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The scattering of fast electrons by nuclei is investigated. The nucleus is regarded as being a 
Fermi liquid which consists of two kinds of particles with arbitrary interactions. It is shown 
that the interaction of the particles in the nucleus modifies the scattering cross section. The 
formula for the cross section contains the spherical harmonics of the forward-scattering am
plitude of identical and of nonidentical quasiparticles on the Fermi surface. 

l. In the theory of the Fermi fluid it was shown 
by Landau [l] that for an infinite system consisting 
of one kind of particles without pairing the spec
trum of single particle excitations in the vicinity 
of the Fermi surface is characterized by a single 
constant, the effective mass, and that the spectrum 
of two-particle excitations (zero-sound) and the 
reaction of the system to external fields are deter
mined by a single function, rw, the forward scat
tering amplitude for quasiparticles near the Fermi 
surface. The latter depends only on spin variables 
and on the angle between the quasi-particle mo
menta and is practically determined by one or two 
terms of the expansion in Legendre polynomials. 
The coefficients of the Legendre expansions are 
phenomenological constants to be determined frqm 
experiment. 

This theory was extended by Migdal C2J to the 
case of two kinds of particles, and further, by 
Migdal and LarkinC2J to the case of finite systems. 
Two branches of single-particle spectra appear 
(for the protons and the neutrons) and two func
tions rw, the scattering amplitudes for identical 
and different particles. 

In the present paper it is investigated whether 
it is possible to determine the amplitudes r w from 
the inelastic scattering of electrons by the nuclear 
Coulomb field. 

2. It is possible to write the differential inelas
tic scattering cross sections of a relativistic elec
tron in the nuclear Coulomb field averaged over 
initial and summed over final electron spin and 
summed over all possible excited nuclear states 
s, in first Born approximation, in the form [4] 

(1) 

I (k, ro) == ~ ~~dreikrn50 (r) j2 6 (Es -£0 - ro). 
s,co 

(2) 

Here ( Pi• Ei) and ( Pf• Ef) are the initial and the 
final four-momenta of the electron, ( k, w) is the 
four-momentum transfer, and ns0(r) is the ma
trix element of the proton density operator between 
the ground and the excited state of the nucleus. 

3. The correlation function (2) can be expressed 
in terms of the imaginary part of the proton polar
izability operator fP, which is determined by the 
relation (see [2]) 

n' (x) = J ff' (x, x')A (x') d4x', (3) 

where n' is the change of the ground state expecta
tion value of the nuclear density under the influence 
of an external scalar field A ( x ) . 

When the scalar field A ( x ) is applied to the 
system, the Hamiltonian acquires an addition: 

H = H 0 + H', H' (t') = ~ dr' n (x') A (x'). 

Then 

n'(x) = <n (x)>- <n (x)), 

(4) 

(5) 

where ( ... ) denotes the ground state expectation 
value, n(x) is the density operator in the Heisen
berg representation of the Hamiltonian H, ·and 
n(x) is the same for the Hamiltonian H0• 

As is well known C4J 

n (x) = s-1(t) n (x) S(t), 
t 

S (t) = T exp {- i ~ H'(t') dt'}. 
-00 

(6) 

(7) 

Considering the field A ( x ) to be small and limiting 
ourselves for the S matrix to two terms of the ex
pansion of the exponential, we obtain from (4)-(7) 
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I 

n'(x) = i ~ dt' ~dr' <n (x') n (x)- n (x) n (x'))A(x'). 
-oo (8) 

We shall employ the well known relation 

co 

\ e''t dt = +- = iP __!_ + Jto(s), r ....... + 0. (9) .l s ,- lj s 
0 

Going over to the Schrodinger representation 
for n ( r ) and taking into account that the operator 
ff' depends only on the time interval t -t', we eas
ily obtain from (3) and (8) the expression 

ff'(r ,r', w) = ~n0, (r') n,0 (r) 

xl r1E+.- rlr+·} l W- .Is + 0 tj W + >s- .1 0 tj 

The term s = 0 is absent from the sum over s. 
Comparing (2) and (10) we find 

(10) 

where G is the pole part of the Green's function 
and rw is the forward scattering amplitude near 
the Fermi surface, introduced by Landau. [i] The 
latter depends only on the spin variables and on 
the angle between the momenta of the quasi particles. 

We limit ourselves to the spherical harmonics 
of the spinless part of the amplitude rw 1> 

r"' (rl, r2; fa, r4)- rQ'o (rl- r2) 0 (ra- r4) 0 (rl- ra) 
(15) 

and we shall attempt to obtain the vertex g[ in the 
form 

(16) 

We now go to the functions cpA,.(r) [5, 3] which diag
onalize the Green's function near the Fermi sur
face: 

G (r, r', e) = 2} Gn· (e) cp). (r) cp~. (r'), 
).).' 

I (k, w) =- ~ lm ~ drdr'etk(r-r')f} (r, r', w). (11) where the pole term of the Green's function is 

Here we took it into account that E0 is the ground
state energy of the nucleus and only one a-function 
will correspond to the process in which one quan
tum of frequency w gets absorbed. 

All the conclusions of this section remain valid 
also for nuclei which consist of two kinds of par
ticles, if it is assumed that the field A(x) acts 
only on the protons. 

4. We shall consider a finite system without 
Cooper pairing correlations. 

The polarizability operator ff' which describes 
the change of the density under the influence of an 
external scalar field [3], is given by the formula 

fP = ~ = (g{"'GGg{) (12) 

Here G is the pole part of the Green's function 
without pairing and the parentheses denote the 
necessary integrations. 

As shown in [2, 3] the vertex function grw does 
not depend on the momenta of the particles and the 
field and it has in the coordinate representation the 
form 

a~.,: (e) = aon·/(e - e~. + io). (17) 

We can then obtain from (12)-(17) 

(18) 

where nA. = 1 for EA_ < 0 and nA. = 0 for EA. > 0 
where EA. and EA.' are reckoned from the Fermi 
surface E0, 

ff'' (r, r~ w) =-1- [<t> (r, r' ,w) - __!_ o (r- r')]. (19) 
ar~ a 

Taking (18) and (19) into account, the correla
tion function (11) can be written as 

I (k w) = - __!_ dnfdfl lm \ dreikrs (r k w) (20) 
' 1t f~ tJ ' ' ' 

where s(r,k,w) = ajdr'e-ik.r'<l?(r,r',w) obeys 
the integral equation 

s (r, k, w) = e-ikr + ~ dr' K (r, r', w) s (r', k, w) (21) 

(13) with the kernel 

where a is the Green's function renormalization. 
The vertex function T for a scalar field [3] 

obeys the equation 
(22) 

r"' = gj"' + (l'"'GGg{) 'lit is easy to verify that the spin dependent part of the 
amplitude does not appear in the equations for the scalar 

""' vertex. 
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Here f[f is a dimensionless amplitude which is in
dependent on the spin operators [2] and which is 
given by (dn/dJ..t) a2r~ = f~, and 1-' is the chemical 
potential of the system. The equations for the 
scalar vertex and for the polarizability operator of 
a system consisting of two kinds of particles [2,3] 

have the form (14) and (12) if one considers the 
quantities ff, ffw, rw, and G to be two-by-two 
matrices in isospin space. Here f!, f!W, and G 
are diagonal while 

r"' =(r;P r;n) 
r~p r~n 

has off-diagonal elements. 
For a scalar field acting only on the protons, 

the bare vertices (see [2]) in the momentum rep
resentation are 

ff~ = I, ff~ = 0; 

Then it follows from gauge invariance [2] that 

ff~ = Ija, (23) 

and thus 

(24) 

r ~n = r ~P and we can furthermore assume that 
owing to isospin invariance 

(GG)r ::::::: (GG)n. (25) 

This corresponds to the neglect of the differ
ence in the velocities of protons and neutrons at 
the Fermi surface. 

With these relations we can obtain in analogy 
to the case of one kind of particles 

I (k, ro) =- _1_ Im \" dr eikr [ s+ (r, k, w) + s_.(r, k, w)] 
2na2 • (r~)+ (r~)- ' 

(26) 

where s± ( r, k, w) obey the equation 

s:±; (r, k,ro) = e-ikr+ ~dr' K± (r, r', ro) s± (r', k, ro) (27) 

with the kernels 

x cp~ (r') cp>-, (r') (28) 

and where 

5. For the case when 

kR '?>I and ro '?> vc/R ~ ecJA'1•, (29) 

where R is the nuclear radius, A is the mass 

number, and v0 is the velocity of quasi-particles 
at the Fermi surface, we can consider the system 
to be infinite nuclear matter. Then the states A. 
are characterized by the momentum and spin of the 
quasi -particles and the wave functions cpA. ( r ) are 
plane waves. 

The kernel (22) or (28) of the integral equation 
can then be written as 

K ( ' ) _ f~ -ik(r-r') \ .!!::__ kvo 
r • r • ro - v e .) 4n w - kvo + i/) 

=- f~ [I- ....!.c_ t: In 1 1 +~I + i_!!:_ t Je-ik(r-r') (30) v ~"' ,1-~ ~"' ' 

where 

Po is the Fermi-momentum, m * is the effective 
mass of the quasi-particles, and V is the volume 
of the system. 

As expected, in an infinite system the kernel K 
depends on the difference r - r'. The integral 
equation (21) with the kernel (30) becomes anal
gebraic equation (see [2]) which has the solution 

s(r,k,ro)=e-ikr{I+!o[I- ~ £lnl!~il+i ~ sJr. 
(31) 

The correlation function (20) then has the form 

(32) 

F (£) = £ {[ 1 + g (I - + £ In I ~ ~ i I) r + ([~)2 :· £2} -I. 

(33) 

The function F( ~) has the form (33) for I~ I ::; 1. 
If ~ - 1 from the left then F ( ~ ) - + 0; F ( ~ ) = 0 
for ~ > 1, since then the imaginary part in the in
tegral (30) vanishes. The latter characteristic of 
F( ~) has the following physical meaning: if ~ > 1, 
i.e., w > kv0, the external field cannot create a 
real particle and hole, since w = k • v0 for a real 
transition. Therefore the imaginary part of the 
polarizability operator (12) which corresponds to 
real transitions, vanishes. 

One can obtain the correlation function (20) of 
the ideal Fermi gas from (32) and (33) if one puts 
m * = m, where m is the nucleon mass, and :f[f = 0, 
i.e., 

10 (k, ro) = +n:-2Vp0m£. 

Thus the nucleon interaction in the nucleus changes 
considerably the correlation function (20) and, con
sequently, also the cross section of reaction (1). 

As one can easily verify, the correlation func
tion (26) for two kinds of particles has the form 
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I (k, w) = +n-2Vp0m* [F+ (~) + F_ (~)], (34) 

where F ± ( ~ ) are given by (33) if one changes ~ 
to (f~ )± = a2m*p07r-2 (r~ >±· 

The method employed for the evaluation of the 
vertex function and of the polarizability operator 
is applicable for small perturbations of a system 
with a large number of particles A. The four
momentum transfer q = (k, w) therefore is lim
ited to 

I k I ~Po (~ 300 MeV/c); w ~ E0 (~ 40 MeV), (35) 

where Po and Eo are the Fermi momentum and en
ergy respectively. 

From (29) and (35) we get E0A - 1/ 3 « kv0 « E0• 

We shall assume that the electron is highly rela
tivistic before and after the scattering, i.e., Ei 
» mec2, Ei » w. Then the conditions (29) and (35) 
impose limitations on J., the scattering angle of 
the electron 

(36) 

Here one can take k:::::: 2pi sin ( J./2 ). Then the dif
ferential cross section (1) together with (34) can be 
written as 

dain =~Vpom·cos2 ({}f2). _1 [F (~)+F (~)] (37) 
do de1 8n2 e7 sin• ({} 1 2) 2 + - ' 

where F ± ( ~ ) is given by (33) if one changes f{f to 
(f{f)±. 

In this way the amplitudes ( f~) ± = { fpp} o 
± {f~h} 0 , which characterize the interaction be
tween the nucleons in the nucleus, can be deter
mined from inelastic electron scattering on nuclei 
when the excited levels lie close to the Fermi sur
face. 

One should expect that the higher harmonics in 
the amplitudes (fW)± will give small corrections 
to the obtained result. In our approximation of in
finite nuclear matter, pairing is inessential be
cause the energy transfer must obey the condition 
(29): 

w ~ eoA-'1' ~ .-1 (~ 1 MeV), 

where .6. is the energy gap in the single particle 
spectrum. 

In order to improve the obtained results one 
must consider the finite size of the nucleus and 
take into account the pairing correlations. [6•3] 

In conclusion the author expresses his deep 
gratitude to A. B. Migdal for guidance in this work, 
and also thanks B. Medvedev who participated in 
the initial stages of the work and E. Sapershte1n 
for a number of valuable comments. 
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