EFFECT OF PRESSURE ON THE SUPERCONDUCTING TRANSITION TEMPERATURE OF THE ALLOYS Nb₃Sn AND Nb-Zr

E. S. ITSKEVICH, M. A. IL'INA, and V. A. SUKHOPAROV

Institute for High Pressure Physics, Academy of Sciences, U.S.S.R.

Submitted to JETP editor May 10, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 1378-1379 (November, 1963)

The effect of isotropic compression upon the temperature of the transition to the superconducting state has been investigated for the alloys Nb₃Sn and Nb-Zr. For Nb₃Sn, beginning at a pressure $p \sim 3000$ atm, the curve relating ΔT_c and p is quadratic in form. For Nb-Zr an increase in the superconducting transition temperature was observed under pressure.

WE have investigated the effect of isotropic compression upon the temperature of the transition to the superconducting state for the alloys Nb_3Sn and Nb-Zr.

The hydrostatic pressure was generated in a fixed-pressure bomb, following the procedure described previously^[1]. Temperatures were measured with a platinum resistance thermometer, calibrated at the Institute for Physico-technical Measurements with the aid of a set of standards for the region $10-90^{\circ}K^{[2]}$. The thermometer was fitted tightly into a thick-walled copper tube which was in mechanical thermal contact with the body of the bomb. Coarse temperature control was achieved through the pressure of the vapor over the liquid hydrogen. One sample was placed within the bomb, while a second, connected in series with the first, was attached to the outside of the bomb. The transition to the superconducting state was detected as a sharp drop in the electrical resistance. With each application of pressure we obtained two superconducting transition curves—one under pressure and one without.

The resistance measurements on the samples were made after the system had reached thermal equilibrium.

A. The Nb₃Sn samples were prepared via the method described by Alekseevskiĭ and Mikhaĭlov^[3]. The specimens were in the form of short sections of wire; we endeavored not to subject them to deformation. Figure 1 shows the curve obtained for the dependence of $\Delta T_c = T_{c,p} - T_{c,0}$ upon p^2 . All of the points fall closely along a straight line, which, however, does not pass through the origin. It can be asserted that, beginning at a pressure $p \sim 3000$ atm, the curve relating T_c to p is quadratic in character, and may be described by the re-

lation $\Delta T_c = -(0.0019p^2 + 0.02)^{\circ}K$, where p is the pressure in kiloatm.

Lazarev et al, using a freezing technique, observed a reduction in the transition temperature for Nb₃Sn of 0.045°K, under a pressure of 1730 $atm^{[4]}$. Their point is shown in the diagram; it lies somewhat above our data.

B. The Nb-Zr samples took the form of a wire drawn from an ingot (75% Nb + 25% Zr) alloyed in a vacuum arc furnace from zirconium iodide and a niobium rod.

Under pressure, the superconducting transition temperature of the Nb-Zr alloy was raised, and this to a progressively greater extent with each succeeding cycle of application of pressure (Fig. 2). Removal of the pressure restored the initial value

FIG. 1. Displacement of the superconducting transition temperature for Nb₃Sn under hydrostatic pressure: O - our data, + - data of Lazarev, et al.

FIG. 2. Effect of pressure on the superconducting transition temperature for Nb – Zr. Sample no. 1: O – first application of pressure, \Box – second application of pressure, Δ – third application of pressure; • – sample no. 2.

of T_c . One specimen, cut from the same piece of wire as sample no. 1, showed a decrease in T_c upon application of a small pressure (by 0.066°K for p = 1500 atm), and then an increase in T_c (for pressures from 3000 to 11000 atm, $\Delta T_c / \Delta p = 0.006 \times 10^{-3}$ deg/atm). Unfortunately, we were unable to measure T_c for this sample after the pressure was removed.

We do not know of any practical reason for this behavior in the niobium-zirconium alloy under pressure. Nevertheless, we find the most satisfactory value for $\Delta T_C / \Delta p$ to be 0.022×10^{-3} deg/atm.

The authors thank L. F. Vereshchagin for his continued interest in this work, and N. N. Mikhaĭlov and V. R. Karasik for providing the specimens. ¹E. S. Itskevich, PTÉ 4, 148 (1963).

² Borovik-Romanov, Orlova, and Strel'kov, Shkala nizkikh temperatur mezhdu 90° i 10°K, (The low temperature scale between 90° and 10°K), Main Bureau of Measures and Measuring Apparatus, 1954.

³N. E. Alekseevskii and N. N. Mikhailov, JETP 41, 1809 (1961), Soviet Phys. JETP 14, 1287 (1962).

⁴ Lazarev, Lazareva, Ovcharenko, and Matsakov, JETP **43**, 2309 (1962), Soviet Phys. JETP **16**, 1630 (1963).

Translated by S. D. Elliott 224