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Nonlinear interaction of weak electromagnetic waves with a plasma wave in a magnetoactive 
plasma at rest is considered. It is shown that under certain conditions a plasma wave prop­
agating along a magnetic field may be unstable and excite electromagnetic waves. 

As is well known, the only components of sig­
nificance in the spectrum of the electron plasma 
oscillations are those with sufficiently small wave 
numbers K (large phase velocities), for which 
Cerenkov damping hardly comes into play. [1, 2] 

However, as will be shown in the present paper, 
it is precisely the plasma waves with rather small 
K that can be unstable against electromagnetic per­
turbations and can generate pairs of electromag­
netic waves whose frequencies w1, 2 and wave nll>lll.­
bers k1, 2 satisfy the following relations (which ex­
press the energy and momentum conservation laws ) 

(1) 

where Q -frequency of the plasma wave. 
In order to satisfy condition (1) it is necessary 

that the waves with frequencies w1, 2 < Q be able 
to propagate at all in the plasma. In the absence 
of an external magnetic field, this condition can­
not be satisfied in a plasma at rest (but can be 
satisfied if the plasma moves through a dielectric 
with E > 1 [3J). On the other hand, in a magneto­
active plasma the frequency of the propagating 
electromagnetic waves can be smaller than the 
frequency of the longitudinal wave, and the effect 
under consideration does take place 1 >. 

Let us assume that a plasma wave of frequency 
Q propagates along a constant magnetic field H0 

(in the z direction), so that the concentration of 
the electrons varies in accordance with 2> 

'lin the solutions obtained below, in particular, assume 
that w and k of one of the waves are negative. This case, for 
which x = llw,l -lw2 ll, K =Ilk,! -lk2 ll corresponds to com­
bination scattering in a plasma[4 ], but without the usual as­
sumption that the scattered wave is small compared with the 
incident wave. 

2lSince the wave under consideration must have a large 
phase velocity (on the order of the velocities of the electro-

N(z, t) = N0 [1 + pcos (Qt- Kz)J, (2) 

where we assume that 0 < p « 1. For a plasma 
which is on the whole at rest, the longitudinal elec­
tron velocity, in accordance with the continuity 
equation, is (accurate to quantities of order p2 ) 

V(z, t) = p (QIK)cos (Qt- Kz). (3) 

1. INTERACTION OF WAVES IN LONGITUDINAL 
PROPAGATION 

We shall assume first that weak transverse 
perturbations also propagate along the z axis. In 
this case it is convenient to introduce the com­
plex variables 

A± =Ax± iAy, 

where Ax, Ay and vx, vy are respectively the 
Cartesian projections of the transverse vector 
potential A 1 and of the vibrational electron ve­
locity in the transverse wave v 1 (in this case 

(4) 

div A1 = 0, so that E = -c-1 aA1/at, H =curl A1), 
Then, making the usual assumptions of the elemen­
tary theory (disregarding ion motion), we obtain 
from Maxwell's equations and from the electron 
equations of motion the following independent sys­
tems for A+ and A_ : 

(iJ2/oz2 - (e/c2) o2fat2) A± = - 4rreNv+/c, (5) 

(olot +Voloz ± iwH) v± = (e/mc) (ojot +Vi1!0z)A±. (6) 

Here E is the dielectric constant of the medium 
(without the plasma), e and m are the charge and 
mass of the electron, c is the velocity of light, 

magnetic waves), the quasihydrodynamic approach is perfectly 
suitable for its description. The value of 0 in a plasma at 
rest is close to the plasma frequency of the electron wp (the 
thermal motion is insignificant). 
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Veff is the collision frequency which we assume 
constant, WH = WH ± iVeff; WH = I e I H0 /me is 
the electron gyrofrequency. 

The quantities N( z,t) and V( z, t) enter into 
(5) and (6) as variable parameters (it is sufficient 
to consider from now on only one of the systems, 
for example for A+ and v + ) . For WH = 0 it fol­
lows from (6) that the velocity of the forced oscil­
lations v + is connected with A+ by the relation 
v + = - ( e/mc )A+, and the parameter V( z, t) is 
eliminated from the final equation, so that the ef­
feet can be connected in this case only with the 
change in the concentration N ( z, t); this does not 
lead to instability of the longitudinal wave in a 
plasma at rest [3]. On the other hand, in a mag­
netic field, as can be readily seen from (6), the 
presence of an oscillating component leads (in a 
specified monochromatic field of frequency w) 
to the appearance of combination frequencies w 
± g for the velocity of transverse motion. These 
oscillations excite, in turn, fields of the corre­
sponding frequencies and this makes an additional 
contribution to the wave interaction. 

For the analysis of this interaction, we assume 
that a pair of transverse waves propagates in the 
plasma: 

(7) 

where the coefficient P 1 and P 2 are constant, while 
w1,2 and k1,2 satisfy conditions (1). Substituting (7) 
in (5) and (6) and discarding terms of order p2 and 
higher (and also those containing the correspond­
ing harmonics w1,2 ± zg ), we obtain from the con­
dition for the existence of a non-trivial solution a 
dispersion equation in w and k. The latter will, 
generally speaking, be complex quantities. It is 
natural to seek them in the form 

kl,2 = k~,2 ± ik', W1,2 = w~,z =F iw', (8) 

where k~ 2 and w~ 2 satisfy the "unperturbed" dis-
' ' persion equations 

(k~, 2) 2 = (w~, 2) 2 c- 2 [e- w~jw~, 2 ((t)~, 2 =F (t)H)l (9) 

( w~ = 47fe2N0/m ), and k' and w' are small cor­
rections to them; it is assumed here that 
lleffl w1 2 ± WH I :s p, so that in the zeroth approx­
imation' the losses can also be disregarded. 

In particular, for monochromatic waves ( w' = 0 ), 
we can easily obtain 3> 

k' __ V eff w~ [ Wt + W2 l ± _!_ {L 
- 4c k1 (w1 - wH)2 kz (wz + wH)2 J 2 ktkz 

3lFor the sake of brevity we omit the zero superscripts 
for w and k. 

(10) 

pw~ W1WzK- WH (wzkt- W1k2) 

'X= 2C2 K (w1 - wH) (wz- wH) ' 
(11) 

and for waves that are harmonic in space ( k' = 0 ) 

Assume for concreteness that v gr ( w1,2) > 0 
and Vph ( w1 2) = w1 2 /k1 2 > 0. It is then clear 

' ' ' from (11) and (12) that for sufficiently low losses 
one of the roots (for both k' and w') is positive; 
a weak transverse perturbation will then grow ex­
ponentially in space or in time. Thus, the plasma 
wave turns out to be unstable, and its energies 
transform into transverse electromagnetic waves 
satisfying the conditions (1). Since we should have 
here k1k2 > 0 and w1w2 > 0, it follows from (1) that 
g > I w1 2l and K > I k1 2l· 

' ' We note also that when w1, 2 > 0 the first term 
in (17) corresponds to the extraordinary wave in 
a magnetoactive plasma, while the second corre­
sponds to the ordinary wave, i.e., exponential in­
tensification occurs when two waves of different 
types interact (with opposite directions of rotation 
of the vector E, and consequently of the elec­
trons ) 4 >. On the other hand, interaction of waves 
of the same type, corresponding, as is clear from 
(11) and (12), to the conditions w1w2 < 0 and k1k2 
< 0 leads only to periodic transfer of energy from 
one frequency to the other (when Veff = 0 the en­
ergy varies as a result of such a transformation 
in proportion to the frequency) and represents, 
as indicated, one of the modes of combination 
scattering. 

If the group velocities of the transverse waves 
have opposite signs, but w1w2 > 0, the regenera­
tive effect of resonant reflection occurs (see [3, 5]). 

Equation (12) then remains in force for a plasma 
that is unbounded in the z direction. 

2. INTERACTION BETWEEN WAVES PROPA­
GATING AT AN ARBITRARY ANGLE TO THE 
MAGNETIC FIELD 

Let us consider now a general case, when the 
electromagnetic waves propagate at angles a 1 and 
a 2 respectively to the plasma (for which, as be-

4lThe impossibility of simultaneous growth of two waves 
of the same type (in particular, of 'degenerate' generation of 
a wave with w = il/2, k = k/2) follows from the conservation 
of the angular momentum of the electrons. 
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fore, K II H0, see the figure). Then the electron 
velocity in the electromagnetic wave also has a 
component along the z axis, and the equation of 
motion of the electrons without account of colli­
sions, is of the form 

TJ-1 (a/at + Vajat) v = E + c-1 { [vH0 ] + [VH]} 

(13)* 

where z0 is a unit vector in the z direction (we 
neglect the nonlinear terms ) . 

We seek the solution in the form 

(14) 

(we seek the quantities H and v in analogous 
form), where w1 2 and k1 2 satisfy equations (1). 

' ' We substitute the last expressions in Maxwell's 
equations and in formula (13) and then take rela­
tions (2) and (3) into account; this yields, after 
elimination of the variables H and v, two equa­
tions for the complex vectors Ei: 

L; (E;, w;) = + pfi (Ei> wi, w£) 

where 

(i, j = 1' 2, i =!= j), (15) 

L; = c2w~2 (k,E,) k; - u;E1 + ih; {c2w/2 (k£E;) [k;z0 ] 

- q, [E;z0]}, 

fi = (kifwi) [QK-1Eiz + (kiEi) C2W~2 (QkizfK- w,)] 

+ E1 (qjWtW/W~- Qkizu/K) 

+ i (-l)i+I hi {q1 [Eizol c2w"'/ (k1Ei) [k,z0 ]} 

+ d2z0w~2 [wiqiEi/c- c (kiEi) kjwi], 

qi = n7- 1, u£ = 1 + w7 (n7- 1)/w~, 

n, = cktfffit 

As before, we seek the small corrections to the 
values of the corresponding quantities which were 
"unperturbed" by the plasma wave 

E; = E~ + E~, W£ = w~ =f iw' (16) 

(for concreteness we assume the wave to be har­
monic in space). For the unperturbed quantities 
we then obtain the equation 

*[VH] = v X H. 

L; (E~, w7} = 0. 
(17) 

The condition for the existence of a nontrivial 
solution of the last equations leads, as expected, to 
the well known dispersion equation describing the 
oblique propagation of waves in a gyrotropic 
plasmaC2J. 

In the next approximation we have from (15) and 
(16) 

, • o 1 o o o) ·a' (Eo o )/-" L; (Ei, W;) = 2Pfi(Ej, Wj, Wj ±I Li £, Wj UW[. (18) 

According to (17), the determinant of this system 
of equations (with respect to Ei) is equal to zero. 
We can easily obtain the frequency correction w' 
from the condition of orthogonality of the right 
halves of (18) to the solution of the transposed 
system (17) 

(19) 

The expression for s 2 is obtained from this by 
making the substitutions a 1- a 2, w1- - w2 and 
k1- -kz. 

The general form of (20) is quite elaborate, but 
the character of the solution is made sufficiently 
clear by examination of some particular cases. 
When ai = 0 we obtain, of course, formula (12). 
Let us consider also another case -the interac­
tion of two symmetrical waves. Putting a1 = a 2 

= a, w1 = w2 = w, and k1 = k2 = k, we have 

-= -sm a -- e---w' + pn2 • 2 [ 1 + qh2w2 ( 2co<;2 et)] 
w - 2 urw~ r 

[ 2 --j- uq + h2 (uq- 2) . 2 J X -- 2 Sln a . q ur 
(21) 

In this formula w' is always real, i.e., the plasma 
wave is also unstable against "oblique" perturba­
tions propagating at an angle a < Ir/2 to the 
plasma. Only when a = 0 do we get here w' = 0, 
i.e., in accordance with the statements made in 
Sec. 1, only different modes can be excited here. 
This result follows also directly from (19) and 
(20) (including the case when k1 = k2 ). 
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Thus, a plasma wave can generate a whole spec­
trum of electromagnetic waves (both "ordinary" 
and "extraordinary") propagating at different 
angles to the direction of the magnetic field H0 II K. 
The mechanism of this instability is analogous to 
parametric resonance in coupled oscillating sys­
tems-variation of N and V in accordance with 
(2) and (3) is equivalent to the presence of coupling 
between the waves with frequencies w1 and w2, 

satisfying conditions (11). In particular, a similar 
variation in the electron concentration causes a 
periodic disturbance of the effective dielectric con­
stant of the plasma; it is known that in a medium 
with variable E or JJ., amplification and generation 
of electromagnetic waves at the expense of the 
source energy is possible under conditions (1), and 
these waves change the parameters [s-7]. We note 
that instabilities of this type were discussed also 
for low frequency waves in a plasmaC8•9] with 
analysis, for example, of the decay of electron 
waves in an isotropic plasma into electron and 
ion waves. The transitions corresponding to (1) 
are also characteristic of quantum generators. 

Of course, the formulas presented here are 
valid only so long as the excited electromagnetic 
waves are sufficiently weak compared with the 
plasma wave. When this condition is violated, the 
problem becomes essentially nonlinear. 

It appears that the parametric excitation of 
electromagnetic waves in a plasma, which we have 

considered here, can play a definite role in cos­
mic conditions (for example, in the mechanism 
of radio emission from the sun), and can also be 
employed in principle to produce plasma para­
metric amplifiers. 

In conclusion the authors are grateful to A. V. 
Gaponov and V. V. Zheleznyakov for a useful dis­
cussion of the results of the work. 
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