INVESTIGATION OF RADIATION FROM Al²⁶^m, S³¹, Ti⁴³, AND Mn⁵⁷

S. S. VASIL'EV and L. Ya. SHAVTVALOV

Institute of Nuclear Physics, Moscow State University

Submitted to JETP editor May 14, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 1385-1386 (November, 1963)

The β spectra of short-lived Al^{26m}, S³¹, Ti⁴³, and Mn⁵⁷ were investigated with a magnetic β spectrometer. The upper limit of the β spectrum of Ti⁴³, 5.5 ± 0.1 MeV, is in good agreement with the theory ^[4]; the half-life is 0.4 ± 0.05 sec. It is found that the Mn⁵⁷ β spectrum consists of two partial β spectra with upper limits at 2550 ± 50 and 1100 ± 100 keV and relative intensities of 82 and 18%. A value of 4200 ± 100 keV has been obtained for the end point energy of the β spectrum of S³¹. The end point energies and lifetimes in the other cases agree with available data within the experimental errors.

We have continued our investigation of nuclei with short half lives, using a magnetic-lens β spectrometer and the method described earlier^[1], and enriched Ti⁴³, Al^{26m}, Mn⁵⁷, and S³¹ targets. <u>Ti⁴³</u>. The radiation of Ti⁴³ was not studied in

<u>Ti⁴³</u>. The radiation of Ti⁴³ was not studied in sufficient detail. Tyren and Tove^[2] measured the half life of Ti⁴³, for which they obtained a value equal to 0.58 sec. The Ti⁴³ was obtained by bombarding titanium with 30 MeV protons. The measurements were made with a scintillation counter. Janecke and Jung^[3] investigated the β^+ spectrum of Ti⁴³ with the aid of a scintillation detector; the upper limit turned out to be 5.81 ± 0.15 MeV. The upper limit of the β^+ spectrum of Ti⁴³ was calculated by Baz', Gol'danskiĭ, and Zel'dovich^[4] to be 5.5 MeV. They obtained a value of 0.6 second for the half life.

The same magnetic-lens β spectrometer was used to plot the β^+ spectrum of Ti⁴³. The latter was obtained from the Ca⁴⁰(α , n)Ti⁴³ reaction. The target was Ca⁴⁰CO₃. The upper limit of the β^+ spectrum of Ti⁴³ was found to equal 5.5 ± 0.1 MeV, in good agreement with the value obtained by Baz', Gol'danskiĭ, and Zel'dovich^[4].

The Fermi plot of the β^+ spectrum of Ti⁴³ turned out to a straight line starting with ~ 2800 keV (Fig. 1). At lower energies, the sharp deviation from linearity is due to the superposition of other β^+ spectra on the Ti⁴³ β^+ spectrum.

The most appreciable contribution is from the β^+ spectrum of O¹⁵ produced in the C¹²(α , n)O¹⁵ reaction. The half life of Ti⁴³ was measured at a positron energy of 3271 keV and was found to be 0.4 ± 0.05 sec. The half life measured at a positron energy of 884 keV was found to be 1.5 ± 0.4 min, owing to the presence of the β^+ spectrum of O¹⁵.

<u>Al^{26m}</u>. During the measurements we determined also the upper limit of the β^+ spectrum of Al^{26m}, which was found to be 3230 ± 50 keV. The half life of Al^{26m} was measured at a positron energy of 2275 keV and found to be 6.5 ± 2 sec. These results agree with the data obtained by others (see [⁵⁻⁹]).

<u>Mn⁵⁷</u>. The Mn⁵⁷ radiation was the subject of only a few investigations ^[10,11], the results of which need further verification. Figure 2 shows the plot obtained for the β^{-} spectrum of Mn⁵⁷. We see that the β^{-} spectrum consists of two partial spectra with upper limits 2550 ± 50 and 1100 ± 100 keV

and with relative intensities 82 and 18% respectively. The Mn^{57} was obtained from the $Cr^{54}(\alpha, p)Mn^{57}$ reaction. The half life was found to be 1.9 ± 0.3 min. The measurements were carried at electron energies 371 and 1190 keV.

<u>S³¹</u>. The S³¹ radiation was investigated by Hunt et al^[12], Leĭpunskiĭ et al^[13], and Wallace et al^[14]. The value of the upper limit of the β^+ spectrum obtained in our investigation is 4200 ± 100 keV. The half life measured at 3271 keV is 2.75 ± 0.25 sec.

We are grateful for help with the work to Yu. A. Vorob'ev, V. S. Zazulin, N. S. Kirpichev, B. M. Makuni, Z. I. Tikhomirova, and T. N. Trapeznikova.

¹S. S. Vasil'ev and L. Ya. Shavtvalov, Izv. AN SSSR ser. fiz. 22, 788 (1958) and 26, 1495 (1962), Columbia Tech. Transl. pp. 782 and 1521; JETP 36, 317 (1959) and 39, 1221 (1960), Soviet Phys. JETP 9, 218 (1959) and 12, 851 (1961).

² H. Tyren and P. Tove, Phys. Rev. **96**, 773 (1954).

³J. Janecke and H. Jung, Z. Physik 165, 94 (1961).

⁴ Baz', Gol'danskii, and Zel'dovich, UFN 72,

211 (1960), Soviet Phys. Uspekhi 3, 729 (1961).
⁵ Hunt, Jones, Churchill, and Hancock, Proc.

Phys. Soc. A67, 443 (1954); Nature 172, 460 (1953).
⁶ Haslam, Roberts, and Robb, Canad. J. Phys.
32, 361 (1954).

⁷Green, Harris, and Cooper, Phys. Rev. 96, 817 (1954).

⁸ Elbek, Madsen, and Nathan, Phil. Mag. **46**, 663 (1955).

⁹Sherr, Kavanagh, and Mills, Phys. Rev. **97**, 248 (1955) and **98**, 1185 (1955).

¹⁰ Cohen, Charpie, Handley, and Olson, Phys. Rev. **94**, 953 (1954).

¹¹ McNeill, Prentice, Katz, and Link, Canad. J. Phys. **35**, 753 (1957).

¹² Hunt, Kline, and Zaffarano, Phys. Rev. 95, 611
¹³ Leipunskii, Miller, Morozov, and Yampol'skii, DAN SSSR 109, 935 (1956), Soviet Phys. Doklady 1, 505 (1957).

¹⁴ R. Wallace and J. A. Welch, Phys. Rev. 117, 1297 (1960).

Translated by J. G. Adashko 226