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The turbulent diffusion which develops as a result of drift instability in a collisionless plasma 
in a strong magnetic field is considered. It is shown that in the presence of oscillations non­
linear damping, which strongly diminishes the amplitude of the stationary oscillations, occurs 
in addition to Landau linear damping. The oscillation spectrum and diffusion turbulence coef­
ficient are determined approximately. 

1. INTRODUCTION 

IT has been shown by the author and Timofeev C1J 
that an inhomogeneous rarefied plasma with Max­
wellian particle velocity distribution is unstable 
against drift waves [2] with a transverse wavelength 
of the order of the average ion Larmor radius, and 
that for a plasma of negligibly small pressure the 
growth increment of the small oscillations can be 
of the order of the frequency. As shown in C3J, an 
increase in the plasma pressure leads to a de­
crease in the increment, so that }Vhen {30 = 87rp/H2 

» me /mi, where p is the plasma pressure and 
mi and me the ion and electron masses, the in­
crement is much smaller than the oscillation fre­
quency in the most essential region of the wave 
numbers. It can then be expected that the turbulent 
motion of the plasma developing as a result of the 
instability will comprise a set of relatively weak 
interacting oscillations, that is, the turbulence will 
be weak. 

A general method for considering weakly turbu­
lent states, using expansion in powers of the small 
ratio of the increment to the frequency, has been 
developed by the author and Petviashvili [4]. In 
the present paper we investigate by means of this 
method the character of the interaction of steady­
state oscillations of an inhomogeneous rarefied 
plasma with a nonlinear Landau damping and wave 
decay. For simplicity we confine ourselves to the 
case of an isothermal current-free plasma in a 
homogeneous magnetic field. We thus disregard 
the instability due to the temperature gradient [2,3] 

and the longitudinal current [5]. The question of 
the influence of the magnetic-field inhomogeneity, 
or, more readily, the crossing of the force lines, 
will be discussed qualitatively. 

2. FUNDAMENTAL RELATIONS 

We assume that an inhomogeneous isothermal 
( Ti = T e = T = const) plasma with a density gra-

dient along the x axis: dn/ dx = Kn, is in a strong 
magnetic field H directed along the z axis. We 
assume that the plasma pressure is much smaller 
than the magnetic field pressure, namely, we as­
sume that 

(1) 

The magnetic field can be regarded as homogene­
ous here. 

We further assume that the magnetic field is so 
strong that the average Larmor radius of the ions 
is p « 1/ K. The wavelength of the oscillations of 
interest to us, which is of the order of p, will then 
be considerably smaller than the characteristic 
dimension K - 1 of the inhomogeneity, so that the 
oscillations can be described in the quasiclassi­
cal approximation, that is, we can assume that the 
dependence of the oscillating quantities on the spa­
tial coordinate r is in the form exp ( ik • r ) . 

The instability of a low-pressure plasma is 
most affected only by perturbations of the so-
called convective type, in which the longitudinal 
magnetic field remains constant. This means that 
the transverse component of the electric field can 
be regarded as potential, that is, E 1 = - Y' H'. Along 
with cp, it is convenient to introduce a quantity zp, 
defined by the relation Ez = - azp/az. Changing to 
Fourier transforms, we have Ekw = - i&ollkw 
where ollkw is the Fourier transform of the poten­
tial, and a=k1 +hkzao with a 0 ='l1kw14lkw and 
h = H/H. 

Representing the distribution function for each 
species of particles in the form f + f', where f is 
the average function and f' is the oscillating part, 
and using the averaging operation, we break up the 
kinetic equation for the particles of charge e and 
mass m into two equations: 

~~ + vvf + ( ~ Eo+ ;c [vH] ) ~~ 
I . e a (' • I= t n:t-av .\ <bk.,<l>k.,Fk.,> dkdw. (Z)* 

*[vH] = v Xu·. 
847 
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(- iw + ikv- Q :~) Fkw = i : bkw<f>kw !~ + i : ) bk'w' 

X { <f>k'w' ()fk-~/-w' - < <f>k'w' ()fk-~/-w' >} dk' dw'. 1(3) 

Here Fkw is a Fourier transform of f', E0 is the 
average electric field, n = eH/mc, J. is the azi­
muthal angle in the velocity space, and 

bkw = a (l - kv/w) + k (av)/w. 

For Kp « 1 we can represent the function f in 
the form 

f (r, v) = fo (v3_, Vz, x) + (v/Q) atofax, (4) 

so that 8f/8v in (3) can be rewritten in the form 

atJav = - inT-1 (v + eyvo) fo, (5) 

where ey is a unit vector along the y axis, T is 
the temperature, and 

v0 = - Tx/mQ = - (TjmQn) dnldx. (6) 

To simplify the notatio:t;J- we shall leave out the 
subscripts k and w where this does not cause 
misunderstanding, denoting with primes quantities 
having the indices k' and w', and with double 
primes those having the indices k" = k - k' and 
w" = w -w'. 

Since we are interested in oscillations having 
frequencies much smaller than the cyclotron fre­
quency n, Eq. {3) can be simplified by the expan­
sion in inverse powers of the cyclotron frequency. 
In the zeroth approximation we have 

ikJ.vJ. cos(~ -a) F- QaF/a~ 

= - ieT-1k J. v J. cos (~ -a) foCll, 

where a is the angle between k 1 and the x axis. 
From this we get 

F = - e<DT-1 fo + F i (v5_, Vz) exp (i [kv lhjQ). (7) 

We substitute this expression in (3), then mul­
tiply (3) by exp (- i [ k x v 1 • h/0 ), and average over 
J.; this is equivalent to imposing the orthogonality 
condition on the solution of the adjoint zeroth­
approximation equation. Neglecting in the quad­
ratic terms the terms linear in k, which is fully 
justified when k1 » K, we obtain 

. e W + W• (k V ) 
= - L T -w- (w- kzvz + kzv,a0) / 010 ~ J. · <P 

e \ [kk'] h { k~vz (:t~- 1)}. ·( k~v J. ) -- -,....- l + , Jo -,.,.-m ~ ~ w ~ . 

x {<D'F"- (W'F")} dk'dw', 

where 

(8) 

J 0 is the Bessel function of zero order. 
In the case of weak turbulence, the quadratic 

term must be regarded as small, and consequently 
the dependence of F 1 on v 1 will be determined by 
the first term in the right half of (8), from which 
we see that F 1 can be represented in the form 

Here 

!, (v J.) = (mj2nT) exp (- mv5_12T) 

is the Maxwell function, F 1 ( v z ) the longitudinal­
velocity distribution function, {3 ( s ) = E -slo ( s ) 
a factor added for normalization, s = kj_p 2 = kl T/ 
mn2, and 10 is the Bessel function of imaginary 
argument. 

Multiplying (8) by J 0(k1v1/n)21TV1dv1 and in­
tegrating with respect to v1, we obtain for F1{vz ): 

(w- kzvz) F1 (vz) = eT- 1 (w + w.) A{0~<D 

• c p\ X (k, k') A I <D'F" ( ) <D' p" ( ) dk' d ' -! 7T -[1-"- { 1 Vz - ( 1 Vz )} {I), 

~ (9) 

where f0 stands for the Maxwellian function of v z, 

{3" = f3k-k'' 

A = l - kzVz (I - a0)/w, A; = I - k:vz (I - a~)lw', 

and the function x ( k, k' ) is equal to 

'X (k, k') = [k, k'] h~ (k, k') 

= [kk'] h ~ Jo (k ~v J.) Jo( k~ J.) JoC~riJ. )t m (v J.)dv J. ·(10) 

Equation (9) pertains both to the ion Fi ( v z ) and 
to the electron distribution functions, and we can 
assume for the electron xe ( k, k' ) = [ k x k' 1 • h 
and {3e = 1. 

These equations must be supplemented by the 
equations for the electric field. For this purpose 
we can use the quasineutrality condition which, 
taking (7) into account, we represent in the form 

I_ I [F~ (v2 ) - F~ (vz)] dvz- 2<D = 0, (11) 
en ~ 

and the equation* 

oj.jot = - (c2/4n) (rot rot E) .. 

which with account of (11) is best rewritten in the 
form 

: ~ ( W - kzvz) [Pi (vz) - F~ (vz)] dvz 

sk2v2 
-2w<D = zw A ('I' -<D), (12) 

where v A = H/-./ 41Tllllli is the Alfven velocity, s 
= kj_ T/minf, and '11 = a 0.P. In a weakly turbulent 

*rot= curl. 
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plasma, the interaction between the oscillations is 
small, and therefore the oscillation frequency is 
essentially determined by the linear approximation. 
Discarding in (9) the quadratic term and expression 
F1 in terms of <I> and 'It, we reduce the linearized 
equations (11) and (12) to the form 

(lla) 

[(w +w.) w (1 - ~)/sk~v~ - 1] <D +'I' = 0, (12a) 

where 

V; = Y2T/m; Ve = Y2Tjm., 

Bl = - ( 1 - ~) w ~ w. ; 

w - w. [ 1 w y ( <U ) J - -w- - k2ve k2ve, ' 

From (12a) we obtain 

(13) 

(14) 

a 0 = '1"/<D = 1 - (w + (t).) w (1 - M/sk;v~, (15) 

and from (lla) with an account of (15) we obtain a 
dispersion relation for the frequency 

D = B1 + aoB2 = 0. 

In the case of greatest interest to us, Vi « w/kz 
« ve, the dispersion equation assumes the form 

D= -2 +~ w+w. 
(!) 

w2- w: 0 v-w- w. [1- w(w+w.)(i-[3)1 + 22 (1-~)-z :rr-
1
-.-

1
- k22 =0. 

sk v Rz ve s zv A -' 
z A (16) 

From this we can easily obtain the frequency and 
the buildup increments of the small oscillations. 

A corresponding investigation was carried out 
in [3J, in which all the drift-wave branches were 
considered. We are primarily interested in oscil­
lations built up in time, since these are the ones 
that will have the maximum amplitude. At small s, 
the frequency of these oscillations is close to "-'*• 
and for sufficiently large s, when 

~ = e-'10 (s):::::::: 11Y2:rrs~ 1, 

we have 
Wk =w.\?!2Y2:rrs (~2 + sin2 a) 

= v0 ~2 sin aj2 Y2:rr p(~2 + sin2 a), (17) 

where 

p = J/Tim,Q?, ~ = V2rkzVA/Vo=2pk.fx v~. 

The growth increment y of the small oscilla­
tions for s > 1 and for not too small ?; is approx­
imately equal to 

(18) 

From a comparison of (17) and (18) we see that the 
increment reaches a maximum ~ {3-1wk( me/mi/3o )112 

when t ~ 1, that is when the phase velocity w/kz 
along the z axis reaches a maximum value ~ v A. 

With the aid of the real part of (16), we can 
easily show that for the natural oscillations 

(19) 

Thus, in the region s > 1 we have a0 ~ 1, that is, 
the oscillations are almost longitudinal. 

3. KINETIC EQUATION FOR WAVES 

Inasmuch as y/w « 1, Eq. (9) can be solved by 
expansion in the oscillation amplitude, assuming 
that in the zeroth approximation we deal with free 
non-interacting waves. For simplicity we confine 
ourselves to only those oscillations which are. 
growing in the linear approximation, since the 
amplitude of damped waves should be noticeably 
smaller. 

Following the work by the author and Petvia­
shvili [4J, we set up a chain of linked equations for 
the correlation functions. Multiplying (9) by <I>* 
and averaging it over the statistical ensemble, we 
obtain 

(w- kzvz) Pkoo = ~ (w +w.) Afo~fkoo 

.c I X(k, k') A'Q dk'd ' - tH .)_j3_"_ k'oo' ,koo W , 

o (k - k') o ( w - w') I koo = (<D:'"''<Dkoo), 

o (k - k') 0 (w - w') Pkoo (vz) = (<D~'oo' F 1 koo (vz) ), . o (k- k1) o (w- w1) Qk'oo', koo = (<Pk'oo'<DkooFik,-k', oo,-oo). 

(20) 

According to (20), the pair correlation function 
is coupled with the triple function. Analogously, by 
multiplying (9) by the product of the two <.P's we 
can obtain an equation for Q, which will contain 
the quadrupole correlation function. In the weak­
coupling approximation we can neglect the corre­
lation between oscillations having four different k 
and w, that is, we can express the quadruple cor­
relation function in terms of the product of the 
pair correlation function. In this approximation 
we obtain for Q 
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(w"- k:vz) Q , , = eT-1 (w" + w")A"f R"q 
k w, kw * OP k'w', kw 

- i (c/H) {X (k", k) AhwP-k',-w·l~' 

+X (k",- k') A' h·w·Pkwi~}, 

f'l (k- k1) f'l (w- W1) qk'w',kw = <<D~w<Dk'w'<Dk,-k', w1-w•).(21) 

Determining Q from this and substituting in (20), 
we get 

(w- kzvz + ljkw) Pkw = eT-1 (w +w.} Afo~hw 

_ _!!__I \'X(k,k')X(k",k)AA' P-k:,.-w· dk'dw' 
H• kw ,\ W'W w"- k2 v2 + iv 

(w" + w") A' A" 
- i He eT fo \.x(k, k') * q dk'dw' ( ) 

w"- k:vz + iv k'w', kw ' 22 

where 

X (k, k') X (k" ,-k') A'2 I k'w' 
------;;c--- dk' dw'. (23) 

i3''f3 w" - k~vz + iv 

The positive quantity v - 0 has been added in 
order to circuit the poles correctly. 

It is easy to see that Im TJ > 0. Thus, an account 
of the interaction between the oscillations leads 
automatically to an additional damping in Pkw• and 
consequently, to an elimination of the pole in Pkw 
as a function of Vz. Setting up an equation for the 
quadruple function, we can easily see that an anal­
ogous addition should appear in Equation (21) for 
Q and in general in all equations for the correla­
tion functions. Therefore in place of iv in (22) it 
would be necessary to write TJkw• but since TJkw 
is itself small, this circumstance is quite insig­
nificant, except for the one case which will be 
noted below. 

To find qk'w' kw• we represent <.Pkw (and ac-
' 

cordingly ..Pkw) in the form <I>kw = <I>~~ + <I>U~. 
where <I>~~ pertains to the free oscillations and 

satisfies Eqs. (lla) and (12a), while q,{f~ describes 
the forced oscillations under the influence of a 
"force" which is given by the quadratic term in 
(9). Substituting in this term the approximate 
values <I> <O> and ..p<O> in lieu of <I> and ..P, we ob­
tain with the aid of (11) and (12) 

B ..n(l) + B nr(ll • c (' M rf (o) ,-n(O) dk'd ' 
1"-'kw 2 T kw = L H J kw, k'w' -.pk'w' 'Pk-k'' w-w' (j) ' 

(24) 

- a0<Pk1~ + WL1~ 

• (I) c \' N ..n(O) rf,(O) dk'd ' 
=-l-2 2- H \ kw, k'w' 'Pk'w' 'Pk-k', w-w' (j) , 

sk2 v A • 
(25) 

from which we get 

D ..n(1) • c \ L ..n(O) ..n(O) dk'd ' 
'±'kW = l H J kw, k'w''±'k'w'~k-k',w-w' · W , (26) 

where D is the determinant of the system of equa­
tions (24) and (25), and 

B.w 1 I{ 1 + ~} + -k2 2 N kw, k'w' = n \ w- k v + iv k2 2 s 2V A • z z s 2V A 

')(" (k, k') (w" + w") fi + x• (k, k') (w"- w") t• 
)( ,,* 0 , . ' 0 A' A"dv2 • (27) 

ffi - k2 v2 +tV 

As regards ..PU~· we can put approximately ..pm 

= a 0<.P(1) inasmuch as ..pC1> and q,<1> have a sharp 
maximum at a frequency that coincides with the 
natural frequency. 

Since q, <t> is assumed to be a small quantity, it 
would be necessary to use for D in (26) the value 
ReD. However, since the natural oscillations q,<t> 
should damp out if higher corrections are taken 
into account, it is necessary to replace D in the 
left side of (26) by D+ = D1 = v8Dtfaw, where 
D1 = Re D, and the small quantity v > 0 takes into 
account the damping of q,U>. 

Taking this remark into account, as well as the 
fact that the triple correlation function of the free 
oscillations is equal to zero, we obtain 

(28) 

Repeating the arguments of (24)-(26), we can 
eliminate from (11), (12), and (22) the functions 
P~w and P~w and obtain the equation 

D~Ikw = i ~ ~Lkw, k'w' qk'w', kw dk' dw'- (r~w + rL) hw, 

(29) 

where 

Xi(k,-k') Xi (k+k', k) (w'+w')AA'2 f~Jk'w' 
X • • • dk'dw'dv, 

f3k+k' (w'- k2 v2 + iv') (w + w'- (k2 + k2 ) v2 + iv) 
(30) 

and the expression for r~w differs from (30) only 
in that the index i is replaced by e and w* is 
replaced by - w*. Substituting (28) in (29) we get 

J5Ikw = (Dn + r; + r• + ro) hw 

=o D: ~kw) 2~2 ~ lfkw, k'w' 12 I k'w' I k-k', w-w' dk' dw', (31) 
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where 

fkw, k'w' = Lkw, k'w' + Lkw, k-k', w-w', 

and r 0 is given by the relation 

0 _ _ !!._ \ lkw, k'w' /k'w', kw 1 1 r kw - Hz j D+ (kiwi) I k-k', w-w' dk dw . (32) 

In (29)-(31) the quantities re and ri are the 
result of the second term in (22), in which we have 
substituted in place of P -k', -w' the approximate 
value obtained from (22) by discarding the second 
and third terms of the right half. The quantity D 
differs from the determinant D introduced earlier 
only in the fact that in expression (14) for Y the 
infinitesimal quantity iv is replaced by Tlkw(Vz ). 
The quantity r 0 on the left side of (31) as well as 
the right half of (31) are the result of qk' w' ,kw· 

Equation (31) describes the forced oscillations 
of a weakly turbulent plasma with a dispersion re­
lation determined from the condition D = 0, under 
the influence of a noise source whose intensity is 
given by the right half of (31). It is obvious that 
under equilibrium the equation D = 0 should de­
scribe damped oscillations, that is, D2 8D1 jaw > 0 
where D1 = Re D and D2 = Im D. Since D differs 
from D by a small quantity of the order of the 
ratio of the increment to the frequency, we shall 
assume approximately D1 = D1, that is, we neg­
lect the shift in the natural frequencies due to the 
oscillations. 

Inasmuch as D2 « D1 and the sign of D2 coin­
cides with the sign of Im D+, we can replace D! 
by D* in the right half of (31), which is small. 
Taking into account the fact that 52 <<:51 ~ D1, 

we obtain 

fkw = K [(8D/8w) 2 (w- wk) 2 +D~]-1 

~ (i528D/8wt 1 nKo (w - wk), (33) 

where K stands for the coefficient of 1/Df( kw) 
in the right half of (31). Putting Ikw = Ik<H w - Wk), 
we reduce (33) to the form 

I m (D + ri + re + ro) I = (aDt)-1 nc2 (' I l , , [2 
1l k aw 2H2 .J kw, k"' 

(34) 

Equation (34) is the sought stationary kinetic 
equation for the waves. It can be greatly simpli­
fied by using the fact that we are essentially in­
terested in waves having phase velocities ~ v A• 
that is, Vi « w/kz « v e· It follows therefore that 
it is possible to neglect in Im Dry the added term 
connected with rye , inasmuch as Im rye ~ Im 71i, 
but in the series expansion of an integral of the 

type (14) a small factor ~ w2/k~v~ appears in 
front of Im rye. On the other hand, the same con­
dition makes it possible to replace in an expres­
sion of the type (14) the term f~ by o(Vz) for Y~, 
from which we get 

ImD"tj-ImD:::::-~~Im1']i 
(t) Vz=O 

An analogous simplification yields 

I rl _ nc' ~ 1 x.7 (k, k') ( w: ) 
m kw- H 2 wk .l [3" 1 + wk' o (wk- wk') h·dk', 

(36) 

where 
ck = (w. -wk)/(w. +wk) (1 - ~) = 1/ao. 

As regards Im r<e>, it is easy to show that 
when ?; > 1 it is considerably smaller than Im ri, 
and when ?; < 1 it is outwardly of the same order 
of magnitude, but contributions are made to it only 
by oscillations with ?; < 1. As will be seen below, 
the intensity of the oscillations decreases very 
rapidly with ?;, so that Im re can be neglected. 
An analogous situation arises for lkw,k' w'. It is 
easy to verify that the electrons give a contribu­
tion to lkw,k' w' which is comparable with that of 
the ions only in the case when ?; < 1 and ?;' < 1 
simultaneously, that is, we can neglect again the 
electron terms, so that 

{ ~ { 1 C -1 i I " '; ) ( ) kw, k'w'= kw, k'w' = kffik X (k, k) (w./ffik-k'- w. ffik' • 37 

It must be noted that in calculating the right half 
of (34), a difficulty arises connected with the fact 
that in I lkw,k'w' 12 there is a contribution from 
both the real and imaginary parts of l~w,k'w'• and 
as v tends to zero I ~w k' w' I tends to infinity. 
But if we take account of the fact that iv should in 
fact be replaced everywhere by ry, we can show 
that the contribution from ~w k' w' can be neg­
lected. Substituting (35)-(37) in (34), replacing 
in G0 the integration variable, and recognizing 
that approximately 8D1/aw ~ - f3w*/w 2, we ulti­
mately obtain 

H 2 w* (w* + ulk) 

- c" lfil-v,Jk;;--1 - (1 - ~) 
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+ ~ ~ c ,x7(k, k') 
2 k Rn 

wk " 

w, (w,wk'- w: ulk)2 
" 2 

w, wk' 

The first two terms are the result of linear 
Landau damping, the next two terms are natu­
rally defined as nonlinear damping and, finally, 
the last term on the left, together with the expres­
sion on the right, describes the breakup of the 
waves into two parts and the merging of two waves 
into one. With the exception of linear damping on 
ions, which is negligibly small when {3 0 
» (me/mi) 113, all the terms in (38) are of the 
same order of magnitude, and consequently all 
are essential in the analysis of the interaction 
between oscillations. 

4. QUALITATIVE INVESTIGATION OF THE 
KINETIC EQUATION FOR WAVES 

It follows from (38) that Ik, as a function of kz. 
should have a maximum at that value of kz corre­
sponding to t = 1. Indeed, with increasing kz the 
first term, which describes the buildup of the os­
cillations by the electrons, decreases and there­
fore the amplitude of the oscillations should de­
crease with kz. On the other hand, when t < 1 
decreases, Wk in front of the integral terms in 
the left half of (38) begins to decrease rapidly, 
and therefore the function Ik for t < 1 should de­
crease like wk ~ t4• 

A similar picture appears with respect to the 
dependence on k 1· Recognizing that for small val­
ues of k1p we have Ck ~ 1 for kz > w* IvA and 
Ck ~ 1/ s for kz < w* /v A· we can easily verify 
that as k1-- 0 the function Ik decreases linearly 
with k 1 in the region kz > w* /v A and Ik ~ 1/k 1 
for kz < w*lvA. And since the region of integra­
tion kz < w * /v A contracts to a point as k 1 -- 0, 
the oscillations in this region will not play any role 
at all, and Ik can be regarded as a decreasing 
function of k 1 for k 1P. 

In order to clarify the character of the behavior 
of Ik for large k 1P• it is necessary to know the 
specific form of xf ( k, k' ) . It is seen from (1 0) that 
the function xf(k, k') is completely symmetrical 
with respect to k, k' and k". For large k 1P and 
kl_p the integral in (10) can be calculated by the 
saddle-point method. For the case k' /k « 1, for 
example, such a calculation yields 

XI (k, k') ~ (s'j2rtp4) sin2 (a- a') e-s'J~ e;2s' cos (a- a')). 
(39) 

For s' » 1, this expression assumes the form 

XI (k, k') ~ (a - a') 2 exp [- 1j2s' (a - a')2]2rt2p4 • 

Integration of this function with respect to the 
angles leads to the relation <xi) ~ ( k' p r 3, that is, 
to a very rapid decrease with increasing k'. Thus, 
when k 1P » 1 the main contribution to the integral 
terms of (38) should be made by those regions of 
integration, where either k' p or k" p is of the 
order of unity. In this case the contribution from 
the region k" p ~ 1 in the integrals of the left half 
of (38) is much smaller than the corresponding 
contribution from the region k' p ~ 1. Indeed, the 
first two integrals in the left half of (38) cancel 
each other in the region k"p ~ 1, that is, when 
k ~ k', while the last integral, taken over the 
region k" p - 1 is small, for then {3" - 1 and is 
not a small quantity as in the case when k' p - 1. 

Further, it is seen from (38) that for large kp 
the decay processes play no role. Indeed, for k' /k 
« 1 we can assume that in the integral on the left 
side w*/w* ~ 1, while in the integral on the right 
we can put Ik-k' ~ Ik and take Ik outside the in­
tegral sign, doubling the result to account for the 
possibility of k" p - 1. In this approximation the 
integrals cancel each other. 

Thus, in the region of large k 1P the interaction 
between waves having wave numbers of the same 
order of magnitude is negligibly small, leaving 
only the interaction with the long-wave oscillations, 
which is described by the first two integral terms 
in the left half of (38). For large k1p, the first 
integral exceeds the second and increases like k3, 

inasmuch as {3" - 1/k. For sufficiently large kp 
it exceeds the first term, which describes the 
buildup of the waves by the electrons. In other 
words, the presence of oscillations in the region. 
k 1P - 1 causes all the short-wave oscillations to 
become damped. And since the decay diffusion of 
the waves has low efficiency in the region of large 
wave numbers, all the short-wave oscillations will 
be suppressed. 

Thus, the plot of the spectral function Ik against 
k1 should have a maximum for k1p- 1, and de­
creases quite rapidly as k 1 -- oo • 

Inasmuch as for k 1p - 1 all the functions in 
(38) have a complicated character, the determina­
tion of Ik entails considerable difficulties. None­
theless, Eq. (38) enables us to estimate the integral 
of the spectral functions, in terms of which the tur­
bulent-diffusion coefficient is expressed. To this 
end we multiply (38) by Ikdk and integrate it with 
respect to k. It is easy to see that in such an in-
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tegration, the decay terms drop out. Neglecting 
the ionic damping and the small quantities of {3 

and wk I w *, and also symmetrizing the integral 
terms, we obtain the following integral equation 

= __..!:___ \ (w.- w)z x7 (k, k') 
2 .) wk wk' W' 6 ( Wk - wk') I kh' dkdk'. (40) 

In the left half of this equation we find just the 
integral which we need [compare with (43)]. Equa­
tion (40) can be interpreted as the equality of the 
"friction" forces between the oscillations and the 
electrons or ions, respectively. Inasmuch as the 
decay terms have dropped out, this means that they 
make no contribution to the friction force for the 
ions. 

Since Ik has a clearly pronounced maximum at 
t = 1, that is, when kz = K -/73';/2 ..f2 we can put 
approximately t = 1 in (40). In the integral on the 
right side, to which the main contribution is made 
pY the integration region near a, a' = 1r/2, 37r/2, 
we can put approximately wk = v0 sin a/4..f2if p. 
We shall assume Ik to be isotropic in the trans­
verse direction. Then, substituting in (40) the ap­
proximate value for xf ~ sin2 (a -a') 21r2p4 we can 
readily integrate over the angles. Integration of the 
o-function with respect to a' yields sin a= sin a', 
hence a' = 1r- a, and then integration with respect 
to a is elementary. Putting {3" ~ Y2 ..f2if pk", we 
obtain in the right half of (40) an integral of the 
form 

~ (k- k')2 k"hfk,dkdk', 

which can be approximately replaced by 

where A is a numerical factor of the order of 10-1• 

Substituting this expression in (40), we obtain 
the approximate value of the integral which we 
need 

Recognizing that the fluctuation of the density n' 
is connected with the fluctuation of the potential by 
the relation n' = eq;' /T, we obtain from this 

(42) 

which is to be expected, since the density pertur­
bation is produced by the displacement of the 
plasma through a distance ..... p. 

5. COEFFICIENT OF TURBULENT DIFFUSION 

With the aid of Eq. (2) for the average distribu­
tion function we can readily obtain an expression 
for the diffusion current. lt is possible to use here 
either the ion or the electron equation-both give 
precisely the same result. In practice it is more 
convenient to use the electron equation. Indeed, 
in the derivation of (38) it was established that the 
electron contribution to the nonlinear terms can 
be neglected. This means that in the averaged 
equation (2) for the electrons we can neglect all 
the nonlinear terms, with the exception of the 
quadratic term. Thus, in the present problem the 
quasilinear approximation turns out to be correct 
for the electrons [GJ. 

Multiplying Eq. (2) for the electrons by vy and 
integrating it then with respect to v, we obtain the 
electron current along the density gradient, and 
consequently also the coefficient of turbulent dif­
fusion 

If we neglect here the small quantities {3 and 
Wk/w* and substitute the expression obtained 
above for the integral of the spectral function, we 
obtain approximately 

(44) 

Thus, in the case considered here me /mi « {3 0 

« (me/mi)1/3, the turbulent diffusion coefficient 
does not depend on the magnetic field. 

6. DISCUSSION OF RESULTS 

Thus, in the present work we have investigated 
the turbulent diffusion of a collisionless plasma in 
a strong magnetic field. We have shown that the 
character of the transfer of the vibrational energy 
differs appreciably from the transfer of energy in 
an ordinary turbulent liquid. Namely, whereas in 
ordinary hydrodynamics the vortices break up and 
are transformed into pulsations of smaller scale, 
with conservation of the total energy, so that the 
energy flux is constant over the spectrum, in a 
turbulent collisionless plasma the additional damp­
ing of the waves, which can naturally be called the 
nonlinear Landau damping, is a very important 
factor, along with this type of energy diffusion in 
the wave-number space, described with the aid of 
the decays. 

As can be seen from (22) and (23), this dampi~ 
is the result of the interaction between the waves 
k, w and k'., w' through the resonant particles 
whose longitudinal velocity coincides with the 
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"phase velocity" of the beats at these wavelengths, 
that is, Vz = ( w- w' )/(kz- k~ ). Nonlinear damp­
ing of waves by waves causes the spectral function 
to decrease rather rapidly in regions far from the 
maximum increment, where the maximum supply 
to the waves comes from the ground state. 

For simplicity we confine ourselves to the case 
of a homogeneous magnetic field. It is easy to de­
termine qualitatively the result of an inhomoge­
neity. The greatest influence on the drift waves 
will be produced by the crossing of the force lines. 
This effect, analyzed in detail by Mikha.llovski1 and 
Galeev, can be described qualitatively in the fol­
lowing manner. We shall characterize the cross­
ing of the lines by means of a parameter e = 1/KL, 
where L is the length of a plasma pinch such that 
the angle of rotational transformation referred to 
it varies along the pinch by unity. Then the projec­
tion k11 of the wave vector by the magnetic-field 
vector will vary like k11 Rj eklKX at a distance x 
from the point where the spacing of the perturba­
tion coincides with the spacing of the force lines. 
However, as soon as ku becomes of the order of 
K/10, the drift wave begins to be absorbed by 
damping on the ions [1]. 

Thus, the amplitude of an arbitrary wave train 
increases until the train becomes localized on a 
length Ax"" 1/10kle, that is, within a time inter­
val ~t"" .ruc/u, where u"" w/k1 is the group ve­
locity. The wave train then enters a region of 
strong damping and disappears. As a result, in 
the linear approximation with e > PK the instabil­
ity occurs only in the presence of turning points, 
when the wave packet is blocked by "potential" 
barriers from the damping region. 

We now consider the effect of the crossing of 
the force lines on the development of the oscilla­
tion. The presence of the absorption region leads 
in this case to wave diffusion in the x direction, 
and this effect can be taken into account in the ki­
netic equation for the waves by means of a term of 
the type uaik/axC5J. The diffusion of the waves in 
the absorption region leads to a decrease in the ef­
fective increment by an amount "" ( 1 - R )u/ Ax 
""10(1-R)we, where R is the coefficient of re­
flection from the "potential" barriers, if such 
exist. And since the increment in our case is 'Y 
"" w../me/mi K/kll• the crossing effect can be taken 
into account in the oscillation amplitude and in the 
diffusion coefficient by means of the additional fac­
tor "" [ 1 - ( 1 - R) e../ mi/me ] . Thus, the anomalous 
diffusion should disappear for e ~ ( 1 - R) - 1 X 

../me/mi. At smaller values of e, the presence of 
crossing leads only to a decrease in D l• and in 

this case it is possible to distinguish between in­
stability with respect to infinitesimally small and 
finite perturbations. If the finite perturbation is 
specified in the form of a set of wave trains, then 
in the presence of an interaction between the 
waves, each individual train, before entering the 
damping region, can give rise, through scattering, 
to a wave that travels in the opposite direction, 
and this process is perfectly analogous to reflec­
tion from a potential barrier. 

Thus, a plasma which is stable in the linear ap­
proximation in an inhomogeneous magnetic field, 
may turn out to be unstable with respect to pe:J;tur­
bations of finite amplitude. On going over to such 
finite perturbations, the stability problem itself 
changes, for in view of the presence of interaction 
between the waves, the finding of the eigenfunctions 
corresponding to a definite asymptotic behavior as 
t- oo recedes to the background, and it is neces­
sary to trace instead the behavior of wave trains 
during finite time intervals ~t"" 1/y. This is pre­
cisely why it is perfectly justified to use when Kp 
« 1 the expansion which we employed not in the 
eigenfunctions of the linear problem, but in simple 
Fourier integrals. 

In conclusion we make one stipulation. We have 
assumed everywhere that the particles have a Max­
wellian distribution. In fact, the oscillations dis­
tort f(v) but estimates show that this distortion 
can be neglected when D1K2 <Vi, where Vi is the 
ion collision frequency. 
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