, as is 
well known (see C4J), the phase in the asymptotic 
expression for the wave function of the continuous 
spectrum is given by 
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tan o (k) = - k I k0 (t). 
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(10) g = C (W--> 0, 't __, + oo), (14) 

We are now in a position, using (4), (9), and (10), 
to calculate the coefficients KEo and KEE of (3). 
As a result we get 

• ~ lj t 
2 k0 Vk0 (2E)·' [· i ~k2 )d J KEo = ,r- ,1 exp rEt + -2 o (1: T , 

r n (k~ + 2£) '' • 

. 2 1/ 

K _ _!_ ko (2£ · e) ' , p _1_. i(£-<)l 

E• - n (k~ + 2£)';, (k~ + 2f.)" E- e e ' (11) 

where P is the symbol for the principal value. 
The calculation of KEE shows that the integral 

in the last term of (3) must be taken in the sense 
of the principal value. This question does not 
arise with respect to the first term, since the 
integrand is continuous. 

3. Using (7) and (11), and introducing new vari
ables W and T as well as a new unknown function 
C ( W, T ) by means of the formulas 

W = E (ko (to)r'h, 't = (t- lo) [ko Uo)J'\ 
'I I, 

a (E, t) = v~ . exp (iEto + ~ ~ k~ (t) dt) c (W, T), (12) 
ko (to) 

we obtain the following equation for CfW, T) 

ac(W,-r) 2'1. y:r (·w +i 3) 
-~----'--=- exp t 1: -1: 

a-r Yn (-r2 + 2WJ';, 3 

2';, T ---; ' co-. I W' 
X {I + JrJi: ~ V 't d,; ~ V (2W' + -r'2)3 

-co o 

( · ) } 112 iw~ X exp - iW',;' -_;_,;'3 C(W' ,;')dW' +------=== 
3 ' 1t V2W + -r2 

-iW'~ 

xp~Vzw~~-r2~- w,C(W',,;)dW'. (13) 

We were unable to find a solution of Eq. (13). It 
is easy to note, however, that this equation does 
not contain the parameters of the problem at all. 
In addition, we are interested only in the region 
W « 1, which corresponds to the inequality pre
sented above E « U0a 213• We can verify by direct 
substitution that for fixed T and as W - 0 the 
function C(W, T) tends to a constant. The magni
tude of this constant is determined by the behavior 
of C ( W, T) in the region W ~ 1, so that we cannot 
seek C(W- 0, T) by putting formally W = 0 in 
(13). 

Thus, the probability of transition to the con
tinuous spectrum is obtained accurate to the nu
merical factor 

and we arrive at the following result: 

E'1• ( i 
1~' 2 ) a (E, t--> + oo) = g-.-,-1 exp iEt0 + -2 k0 (t) dt . (15) 

(ko) ' • 

The energy distribution in the continuous spec
trum is of the form 

2 t, 
dn (E)= ill_ exp {!_ \ k2 (t) dt} ~l£e-E" 

dE I ko I 2 ·~ o r c , 
t 0 

CJ~2!Imt0 J. (16) 

The total probability of "ionization" P is equal to 

P = ~11: I g 12 exp {f ~ k~ (t) dt} j/ k0 I c;'f,- Va e-A/7 , 

- t~ 

A-I. (17) 

If we are dealing with atomic collisions 1 >, then 
the role of the time is assumed by the quantity 
jdR/v(R), where R and v are the relative coor
dinate and the velocity of the nuclei. For the ion
ization probability as a function of the velocity of 
the colliding atoms we obtain the expression 

(18) 

where v 0 is a quantity on the order of the orbital 
electron velocity. 
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1lFor example, the decay of negative ions in slow colli
sions. The number of discrete levels of the "extra" electron 
is finite, corresponding to the situation considered above. 


