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A theory of rotational Brownian motion for particles (molecules) of arbitrary shape is pre­
sented on the basis of a solution of the rotational random walk problem. In the limiting case 
when the mean angles of rotation of the molecule are small this theory is identical with the 
theory of rotational diffusion. Possibilities of an experimental determination of the nature 
of the rotational motion of molecules in a liquid, are discussed. 

AccORDING to Frenkel [t] translational Brown­
ian motion of a particle (molecule ) in a liquid can 
be treated as an oscillation about a certain position 
of equilibrium which after remaining unchanged 
during a time T is then displaced in a vanishingly 
short interval by a certain distance rj. The prob­
lem of finding the total displacement r = ~rj dur­
ing a time t is thus reduced to the problem of a 
translational random walk. 

As Chandrasekhar [2] and Torrey [3] have shown, 
one can always choose a sufficiently large interval 
of time t 0 so that for t > t 0 the total displacement r 
will be correctly described by the translational dif­
fusion equation. The interval t 0 increases as the 
mean square displacement of the molecule rj in a 
single step is increased, i.e., the smaller the di­
mensions of the molecule, the larger t 0• For large 
molecules one can with a high degree of approxi­
mation utilize the solution of the diffusion equation 
for arbitrary t. For small molecules for which the 
Brownian motion consists of a number of jumps by 
finite distances rj C4J t 0 is sufficiently great so 
that the use of the diffusion equation for t < t 0 

would lead to serious error. Therefore, the trans­
lational Brownian motion for small molecules 
should be investigated on the basis of the general 
solution of the random walk problem. 

Analogous conclusions have been made long ago 
also for the case of rotational Brownian motion. 
Debye [5] and Frenkel' [G] have pointed out that the 
rotational motion of molecules of small dimensions 
has the nature of sharp turns and only the rota­
tional motion of large molecules can be considered 
as rotational diffusion. 

Nevertheless, until now no theory of the rota­
tional random walk has been given. The analysis 
of magnetic and electrooptical phenomena in liquids 
both for the case of large and of small molecules 

has been carried out on the basis of rotational dif­
fusion theory. The rotational diffusion tensor Dij 
has usually been evaluated by the hydrodynamic 
method [T] in which the molecule is treated as a 
macroscopic body immersed in a viscous liquid. 
In particular, for a spherically symmetric mole­
cule it was found that 

(1) 

a is the radius of the molecule and TJ is the vis­
cosity of the liquid. However, it turned out that 
the experimental values of D exceed [BJ those 
evaluated theoretically by means of formula (1) 
by a factor of 3-10. 

The facts noted above indicate that it is insuffi­
cient to describe the rotational Brownian motion 
in terms of a single rotational diffusion constant D 
(or of the tensor Dij) and that it is necessary to 
create a theory of rotational random walk. In this 
paper a theory of rotational Brownian motion is 
given based on the solution of the rotational ran­
dom walk problem. 

In Sec. 1 the solution of the rotational random 
walk problem is given for a particle of arbitrary 
shape. The probability of the particle having a 
specified orientation at time t taking into account 
the finite number of rotations during this time will 
be obtained in Sec. 2. In Sec. 3 a discussion is 
given of the possibility of the experimental deter­
mination of the nature of the rotational motion of 
molecules in liquids. 

1. THE ROTATIONAL RANDOM WALK PROBLEM 

We consider a particle (molecule ) of arbitrary 
dimensions and shape which under the action of 
random rotational moments undergoes jerky rota­
tional motion. We consider a coordinate system 
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~. TJ, t rigidly tied to the molecule. We shall char­
acterize the orientation of the ~, TJ, t system with 
respect to the laboratory coordinate system x, y, z 
by the Eulerian angles cp, e, 1/J or else directly by 
the rotation matrix g ( cp, e, 1/J ) • 

We assume that at the initial time the orienta­
tion g0 of the molecule was fixed so that the prob­
ability distribution of the orientations has the form 
P( g, 0) = o ( g- g0 ). In order to solve the rotational 
random walk problem it is necessary to find 
P(g, N) -the probability density for the orienta­
tion g of the molecule after N rotations, with 
the probability of the individual rotation p( g1 ) 

being regarded as given. 
It can be easily seen that P(g, N) is related to 

P ( g, N - 1) by the obvious relationship 

P (g, N)dg = ~ dgJP (g1)P (k, N -1)dk, (2) 

where the integration is performed over g1• In (2) 
k is taken to denote only those orientations which 
the molecule had after N - 1 rotations and which 
after the N-th rotation g1 yield the orientation g. 

Under the rotation g1 the functions P ( k, N -1 )dk 
transform in accordance with the infinite-dimen­
sional reducible representation T ( g1 ) [s J: 

P(g,N-1)dg=T(g1)P(k,N-1)dk. (3) 

On taking into account the fact that T-1(g1 )=T(g11 ) 

we obtain from (2) and (3) 

P (g, N) dg = ~ dg1p (g1) T (g~1 ) P (g, N- 1) dg. (4) 

We shall seek the solution of the system of inte­
gral equations (4) in the form of a series in terms 
of generalized spherical harmonics: 

P (g, N) = ~ C~n (N) T~n (g). (5) 
I, m, n 

On substituting (5) into (4) we obtain for the deter­
mination of the coefficients Cfun ( N ) the recur­
renee relations 

(6) 

where we have taken into account the transforma­
tion rule 

(7) 

We denote the expectation value of the transfor­
mation T(g11 ) for one rotational step by 

(8) 

Then relations (6) can be written in matrix form: 

C1 (N) =A[C1 (N -1), (9) 

where the symbol T denotes the operation of 
transposition. From this we obtain 

C1 (N) = (Ai)N C1 (0). (10) 

The matrix elements Cfun ( 0 ) can be obtained 
from the expansion (5) for N = 0. Indeed, since 
P(g, 0) = o ( g- g0 ), we have 

{) (g- go) = ~ C~n (0) T~n (g). (11) 

By multiplying (11) by Tfun and by integrating 
over the whole group taking into account the or­
thogonality relations 

(' -z m ( ) 8:rt2 
\ Tik (g) Tin g dg = 2/'"1 btmbij bkn• 
• I 

(12) 

we obtain for Cfun ( 0 ) 

C~n (0) = (2/ + 1) T~n (g0)/8n2• (13) 

Successive substitution of (13) into (10), and of 
(10) into (5) yields 

~ 2/ + 1 ( TN I I P (g, N) = LJ gnz- At )mi T;n (go) T mn (g). (14) 

Since 

(15) 

in consequence of the unitarity of irreducible rep­
resentations, we finally obtain for P ( g, N ) 

(16) 

This result completely solves the rotational ran­
dom walk problem for a molecule. 

In the case of a spherically symmetric molecule 
rotations through the same angle about different 
axes occur with the same probability. If g is the 
matrix for one such rotation, then the matrices of 
all other rotations are equal to [10] g' = h - 1 gh 
where h is an arbitrary element of the rotation 
group. From this it follows that the probability 
distribution (16) for g0 = e must satisfy the rela­
tion 

P (g, N) = P (h-1gh, N). (17) 

This is possible only provided the operators Az 
and TZ(h) commute: 

(18) 

On the basis of Schur's lemma, an operator which 
commutes with an irreducible representation must 
be a multiple of the identity operator [10] so that 

(19) 

By taking traces of both sides of (19) and by 
utilizing the definition (8) we obtain the formula 
for the evaluation of the coefficients >..z: 
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(20) 

where ( cf. [ 10]) 

Sp ei•M =sin [ ( l + +) e] I sin (e/2). 

Thus, for a spherically symmetric molecule for­
mula (16) assumes the simpler form: 

(21) 

where A.z is evaluated with the aid of (20). 

2. THE PROBABILITY DISTRIBUTION W( g, t) 

The fundamental problem in the theory of rota­
tional Brownian motion is the determination of the 
probability density W ( g, t ) for the orientations g 
of the molecule at time t under the condition that 
at the initial instant t = 0 the molecule had the 
orientation: g0. The distribution W ( g, t ) can be 
easily found if we are given the probability WN ( t) 
for N rotations to take place during the time t. 
Then we have 

co 

w (g, t) = ~ WN (t) p (g, N). (22) 
N=O 

Usually WN( t) is taken to have the form of the 
Poisson distribution: 

(23) 

where T is the average time between two succes­
sive rotations of the molecule. On substituting (16) 
and (23) into (22) we obtain after fairly straightfor­
ward calculations 

W(g, t) = ~ 218!/ Sp {r1 (g~1 ) exp [-+ (1-At)J T1 (g)}, 

(24) 
and this yields the desired result. 

Rotational diffusion is a special case of rota­
tional Brownian motion regarded as a rotational 
random walk process. Therefore, in expression 
(24) for W(g, t) one can carry out the limiting 
transition to the Green's function for the equation 
of rotational diffusion. In order to show this we 
shall in the definition (8) go over to new variables 
of integration: 

At= ~ ei•Mp (e) d3e. (25) 

Here Mj (j = 1, 2, 3) are the infinitesimal rotation 
operators, while the direction and the absolute 
magnitude of the vector £ specify the axis of rota­
tion and the angle of rotation about this axis [SJ with 
(E~ + E~ + Ei )1/2 :S 1f. 

Further, we assume that the transition proba-

bility p( £) is such that only rotations through 
small angles have an appreciable probability. Then 
we expand ei£•M in (25) in series and retain terms 
up to quadratic terms in Ej inclusive: 

(26) 

(27) 

The quantities Dij define the components of the 
rotational diffusion tensor. The linear term in the 
expansion of ei£·M gives no contribution to (26) 

since in the absence of external fields p( £) 
=p(-€). 

The axes of the molecular system of coordi­
nates g, 11. t can always be chosen in such a way 
that the tensor Dij will be diagonal, i.e., Dij 
= OijDi. In this case 

At= 1- ·qD+M2 + (D 3 -D+)M~ +D- (M~- M~)}, (28) 

where n± = Y2 (D1 ± D2). 
For large time intervals ( t » T) W ( g, t) in (24) 

varies slowly with time. Therefore Al in (24) can 
be replaced for t » T by the approximate expres­
sion (28). In particular, if the molecule has the 
shape of a symmetric top (D- = 0 ), then we have 

W (g, t) = ~ 21
8! 2

1 T~n (g0 ) T~n (g) exp [ -D+ l (l + 1) 
(29) 

- (D 3 -D+) m21 t. 

For a spherical molecule ( D1 = D2 = D3 = D) (29) 
simplifies to the form 

W (g, t) = LJ 21
8!/ T~n (g0 ) T~n (g) exp [ -/ (l + 1) Dtl. 

(30) 

Expressions (29) and (30) are identical with the 
Green's functions for the equation of rotational 
diffusion obtained previously [H, 12]. 

3. THE POSSIBILITY OF EXPERIMENTAL DE­
TERMINATION OF THE NATURE OF ROTA­
TIONAL BROWNIAN MOTION 

The nature of rotational motion of molecules in 
liquids can be determined from the widths of vibra­
tional lines. As Valiev[13] has shown, the ratio q 
of the width of the Raman scattering line to the 
width of the infrared absorption line is equal to 
unity if the rotational motion has the character 
of sharp jerks, and 1 < q :s 3 in the case of ro­
tational diffusion ( q = 3 when the contribution of 
the translational motion to the line width is negli­
gibly small ) . 

Valiev obtained the ratio q = 1 on the basis of 
qualitative considerations. He assumed that in the 
case of sharp jerky rotations the correlation times 
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for the random components of a constant dipole 
moment of the molecule (in infrared absorption) 
and of the components of the polarizability tensor 
(in Raman scattering) are identical in the labora­
tory system of coordinates and are equal to the 
average time between two successive rotations. 
As we shall see below, this assumption is given 
a rigorous justification in our theory. Moreover, 
an average minimum angle of rotation of the mol­
ecule Emin will obtained beyond which the ratio 
q = 1 will hold. 

We assume that in the molecular system of co­
ordinates there exists a set of constant quantities 
<l>n (- k :::; n :::; k) which transform in transition to 
the laboratory system in accordance with there­
lation 

F m (g) = LJ T~n (g) <Dn. (31) 
n 

In the case of Raman scattering ( k = 2) the quanti­
ties <l>n are the components of the polarizability 
tensor; in infrared absorption ( k = 1) <l>n are the 
components of the constant dipole moment along 
the axes of the molecular system of coordinates. 

The components Fm(g) in the laboratory sys­
tem are random functions due to the random ori­
entation g of the molecule. The correlation func­
tions corresponding to them are calculated, as is 
well known, in accordance with the formula 

where W ( g0, 0; g, t) is the distribution function 
(24). On utilizing (31) we obtain 

(32) 

K (t) = (2k + 1t1exp [-+ (1- 'Ak)J LJ I <Dn 12• (33) 

As t increases from 0 to T~k) where 

T~k) = t'/(1 - 'A,k), (34) 

the correlation function (33) is reduced by a factor 
e. Therefore, it is natural to call the quantity T~k) 
the correlation time for the random function Fm (g) 
( -k:::; m :::; k). 

The correlation time T~k) depends on the weight 
k of the irreducible representation Tlhn (g) in (31). 
The specific form of this dependence will be deter­
mined by the type of motion (diffusion or sharp ro­
tations) taking place. 

The last conclusion forms a basis for the possi­
bility of experimental determination of the nature 
of the rotational motion of the molecules. Indeed, 
if the rotational motion of a spherically symmetric 
molecule has the nature of diffusion, then it follows 
from (26) that 

'Ak = 1- [D-r/(2k + 1)1 Sp M 2 = 1- k (k + 1)DT, (35) 

where D is the rotational diffusion constant (1). 
For the correlation time we obtain from (34) and 
(35) 

(36) 

Thus, in the case of rotational diffusion the cor­
relation between the values of the tensor ( k = 2) 
is lost more rapidly by a factor 3 than the corre­
lation between the values of the vector ( k = 1). 
This leads [13] to 1 < q :::; 3. 

But if the spherical molecule executes sharp 
rotations through angles which differ little from 
the average angle of rotation E0, then we can take 
for the probability of an individual rotation E 

1t 

( ) w (e) (' 
P B = 4:rte• ; )w(e)de = 1, 

( 0, 
w (e) = ~ cr-1 , 

l 0, 

0 

O< e<e0 - cr/2 

e0 - cr/2 < e < e0 + cr/2, 

e0 +cr!2<e< :rt 

(37) 

where U' is the width of the rectangular distribu­
tion w( E). 

On substituting (37) into (20) we obtain 
k 

"- 4 {~_.!:__ . ~_J_2} 
"k- (2k+ 1)cr LJ n cosnB 0 sm 2 , 4 . 

n=l 

(38) 

For small U' we have sin (nU'/2) ~ nU'/2 so that 
A.k assumes the form 

k 

2 { ~ 1 } sin (k + 1/2) e0 
'A,k = 2k + 1 LJ cos nBo + 2 = (2k -i- 1) sin (e0/2) · 

n=l 

(39) 

It can be easily verified that the last formula could 
also be obtained by assuming w( E) = 6( E- Eo). 

Figure a shows graphs of A.k as functions of the 
mean angle of rotation of the molecule Eo calcu­
lated in accordance with (39). Figure b shows the 
function A.2( Eo) for different values of U' (for clar­
ity U'2 and U'3 are taken sufficiently large) calcu­
lated in accordance with (38). In actual fact the 
width U', apparently, is not great ( U' « 1 ) , and, 
therefore, to a good degree of approximation one 
can always utilize (39) in place of (38). 

As Eo increases from 0 to E~k) = 27r/ ( 2k + 1) 
the curves of A.k ( E 0 ) fall off from 1 to 0; as E 0 

increases further they oscillate about the horizon­
tal axis remaining small in comparison with 1. On 
setting in (34) A.k = 0 for Eo ~ Ebk) we obtain T~~ 
= T. This means that if the mean angle of rotation 
of the molecule Eo~ E~k) then the correlation be­
tween the values of F m (g) practically disappears 
in the course of a single rotation. We shall call 
E~k) the correlation angle of the random quantity 
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a-curves of Ak(<o) fork = 1,2,3 and a= 0; b-curves of 
A2(<0 ) for a,= 0, a2 = rr/2 and a3 = 3rr/4. 

Fm(g). The correlation angle for Fm(g) has a 
magnitude which is the larger the smaller the 
weight of the irreducible representation which de­
termines the angular dependence of Fm (g). 

In the case when there exist two random quan­
tities of the type (31) Fm (- k ~ m ~ k) and FD. 
(- k' ~ n ~ k' ) the relations 

't~~ = 't, 't~~) = 't (k + k') (40) 

will be satisfied simultaneously if the mean angle 
of J?Ota!ion of the molecule Eo ~ E~in(k' ,k) where 
Efm<k ,k) is the greatest of the correlation angles 
for Fm and FD.. 

In particular, for k = 1 and k' = 2 Efin(k',k) 
= 120°. From this it follows that the ratio of the 
width of the Raman scattering line to the width of 
the infrared absorption line q = 1 if the mean 
angles of rotation Eo ~ 120°. The angle Emin = 120° 
is the minimum angle for which it is still possible 
to distinguish between sharp rotations and rota­
tional diffusion from the widths of the vibrational 
lines. 

The nature of rotational motion of molecules in 
a liquid can also be determined by the method of 
comparing the characteristic times for dielectric 
( k = 1 ) and nuclear magnetic ( k' = 2) relaxations. 
The general conclusions obtained above remain in 
force also for this case. 

1. The solution of the rotational random walk 
problem for a molecule of arbitrary shape is given 
by formula (16). 

2. The probability W(g, t) for the orientation g 
of a molecule at time t is determined by two pa­
rameters: p(g1 ) (the probability of an individual 
rotation) and T (the mean time interval between 
two successive rotations). 

3. In the limiting case when the mean angle of 
rotation of the molecule is small and t » T the 
distribution W ( g, t) is identical with the Green's 
function for the equation of rotational diffusion. 

4. The theory developed here confirms the pos­
sibility of experimental determination of the nature 
of rotational motion of molecules in a liquid. In 
particular, if the mean angle of rotation of the 
molecule is greater than Emin = 120° then the 
ratio of the width of the Raman scattering line to 
the width of the infrared absorption line must be 
equal to unity. 

In conclusion I express my sincere gratitude to 
K. A. Valiev for suggesting the subject of this in­
vestigation and for the discussion of results. 
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