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We study a new type of size effect in metals in a magnetic field, connected with drift of elec­
trons from the sample surface. It is shown that a set of field peaks which are narrow, 
periodic and slowly diminishing in amplitude occurs within the metal. These peaks may be 
due to electrons on open trajectories or near elliptic limiting points on the Fermi surface (in 
an inclined magnetic field). They arise as a result of focusing of electrons moving in the 
skin layer parallel to the metal surface by the field. The periodicity of the peaks is deter­
mined by the mean displacement of the electrons inside the metal. Anomalous penetration of 
the field leads to a periodic H-dependence of the impedance of a plane-parallel plate. The 
effect has been observed experimentally by measuring the surface impedance of tin at f ~ 3 
Me. Periodic oscillations of the impedance with the field in the presence of open trajectories 
as well as of limiting points were observed. Open trajectories can be detected and local 
values of the Gaussian curvature of the Fermi surface and mean free path of electrons in the 
metal may be measured by studying the period and amplitude of the size effect. 

1. INTRODUCTION 

IN recently published papers [t-s] it is shown that 
dimensional effects are observed in measurements 
of the surface impedance of metals when the elec­
tron mean free path is large. The gist of these ef­
fects is that singularities of various types are ob­
served on the impedance vs. H curve when the 
characteristic dimensions of the electron trajec­
tories in the magnetic field H are equal to the 
sample thickness d. The dimensional effects are 
much more pronounced in a high-frequency field 
than in the corresponding measurements with 
direct current. This is due to the presence of the 
small parameter with the dimension of length, 
namely the skin-layer depth o. 

On the other hand, it is shown in recent theo­
retical papers [s-a] that anomalous penetration of 
the electromagnetic field in the metal is possible 
in many cases. Narrow and rather slowly damped 
peaks of fields and currents are produc~d within 
the metal at distances that are multiples of the 
diameters Dext of the extremal electron trajec­
tories. These anomalies in the propagation of the 
electromagnetic waves are due to 'chains' of 
electron orbits. A trajectory passing in the skin 
layer near the surface, produces a new 'skin 

layer' at a depth z = Dext• which in turn is a 
source for the occurrence of a similar 'skin layer' 
at a depth z = 2Dext• etc. This anomalous pene­
tration of the field into the metal leads to a unique 
dimensional effect in the plane-parallel metal 
plate. It is characterized by the occurrence c,.( 

impedance singularities that are periodic in the 
magnetic field. This phenomenon is experimen­
tally observed in tin [9] 

The above-mentioned dimensional effects are 
due to electrons which move in closed orbits in 
both momentum and coordinate space, without 
drifting inside the metal ( i.e., v z = 0, where 
Vz is the average projection of the electron veloc­
ity on the normal to the surface of the metal ) . 
Yet a metal in a constant magnetic field contains 
electrons with Vz ~ 0. Electron drift inside the 
metal is possible in two cases. For closed orbits 
the drift motion occurs for all electrons of non­
central sections of the Fermi surface in a mag­
netic field which is not parallel to the surface. 
For closed Fermi surfaces drift is possible also 
in a parallel field, owing to the presence of open 
orbits. In the present paper we show that in both 
cases there is anomalous penetration of the elec­
tromagnetic field in the metal and a correspond­
ing dimensional effect. 

988 
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2. PHYSICAL PICTURE OF ANOMALOUS 
PENETRATION OF THE FIELD IN A METAL 
IN THE PRESENCE OF ELECTRON DRIFT 

Let the metallic half-space z > 0 be situated 
in an external magnetic field oriented at an angle 
cp to the surface. The electrons with velocities 
Vz "' 0 will move along a spiral trajectory with 
period of revolution T = 21r/!.1 = 21rmc/l e I H ( !.1-
cyclotron frequency, m-effective mass). The 
average displacement of the electron inside the 
metal during the period T is u = I Vz T I 
= I 21rcm v z/ eH 1. On the Fermi surface v z T 
varies with PH• the projection of the electron 
quasimomentum on the H direction. The relative 
number of electrons having a given displacement 
u will be largest for the extremal values u (PH) 

= Uext· 
In the case of interest to us, the anomalous skin 

effect, the following inequalities are satisfied 

l~ Uext ~ C'J. (2.1) 

Consequently relatively many electrons reach a 
depth z = nuext ( n-integer), having the same 
state in momentum space as at the instant of 
leaving the metal surface. In particular, the ex­
tremum of u (PH) is reached when PH = PH max• 
where PH max corresponds to the elliptical 
limiting point on the Fermi surface. This phenom­
enon is well known in electron optics under the 
name 'focusing of electrons by a longitudinal 
magnetic field.' At the limiting point, the velocity 
of the electron v 0 i~ 7:arall~l to H, I v z ! = v o x 
sin cp, and mv 0 = K 1 2 ( K IS the Gaussian curva­
ture of the Fermi surface £ 0 = £ ( p) at the limit­
ing point). Consequently, 

ulim = (2rrc/ I e I H) K -•;, sin cp. (2.2) 

The 'focusing' effect should occur also in the 
presence of open trajectories with Vz "' 0. The 
electron orbit in momentum space and the projec­
tion of its trajectory in coordinate space on a 
plane perpendicular to H are similar, with a 
similarity coefficient eH/c, and are turned rela­
tive to each other through 7f/2. Therefore the 
direction of the average drift velocity depends not 
only on the direction of H, but also on the orienta­
tion of the normal n to the surface of the sample 
relative to the crystallographic axes. The average 
electron displacement u inside the metal is con­
stant in magnitude for all open periodic trajec­
tories and is given by 

u = cb cos s I I e I H, (2.3) 

where b is the period of the open orbit (reciprocal 

lattice) in momentum space and e the angle be­
tween the direction of the opening and the surface 
of the metal. 

Assume now that some of the focusing electrons 
moving in the skin layer have a velocity projection 
Vz = 0. Such electrons interact most effectively 
with the external electromagnetic field and make 
the principal contribution to the impedance. Being 
focused at a depth Zn = nuext• these 'effective' 
electrons reproduce the velocity increments 6.v 
which they acquire from the field in the skin layer, 
i.e., in final analysis, they reproduce the high­
frequency current which they produce on the sur­
face. Therefore, field and current peaks appear 
at the depth zn = nuext· It must be emphasized 
that, unlike the aforementioned anomalous pene­
tration of the field with the aid of the 'chain of 
orbits,' these peaks are due to the drift of the 
electrons that move directly from the surface. 

In the case of open orbits, in order to satisfy 
the requirement that focusing electrons include 
effective ones, it is necessary that some of the 
open trajectories be such that Vz = 0 at least in 
one point. In the case of the limiting point this 
requirement leads to the inequality lf! > cp, where 
lf! is the characteristic angular dimension of the 
vicinity of the limiting wint, determining the ve­
locity scatter of the focusing electrons. The 
quantity lf! is determined from the condition 
I u ( lf!) - uext I ::::; o. Hence 

"i'=(C'JfvoTcp)'1'>cp• (2.4) 

From (2.1) and (2.4) we get the following 
limitations on the angle cp: 0 

(2.5) 

The occurrence of field peaks inside the metal 
can be explained in a different way which, inci­
dently, is illustrative of the nature of the corre­
sponding mathematical calculation. The sharp in­
homogeneity of the field near the surface of the 
metal can be described with the aid of a superpo­
sition of monochromatic plane waves whose wave 
vectors k have a continuous spectrum of width 
& ~ 0-1. 

The electrons drifting inside the metal interact 
most effectively with those field-spectrum har­
monics whose wavelength A. is contained an inte-

1>In the opposite limiting case if; < cp (for example in a 
magnetic field normal to the surface) one should also observe 
anor.e.lous penetration of the electromagnetic field into the 
metal. This phenomenon, however, is not connected with the 
'effective' electrons and has a different character; its study 
will be the subject of a separate communication. 
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ger number of times in the distance uext: uext 
= NA.. This condition separates from the continu­
ous spectrum a discrete series of wavelengths 
which can penetrate to an anomalously large depth 
in the metal. The interference of these waves 
gives rise to quasiperiodic field maxima at a 
depth Zn = nuext· The widths of these maxima are 
determined in final analysis by the width of the 
initial wavelength spectrum and are therefore of 
the order of 6 « uext· It is easy to see that their 
amplitude decreases with depth quite slowly, as 
exp (-z/Z sin cp). 

It is obvious that the indicated field-distribu­
tion anomalies in a semi-infinite metal lead to 
periodical impedance singularities in a plane-paral­
lel plate. The period is determined from the condition 

d = nUext (2.6) 

and is found to be 

fl.H = (2rcc/J e I d) J mvz I ,xt· (2.7) 

In the case of an elliptical limiting point 2 ) it 
follows from (2.7) and (2.2) that 

11H = 2rcc sin !p K-'1'/1 e I d, (2.8) 

and in the presence of open trajectories (2.3) 

11H = be cos 8/ je I d. (2.9) 

3. THEORY 

The complete system of equation consists of 
Maxwell's equations and the kinetic equation for 
the distribution function of the electrons in the 
metal 

iJ2Ea. (z)liJz2 = -4niffic-2ja (z), a= (x, y), (3.1) 

- iffi/ + vziJfliJz + QiJf/iJ"C + vf = eE(z)v iJf0/iJe, (3.2) 

• 2e(' fd3 J = fi3 ~ v p, 

jz (z) = 0. 

( 3.3) 

( 3.4) 

Here E ( z )-intensity of the alternating electric 
field (~e-iwt), j(z)-current density, w-fre­
quency of external field, f-non-equilibrium addi­
tion to the Fermi distribution function f0 ( £ - £ 0 ), 

£( p )-energy, £ 0-chemical potential of the elec­
trons, v-frequency of collision between the elec­
trons and the scatterers, T = Qt-dimensionless 
time (phase) of orbital electron motion, and h-

2lin the case of a hyperbolic limiting point, the oscilla­
tions of the dimensional effect are missing, since the cyclo­
tron frequency !1 = JeJ H/mc at this point vanishes (the 
effective mass m--> oo). In a parabolic limiting point !1 is 
finite, but K = 0 so that there are no oscillations of the 
dimensional effect (the corresponding period fl.H is infinite). 

Planck's constant. Equation (3.4) is identical with 
the condition of electrical quasineutrality of the 
metal. 

Equations (3.1)-(3.4) must be supplemented 
with boundary conditions on the metal surface. 
For the fields this calls for continuity of the 
tangential components E a ( a = x, y), while the 
distribution function call for diffuseness of the 
electron scattering. Under conditions of the ano­
malous skin effect (2.1), the character of the re­
flection of the electrons from the boundary does 
not exert a decisive influence on the field 
distribution and on the surface impedance in the 
half-space.· This is physically connected with the 
fact that the main contribution to the current 
density is made by the 'effective' electrons, 
which move parallel to the surface in the skin 
layer. Therefore in the calculation of current 
density it is possible to disregard completely the 
boundary condition for f and to use the expres­
sion for the distribution function in an unbounded 
metal. ( An account of the boundary, as is well 
known [to, 6], does not change the dependence of the 
impedance on the external parameters and leads 
only to an inessential numerical factor of the 
order of unity.) 

Equation ( 3.4) determines the longitudinal com­
ponent of the field Ez ( z) in terms of Ex and Ey. 
If conditions (2.1) are satisfied, the quantity Ez 
in the kinetic equation ( 3.2) can be neglected, and 
(3.4) can be disregarded completely (see also[10 •6J ). 

Thus, in the case of the anomalous skin effect, 
when 6 is the smallest parameter with the dimen­
sion of length, the problem in a half-space can be 
reduced to the problem of finding the distribution 
of the field in an unbounded metal. To this end it 
is necessary to continue the field and the current 
outside the metal in suitable fashion. 

As in the papers by Azbel' and one of the 
authors [6•7•10], we continue the field and the cur­
rent into the region z < 0 in even fashion. This 
makes it possible to use the Fourier transforma­
tion for the solution of the system (3.1)-(3.4). 
The equations for the Fourier components of the 
electric field 

oc 

ita (k) = * ~Ea. (z) cos kz dz (3.5) 
0 

are algebraic and can be readily solved. The re­
sult is 

ita. (k) =- 2 [k2]- i4nffi c-2 cr (k)l~~ E~ (0), ( 3.6) 

where I-unit matrix, &-conductivity tensor, the 
prime denotes the derivative with respect to z, 
and the index {:3 denotes summation from 1 to 2. 
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The Fourier components of the elements of the 
conductivity tensor u a{3 ( k) in bulk metal are of 
the form 

00 2rt 't' 

2e2 \ ( of \ I mdp \ I Clcx~ (k) =IT·' - a:) de .l ~ .l d-r: Vex ('r) .l d-r:'v0 (-r:') 
0 o -oo 

~· 

X exp[ v-;iro (,; --r:')]cos( {;-- ~ Vz (,;") d-r:"). (3.7) 

Owing to the condition (2.1) we get kv/~ ~ v/~6 
» 1, and we can use the stationary-phase method 
[iO] in the calculation of the integrals with respect 
to T and T'. As a result of simple calculations we 
arrive at the formula 

X ----~-n~cx~n~~-----
exp (2nvjQ + ikvzT) - 1 ( 3.8) 

Here na are the components of the unit velocity 
vector on the Fermi surface £ ( p) = £ 0 and x is 
the azimuthal angle in velocity space with polar 
axis along z; the integration with respect to x is 
along the line of the stationary phase points 
Vz ( T, PH) = 0. In the deri'vation of (3.8) we have 
neglected w compared with v, and also the inter­
ference terms from the different points. of station­
ary phase. 

The occurrence of field peaks inside the metal 
is connected with periodic 6-like singularities of 
the Uaf3 as functions of k. We shall show that 
such singularities can occur in the presence of 
open periodic trajectories, and also in the case of 
closed Fermi surfaces in an obliqU:e magnetic 
field. 

We consider first closed Fermi surfaces. The 
first term in ( 3.8) gives the well known expres­
sion for the Fourier component of the high-fre­
quency conductivity tensor of a metal at H = 0. 
The singularities of u a{3 of interest to us are 
connected with the second term of ( 3.8): 

21t 

llcr (k) - 2Jte2 R \ dx, nan~ 
ex~ - Ji3fkT e .I TRT exp(2Jtv/O+ikvzT)-1* <3·9 ) 

0 

The main contribution to ~u a{3 ( k ) is made by 
electrons in which the displacement u ( x) 

= I Vz T I is extremal, with Uext >"' 0. The ex­
tremum of u ( x) must be attained on the central 
section, where u ( x) = 0, and at the limiting 
point 3). The vicinity of the central section gives 

3lWhen the Fermi surface has a complicated shape, u(x) 
can have an extremum also at other sections. The correspond­
ing calculation does not differ at all from the case of the 
limiting point given below. 

a non-oscillating addition to t:;aa{3 (3.9). We there­
fore confine ourselves to the calculation of the contri­
bution to !:;a a{3 from the electrons near the limit­
ing point. Resonance maxima at kulim = 21rn are 
~os~essed only by the element t:;ayy (the y axis 
1s dtrected along the projection of H on the plane 
z = 0 ) . The remaining elements of .0-u a{3 have no 
singularities, since nx ~ 0 near the limiting 
p~int. For this reason only the Ey ( z) component 
w1ll have corresponding anomalies in the metal. 

We introduce the symbols .0. = kulim/27r - n 
and v/~ = y. For small values of I ~ I and y, the 
expression (3.9) can be rewritten as 

~Cl - 2e2 [(y2 + t:J.2)'/, + !1]'/, 

YY - hakK j ku" j'/• . (y2 + !12)'/, 
(3.10) 

The values of all the quantities in (3.10) are taken 
at the limiting point, u" = 82u ( Xlim )/ox2• From 
(3.10) it follows that !:;ayy has as a function of k 
a series of narrow maxima located at I kuum I 
~ 21rn, with a relative width I .0. I ~ y. The value 
of .0-uyy at the maximum is on the order of 
Uyy( O)(ny)-l/2. 

Analogous singularities in a magnetic field 
parallel to the surface of the metal are possessed 
by the elements of the conductivity tensor in the 
presence of open periodic trajectories. In this 
case the quantity u a{3 ( 0) contributes a small 
correction to ~u a{3· The expression for the con­
ductivity can be represented in the form 

X [ 'iijQ J 
(vjQ)2 + Jt 'sin2 (ku/"2) · (3.11) 

In the first term of (3.11) the integration is 
over the part of the v z = 0 curve belonging to the 
closed sections of the Fermi surface. The second 
term is due to the contributions from the elec­
trons on the open periodic trajectories. It is dif­
ferent from zero when the open trajectories have 
points at which the electron velocity is parallel to 
the surface of the metal. Since the value of u 
does not depend on x the cyclotron frequency ~ 
varies slowly with x. the factor in the square 
brackets can be taken outside the integral, with 
v/fl replaced by some characteristic value 
( v/~ )o = 'Yo· 

To simplify the subsequent calculations, we 
assume that the conductivity tensor uc1osed 
[the first term in (3.11)), due to the clo~ed tra­
jectories, reduces to the principal axes simul­
taneously with u~~en (this assumption does 
not affect the final results). Expression (3.11) 
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can be written in terms of the principal axes in 
the form 

(k)- 3:n: sf'- (r + ~ ~~ ) 
afl- - 4 \kT fl- ~~ + :n:-2 sin2 (kuj2) ' 

( 3.12) 

where 

4e2 \' n~ Qdx 
Bp. = 3:n: h" .l I K I v 

closed 

are the corresponding principal value of the tensor 
closed 

Ba,e ( ~ u a,B ) , and .Bp determines the relative 
'weight' of the open periodic trajectories. It is 
obvious from (3.12) that as in the case of a 
limiting point, the quantity up ( k) has for ku = 21rn 
many sharp and narrow maxima with widths 
I 6. I = I ku - 21rn I ~ Yo· 

Since the character of the singularities of u ( k) 
is the same in both considered cases, only one 
need be investigated to calculate the field distri­
bution in the metal. The calculations are best 
carried out for the case of open trajectories, 
where there is a single analytic expression for 
u ( k) (we shall henceforth omit the index p,) both 
near and far from the maxima. The distribution 
of the field in the metal is described by the func­
tion 

oc 
- :c E (~) \ 

J m - - 2 £' (O) = U .\ X COSX~dx 
0 

2 -1 

x1{x3 - iM 3 [r + ~ io ]} , 
~~ + :n:-2 sin2 (x/2) 

(3.13) 

where we have introduced the notation 

~ = z/u; ku = x; M = (3:n:2wBu3/c2)'1• = u!i:J ~ 1; 
{) = (c2u/3:n:2wrro)'la. 

Recognizing that the integrand in ( 3 .13) has 
several narrow minima for x f':;; 21rn, the expres­
sion for J ( t) can be reduced to the form 

J(~) = Jo(~) + M(~), (3.14) 

where the function 

"" 
~ xcosx~ d. 

J o(~) = U a "M" X 
• X-! 
0 

differs from zero only for I t I ;S M- 1, ( i.e., 
z ;S 6) and describes the sharp damping of the 
field near the surface of the metal. 

The function 6.J ( t ) represents a series of 
narrow slowly damped field peaks, separated by 
distances z = nu ( t = n): 

Mm =2roiM3u 

x ~ cos (2:n:ms) 2:n:m exp {- 2:n:ros [1- i;3M8 ((2:n:m)s- iM")-1]} 

.Ll [(2:n:m)"- iM"]'I, [(2:n:m)"- iM" (1 + !3)]'/z 
m=l (3.15) 

Near the n-th maximum I t;-n I « M- 1, i.e., 
I z - nu I « o: 

11Jmax (n) = CM-1uy0~ exp (-2:n:y0nu + :n:i/6), 

Far from the maximum at I t;-n I » M- 1 

M m = Mmax (n)IIM (~- n)l 2 • 

(3.16) 

(3.17) 

Thus, the width of each maximum is z - nu I 
~ o, and the relative height is .6J(n)/J0 ( 0) 
~ ( v/rl )0e-z/Z ( Z-characteristic mean free path 
of the electrons on the open periodic trajectories ) . 
The schematic form of the field distribution in 
the metal is shown in Fig. 1. 

E(z) 
E(a) 

I 

FIG. 1 

In the case of a limiting point, the quantity Yo 
is replaced by the value of 17/rl at this point. The 
decrease in the flashes on going inside the metal 
is characterized by exp ( -z/Zlim sin cp) ( Zlim­
mean free path of the electron at the limiting 
point). The relative amplitude of the flash is 
I 6.Jmax/Jo(O) If':;; Yo exp (-27rynu) in a strong 
field with ( uv/rl him « 6, and of the order of 
( o/Zq; )1/ 2 Ulim in a weak field, when ( u v/rl )lim 
» 6. 

It is curious that the line widths and heights of 
the maxima are determined by different parame­
ters. The width 6.z ~ 6 is connected with the 
characteristic width of the spectrum of the plane 
waves ( 6.k ~ o- 1) arising in the skin layer. The 
heights of the maxima and their decrease with 
distance are governed by the non-monochromatic­
ity of the waves that penetrate a large distance in 
the metal. The damping of these waves is deter­
mined by the electron mean free path Z, since 
their interaction with the electron has a resonant 
character. Therefore, with increasing mean free 
path, the heights of the first field peaks decrease 
because of the increase in their number inside 
the metal. 

This clarifies the character of the field distri­
bution in a plane-parallel plate. If the electrons 
cannot cover the distance between the plate sur­
face during the mean free path time, then the 
field distribution in the plate should be the same 
as in a half-space. In the opposite case, that of a 
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thin plate, the role of the mean free path is played 
here by the path covered by the electrons in the 
plate, i.e., l is replaced by d for open trajector­
ies and by d/sin cp for the limiting point. In the 
latter case an exact calculation of the distribution 
of the field in the plate is rather difficult, since it 
is necessary to take into account the influence of 
the surfaces of the sample on the metal conduc­
tivity operator. 

4. EXPERIMENT 

We used the previously developed [5] modula­
tion procedure to measure the imaginary part of 
the surface impedance of a metallic sample, due 
to the magnetic field. The investigated sample 
was placed inside the coil of a resonant circuit. 
The oscillation frequency f was determined by 
the inductance of the resonating circuit with the 
sample, so that its variation was proportional to 
the change in the effective depth of penetration 
Oeff of the alternating magnetic field H~ in the 
metal 

d 

~H_(z)dz E(O)-Ed 

6en = Re H ~ (O) = - Re E' (O) ( 4.1) 

Here Ed-electric field on the second side of the 
plate, due to the anomalous penetration of the wave 
in the metal. 

Since the distribution of the field in the plate is 
in the first approximation the same as in a half 
space, the quantity E ( 0 )/E' ( 0) is proportional to 
the impedance of the half space, and varies 
smoothly with variation of the magnetic field. The 
dimensional effect of interest to us is connected 
with Ed/E'( 0) and is determined by the emerg­
ence of the next field peak to the other surface of 
the sample z == d. Using ( 3.13) and ( 3.14) we can 
readily see that the experimentally measured 
derivative 8f/8H is connected with the distribu-

.!il_ 
d.H 

250 500 750 !000 1250 1500 

tion function of the field in the half space by the 
relation 

at a ('d) aFf = G iJH Re llJ u , ( 4.2) 

The experiments were carried out with tin speci­
mens grown, in dismountable quartz molds[i], 
from a metal containing ~ 10-4 percent of impuri­
ties. The samples were discs 17.8 mm in diame­
ter and d == 0.4 mm thick. 

To study the dimensional effects due to open 
periodic trajectories, we used a specimen with a 
normal to the surface n II [001]. According to the 
data of Alekseevskil and Ga1dukov[12J, the Fermi 
surface of tin is open along the ( 100) and ( 110) 
axes. Therefore, when the magnetic field H lies 
in the plane of the plate and is directed along one 
of the axes ( 110) (or \ 100)) the electron moving 
on the Fermi surface along the second axis \ 110) 
(or ( 100)) on an open orbit will drift from one 
surface of the sample to the other. 

The plot of 8f/8H for H II [110] (Fig. 2) shows 
clearly the sequence of narrow periodic singulari­
ties in the fields Hn == nH 1 ( n == 1, 2, ... , 12 ). The 
period ~H measured from the positions of the 
peaks is approximately 3 per cent larger than the 
corresponding value of .6H calculated from 
formula (2.9). This discrepancy must apparently 
be attributed to the error in the measurement of 
the sample thickness. In the interval between the 
main lines, approximately half way between them, 
there is seen a second weaker system of lines 
having the same period but observed in fields 
H0 + nH1 ( H0 ~ 0.5 H1 ). 

The curve on Fig. 2 corresponds to polariza­
tion of the alternating field E l H. Analogous 
curves for E II H have the same periodicity in H 
and differ only slightly from that shown in Fig. 2. 

A change up to 2-3° in the angle of inclination 
of the field relative to the surface of the sample 

1750 2000 2250 2500 2750 JOOO~Oe 

FIG. 2. Dimensional effect lines due to open periodic trajectories; n II [001), variable electrical field E II [110), H II [110), 
temperature 2.0°K, f = 3.2 Me, d = 0.40 mm. 
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/Oioj 

1L---------[100j 

FIG. 3. Angular depend­
ence of the position of the 
first line of the dimensional 
effect, due to the open tra­
jectories. The scale is in 
units of b (b is the recipro­
cal lattice period in [ 110] 
direction). 

does not change the picture of the effect. At the 
same time, a small ( ~ 1 o ) rotation of the field 
in the plane of the sample immediately smears 
out all the lines with n > 1. Only the line in the 
field H1 remains and splits when the field is 
rotated (see Fig. 3), with one of the lines disap­
pearing rapidly, and the other remaining up to 
K ~ 15°. The angular dimension of the region of 
the directions of H where the dimensional effect 
from the open trajectories is observed agrees 
well with the data of Alekseevskil and Ga1dukov[12J, 
According to [t2J (see Fig. 4 of that paper), open 
periodic orbits remain when the field direction is 
varied only if H remains in the (110) plane. In 
our experiments this condition is satisfied when 
the field is inclined. 

An analogous effect, but in much weaker form, 
is observed for H II [100]. Here, too, two systems 
of lines are seen, with H0 = 0.4H1. Like in the 
[110] direction, H1 exceeds the calculated value 
by approximately 2 per cent. It became possible 
to observe three principal maxima and two addi­
tional maxima. The second system of lines may 
be due to the rather complicated form of the open 
electron trajectories in tin; in particular, the 
trajectories can have several points with Vz = 0. 
This circumstance can greatly complicate the 
line shape, and also lead to the appearance of 
additional singularities on the curves. 

The existence of such orbits in tin is quite 
probable, since it is predicted by the model of 
almost-free electrons (see Fig. 13b in [5]). Nor 
can we exclude the possibility that the appearance 
of the second system of lines is due to the small 
fraction of electrons which are specularly re­
flected from the surface of the metal (the authors 
areindebtedtoM. Ya.Azbel'forthelast remark) .. 

The dimensional effect connected with the 
electrons near the limiting points was investi­
gated with the same set-up but with H making a 
small angle with the surface of the sample. The 
inclination of the field could be produced and 
regulated by inclining the dewar (i.e., the sample 
with the coil) relative to the electromagnet and 
also with the aid of an additional vertical solenoid 

inside the dewar. Part of the current flowing 
through the electromagnet was diverted to the 
solenoid. Samples with n II [001] (sample 1) and 
with n II [010] (sample 2) were investigated. (In 
both samples the angle between the normal and 
the crystallographic axis was approximately 40'.) 
The dimensional effect was observed in field 
directions close to [ 1 00] . 

A typical plot of 8f/8H against H for different 
angles cp is shown in Fig. 4. The presence of 
narrow impedance singularities that are periodic 
with the field is observed, with an amplitude and 
period that increase with increasing cp. Unlike the 
dimensional effects on open trajectories, the am­
plitudes of the maxima hardly decrease with the 
field (and in some cases even increase somewhat). 
In agreement with the theory, the effect was ob­
served at small angles between the vectors E and 
H (longitudinal polarization). 

iff 
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FIG. 4. Dimensional effect lines due to the limiting point; 
n II [010], E II [100], H II (001), temperature 1.9°K, f = 3.2 
Me, d = 0.39 mm. To the left of the curves is indicated the 
variation of the angle of inclination ~cp referred to the in­
clination of the field for the lower curve. 

Figure 5 shows the variation of the period ~H 
with the angle of inclination cp for sample 2 
(curve 1). Since the quantity measured in the ex­
periment is merely the change in angle of inclina­
tion ~cp. the absolute value of the angle cp is ob­
tained by linear extrapolation to ~H ( cp) = 0. 
Using (2.2), we can calculate the Gaussian curva­
ture of the Fermi surface in the [100] direction. 
The same limiting point causes the dimensional 
effect in sample 1. The only difference is that 
when the magnetic field is inclined relative to the 
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FIG. 5. Dependence of the period of oscillations on the 
inclination of the field for sample 2, with H II (001). Different 
symbols designate different series of measurements. Some of 
the data obtained in the series (designated by the circle) are 
shown in Fig. 4. 

surface, the field H moves in the other crystallo­
graphic plane. Therefore the measurements of 
the periods L::.H should yield identical values of 
K for both samples. It was found however, that 
K- 1/ 2 = 2.3.7 x 10- 19 g/cm-sec for sample 1 and 
2.19 x 10- 19 for sample 2, i.e., a difference of 
approximately 8 per cent. (For comparison we 
indicate that the radius of the Fermi sphere in 
the known model of almost-free electrons for tin 
is Po= 1.73 x 10-19 g/c:n;-sec). 

Such a discrepancy cannot be attributed to the 
error in the measurement of the thickness of the 
plates. Actually, the difference is connected with 
the displacement of the limiting point over the 
Fermi surface with varying angle of inclination cp. 
The dependence of K on cp leads to an error in the 
determination of absolute value of cp in linear ex­
trapolation of the curve L::.H ( cp) - 0. 

The discrepancy in the values of K can be de­
creased somewhat by introducing suitable cor­
rections. If we fix the angle of inclination cp and 
rotate H about the normal n to the surface, then 
the variation of the period of oscillation L::.H is 
proportional to the change of K-1/2 as a function 
of the angle of rotation K. In sample 1 at cp ""' 2°, 
the period L::.H does not depend on K if I K I < 4 o. 

In sample 2, the period of L::.H varies as a func­
tion of K by approximately 6 per cent when K is 
changed by 3o (see Fig. 6); for K > 3°, the lines 
due to the dimensional effect drop out. This is 
connected with the angular region of existence of 
the limiting point on the Fermi surface. Accord­
ingly, in sample 2 the effect was observed only 
for cp < 3°. If we now take into account the de­
pendence L::.H ( K) (obtained with sample 2) on the 
extrapolated plot of L::.H ( cp) for sample 1, then the 
discrepancy in the values of K- 112 can be reduced 
to 3.5 per cent. 
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FIG. 6. Dependence of the period of oscillations of the 
dimensional effect for limiting point I on the rotation of H 
about the normal to the surface of specimen 2. cp = 3°; 
K=OforH II (001). 
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FIG. 7. Variation of the conditions of observation of the 
dimensional effect on a limiting point with increasing inclina­
tion of the magnetic field relative to the sample surface. 
abed-oscillator coil. 

To increase the accuracy with which K is 
measured, it is convenient to decrease the angle 
of inclination cp. However, with decreasing cp the 
amplitude of the maxima increases very rapidly 
for two reasons. First, the path length d/sin cp, 
which the electrons must cover from one surface 
of the plate to the other, increases. Second, as 
can be seen from Fig. 7, the 'useful' area on the 
surface of the sample decreases with decreasing 
cp. The coefficient of reduction of the useful area 
is r(cp) = 1- dp- 1 cot cp, where p is the diame­
ter of the disc. Nonetheless, on sample 1 the ef­
fect is clearly seen up to an angle cp = 1 °30' when 
d/sin cp = 15.3 mm and r = 0.14. 

Owing to the complexity of the Fermi surface 
of tin, one given direction of H may correspond 
to not one but several different elliptical limiting 
points. Indeed, with starting with cp ""' 4 o, sample 
2 shows still another system of lines due to the 
dimensional effect from the limiting point with 
K-1/2 ""' 0.48 x 10- 19 g/cm-sec. When H is in­
clined to the (001) surface, the lines split (see 
Fig. 8); one of the branches disappears after 2° 
and the other can be traced up to angles on the 
order of 20°. The dependence of the period L::.H on 
cp for this limiting point ( for K = 0) is shown in 
Fig. 5 (curve II). 
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FIG. 8. Splitting of the lines of the dimensional effect of 
limiting point II upon rotation of H about th~ normal n II [010]; 
cp = 6°50'; E II [100]; temperature 2.2"K, f = 3.2 Me; d = 0.39 
mm. To the left of the curves is indicated the angle K; K = 0 
for H II (001). Single peak on the upper two curves-effect of 
limiting point I (for given cp it exists only if K < 1 ~-

5. DISCUSSION OF RESULTS 

There is no doubt that the size-effect experi­
ments described above are connected with the 
drift motion of the electrons into the metal. 
Narrow lines, which are periodic in the direct 
field, are observed, in full accord with the physi­
cal picture and with the theoretical analysis. The 
investigation of the periodicity of the oscillations 
permits reliable identification of the effects due 
both to the open trajectories and to the limiting 
points. Most experimental facts agree splendidly 
with the deductions of the theory. An exception is 
that the slower decrease in the amplitude of the 
observed maxima decreases more slowly with the 
field than would follow from the theory ( of/oH 
~ n- 1 for the limiting points at ( uv/Q him « 6, 
of/o H ~ n - 2 for open trajectories-see Sec. 3). It 
is possible that this discrepancy is due to the 
same factors that cause the disagreement with the 
predictions of the theory of monotonic dependence 
of the impedance of tin on H at these frequencies. 

From the point of view of the possibilities of 
determining the characteristics of the energy 
spectra of the electrons in metals, the most inter­
esting is the dimensional effect due to the limiting 
points. From measurements of the period of the 
oscillations it is possible to determine the local 

values of the Gaussian curvature of the Fermi 
surface in all its elliptical points. On the other 
hand, a study of cyclotron resonance gives the 
value of the effective mass at the limiting point 
[ 10 • 13]. The aggregate of these data makes it pos­
sible to calculate directly the local velocity by 
means of the formula v = ( m JK) - 1• 

Kha1kin[13J observed five mass values at 
H II [100] (in Fig. 4c of [13] they are numbered 10, 
11, 13, 17, and 19 with two of them (17 and 19) 
probably coinciding on the (100] axis). If we 
assign different masses to the limiting points ob­
served in the present paper, we obtain the possible 
values of the velocities (see Table I). For com­
parison we indicate that in the model of almost 
free electrons v = p0/m0 = 1.9 x 108 em/sec. 

Table I 

Effective masses from 
v-10-'=(mVKi-1 ·10-'. em/sec ["] 

No. of mass I mjm, 1( 11/2 =2.2-10-19' 

I 
.1(~;;, =0.5-10-". 

g/cm-sec g/cm-sec 

13 0,20 12 2.6 
17' 19 -0.7 3.5 0.75 
11 1.15 2.1 0.4G 
10 1.60 1.53 0.33 

Cyclotron resonance is the most intense for 
mass 10 and is observed in the same angle inter­
val as the size effect from the limiting point I. 
We can therefore assume with assurance that they 
are identical. The lines of the dimensional effect 
from the limiting point II split when H is inclined 
away from the (001) plane, the same as in the case 
of cyclotron resonance for masses 17 and 19. 

tn-#-1 

FIG. 9. Relative change in the 
amplitude of the dimensional ef­
fect with variation of the angle 
of inclination cp (with allowance 
for the coefficient r( cp )). 

Limiting 
point 

I 
II 

K-'/,.10", 

g/cm-sec 

2.23 
0.48 

Table II 

1.60 
0.7 

I 
n 

I 
I 

II 

0 

[ 

\ 
5 10 d/StnjP. mm 

v-10-•,cm/sec I l, mm 

1.53 
0. 75 

2.8 
0.7 
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Consequently, we can assume that the limiting 
point II corresponds to masses 17 and 19. There­
fore the values of the velocity 0.75 and 1.53 are 
shown in the table in italics. 

The dependence of the relative amplitude of 
the dimensional effect on the angle <p (for H 
= const) makes it possible to estimate the elec­
tron mean free path near the given limiting point. 
The change of the amplitude with increasing angle 
of inclination for d » l sin <p is essentially like 
exp ( -d/Z sin <p), see Fig. 9. By determining the 
mean free path from the slope of the line, we ob­
tain for the limiting point I a value l = 2.8 mm 
while for point II we have l "" 0. 7 mm. These 
values of l agree well with the results of [14], in 
which l i':j 3 mm was obtained from measure­
ments- of the static conductivity of tin of the same 
purity. It is interesting to note that the mean free 
path, in accordance with our measurements, is 
different for electron groups on the Fermi sur­
face-see Table II, in which are gathered the 
characteristic of the electrons for the two limiting 
points which we investigated in the [100] direction. 

Thus, the dimensional effect in the presence of 
drift of the electrons is a convenient and reliable 
method of measuring such important character­
istics as the local value of the Gaussian curva­
ture and the mean free path. In addition, it makes 
it possible to observe open electron trajectories 
in the same manner as with galvanomagnetic ef­
fects [12] and magnetoacoustic resonance [15]. 

The authors are grateful to Yu. V. Sharvin for 
useful discussions and valuable advice. 
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