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A theory is proposed for multiple scattering of particles passing through a body of finite 
dimensions. The quantum mechanical equations for multiple scattering are employed. It 
is assumed that the force centers are randomly distributed and that N0a2A. « 1, where A. 
is the wavelength of the incident particle, a is the scattering amplitude, and N0 is the 
concentration of the force centers. An explicit expression is obtained for the intensity of 
scattered particles inside and outside the body. 

INTRODUCTION 

A. We consider here the multiple scattering and 
absorption of particles passing through a body of 
finite dimensions (plate, sphere, etc.). Such prob­
lems are usually solved by means of the transport 
equation [1•2] with given boundary conditions. 
Strictly speaking, multiple scattering must be de­
scribed by means of the quantum equation for the 
density matrix. In a series of researches [3,4], 

a derivation of the quantum kinetic equation has 
been proposed for nonstationary processes, for 
which the boundary conditions do not play a signif­
icant role. In these researches, in which station­
ary processes were considered, the conditions of 
applicability of the kinetic equation were not ob­
tained [5] or were incorrectly estimated. [GJ 

We shall start out from the equations of quan­
tum mechanics, [TJ and shall show under what con­
ditions they reduce to an equation which can be 
called the kinetic equation for multiple scattering; 
we shall give the conditions for its applicability 
and a method for finding corrections to it, and shall 
make clear the character of the dependence of the 
solution on the dimensions of the scattering system. 
Only that case will be considered in detail for which 
the scattering amplitude a is much less than the 
distance between the force centers N0113, while the 
waveleJ;!gth of the incident particles A. is such that 
N0 I a 12 A. « 1. Moreover, we shall assume that A. 
is much less than the dimension of the system R. 

B. In spite of the abundance of literature de­
voted to the solution of the transport equation for 
bodies of finite dimensions, the solution of the 
equation in closed form for an isotropic scatter­
ing law (let alone for the anisotropic case) is still 
lacking at the present time. The fundamental meth-

ods for its solution consist either in the numerical 
integration of the given equation, [1•2] or in the re­
duction of it to another equation that is suitable 
for numerical solution. [S] Meanwhile, a solution 
in closed form is of considerable interest both for 
neutron physics [1] as well as for astrophysics. [2] 

As examples, we consider the following problems: 
multiple scattering of neutrons in bodies of arbi­
trary dimension; light scattering in clouds of gas 
or dust; transmission of radiation or particles 
through the atmospheres of stars and planets, etc. 

In the present work, the resultant equation is 
analyzed, and a method of its solution is pointed 
out. An approximate solution is obtained in closed 
form for the isotropic case. 

1. STATEMENT OF THE PROBLEM 

The equations for the wave function of a particle 
whose interaction with the surrounding medium is 
determined by the potential 

Vn := Vn (r - Pn), 
n 

have the form 

1f (p) = <I (p - Po) + Go (p) T (PPo), 
Go (p) = (2n2tl (p2 - p~ - i1Jtl; 1]-+ 0; 

~ Tn (PlPo) = T (PlPo), 
n 

(1) 

(2) 

(3) 

(4) 

Tn (PIPo) = tn (PlPo) + ~ dpGo (p) tn (PIP) ~ T m (PPo); (4') 
m+n 

tn (PlPo) 

= - 4n2m [vn (Pl- Po) + ~ dpGo (p) Vn (Pl- p) tn (PPo)]. 
(5) 

Here V n ( p) is the Fourier transform of V n ( r - Pn) ; 
p is the momentum of the particle; m is its mass; 
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Pn is the coordinate of the n-th force center; units 
are used in which n = 1; T(p1p0 ) is the amplitude 
of transition of the particle from the state Po to 
the state p1 as the result of multiple scattering; 
tn ( p1p0 ) is the amplitude of single scattering by 
the n-th center. Assuming that all the scatterers 
are identical and immovable, and taking (5) into 
account, we get 

tn (PlPo) = a (PlPo) exp [- i (Pl -Po) fin], (6) 

where a(p1p0 ) no longer depends on n. All inelas­
tic processes will be considered as absorption. We 
shall regard the scattering as purely elastic, i.e., 
P1 = Pon1; Po = Poflo· 

We shall assume that the scattering body (the 
target) contains N force centers. The intensity 
of flow of particles scattered by the target, at 
large distances from it, is given by 

N N 

I = ~ ~ < T n (PlPo) rt (PlPo) ). (7) 
n=lk=l 

Here ( ) denotes averaging over the locations of 
the force centers. Inasmuch as the latter are ran­
domly located, averaging over the position of the 
n-th center reduces to integration over Pn and 
division by the volume of the target !J. It is con­
venient to introduce the function 

F (q- p) = (exp (- i (q- p) p}) 

= ~ ~ dp exp (- i (q--"--- p) p). (8) 
0 

For all macroscopic bodies, (8) is a spike function 
with a height equal to unity and width ~ - Px - L;f, 
etc., where Lx are the dimensions of the body 
along the x axis. 

Values of Pn identical with Pk can occur in 
Eq. (7) under the averaging sign. Each such co­
incidence decreases the number of integrations 
over Po by one. Those terms for which all Pn 
and Pk are different describe the coherent scat­
tering; the remainder describe the noncoherent. 

I = fcoh + J inc • leah=~ (Tn (PlPo}) <rt (PlPo)). (9) 
nk 

Averaging removes the dependence of T n ( p1p0 ) on 
the index n; therefore, the sum (9) reduces to mul­
tiplication by N2• 

2. COHERENT SCATTERING 

We write out the right side of Eq. (4') in the 
form of a series of successive approximations 
and average it. We get 

(Tn (PlPo)) = (tn (PlPo}) + ~ dp Go (p) 

X (tn (PlP) ~ ltm (PPo) 
mr~=n 

+ ~ dq G0 (q) lm (pq) ~ ft (QPo) + · · .]) 
1-tm 

(10) 

On the right side of (10), m ;<on and l ;<o m, but, 
possibly, n = l, etc. 

Let us group separately those terms which do 
not contain indices of different n. In this group 
one can average tn ( pq) independently of all the 
rest. Terms containing but one pair of identical 
indices will be joined by the dashed (connective) 
line. Using (6) and (8), we can represent (10) in 
the form 

(Tn (PlPo)) = a (PlPo) F (Pl- Po)+ N ~ dp Go (p) a (PlP) 

XF(pl - p) <T m (PPo)> + \ dp Go (p) ~ <f~--(p~p)--T m (PPo)). 
w m"!-n 

(11) 

We shall show that the last term in the expres­
sion (11) is small and can be neglected. For this 
purpose, we again replace T m ( pp0 ) by a series 
of successive approximations. The first nonvan­
ishing term with a connective will be 

N ~ dpG0 .(p) ~ dqGo (q) a (PIP) a (pq} a (QPo) 

x F (p- q} F (Pl- P + q- Po). (12) 

Equation (12) (and many other integrals with which 
we shall have to deal) contains the amplitudes 
a(pq). We denote the cross section of elastic scat­
tering by a( PtPo) = I a( p1p0 ) 12, and the total cross 
section, including all inelastic processes, by a0 

= 47rp01 Im a(PoPo). 
For complex values of the energy, the amplitude 

a( pp0 ) can have poles of the type ( p2 - p~- iy) -i, 

which correspond to resonance levels. The quanti­
ties G0(p) and F(p -q), which also enter under 
the integral, are much steeper functions of p than 
are the amplitudes. By making use of this fact, 
we can remove the amplitude from under the in­
tegral. In what follows, we shall remove the ampli­
tudes from under the integrals without special com­
ment. In each such case, it has been verified by 
direct computation that the resultant error, which 
reaches a maximum value for coincidence of the 
energy of the particle E with the resonance Er, 
does not exceed N0a 0A.rErr r1, where r r is the 
width of the resonance level, while i\.r is the wave­
length for the energy Er. For example, in scatter­
ing of neutrons by the resonance level of In115, for 
which Er = 1.44 eV while rr = 0.08 eV, the cor-
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rection is of the order of - 10-9 in comparison 
with unity. 

The possible amplitude singularities of the 
branch point type do not change our result. They 
appreciably change only in the case in which the 
amplitudes have singularities that are more es­
sential than simple poles. 

Taking out the amplitudes and carrying out the 
integration, we get the following estimate for (12): 

(13) 

The value of (13) is smaller than the first term of 
(11) by the factor N0a27t. By estimating the succes­
sive approximations in exactly the same way, it is 
not difficult to verify that each term with the con­
nective is smaller than the corresponding term 
without the connective by a factor - N07ta2. 

We shall assume for definiteness that the tar­
get has the form of a sphere of radius R and set 

(Tn (PIPo)) = 4; a(PIPo) ~ (2! + 1) Kt (po, Po) Pt (nlno)· 
I (14) 

Discarding the last term in (11), we get the equa­
tion (A. 7) for Kz ( p0, Po) (see Appendix), the solu­
tion of which will be (A.15): 

(Tn (PlPo)) = a (PIPo) ei"'Rp (pl -Po - ~-tno), 

P, Po p, Po p, I Po P, 1/--,,mflo 
--><--

+ + + 

--x-
Pa Pz ~ Pz 1?-J Pz 13 r} 

a b c 

p, { Po p, Po P, I m Po 
I / I 

/ 
/ 

' / I I ' ' I ' + I + >~ + I 
I +umn 

I I 

I / ' I I 
/ 

I I ' I/ 
/ ' 

1?-J m Pz Ps m Pz ,g Pz 
d e f 

FIG. 1 

upper and lower lines with a cross in the middle. 
We denote the quantity (t(p1p0 )) by a line with a 
dot in the middle. To each part of the line is as­
cribed the momentum p0, p1, etc. The quantity 
G0 ( p ) is associated with the interior segments 

-p-. ' -p-x or x-p-x (18) 

and integration is carried out over p. The connec­
tion of two points on different lines (see Fig. 1a) 
corresponds to 
~---- -------1 

(tn (PI Po) t,i; (PsP2)) 

= a (PlPo)a+ (p3p2) F (Pl- Po-Ps+ P2). (19) 

2 Im f-l = Noao =a. (15) The connection of a point with a cross or of two 

The expression (15) has a sharp maximum in the 
n0 direction: 
I coh (Po Po) = N 2 [ a (Po Po) [2 e-aR [ F (- f-tUo) [2 

= 16n2R2N~a (PoPo) e-aR I co~;R - si~tt 12. (16) 

If R---.. 0, we get the well known expression 
N2u( p0p0 ). For very large R, the intensity of the 
coherent scattering per unit area becomes a con­
stant. 

3. INCOHERENT SCATTERING 

The intensity of incoherent scattering is deter­
mined by the density matrix 

~---------------1 

U CP1PoPsP2) = ~ (Tn (PlPo) r-:,. (PsP2)) (17) 
nm 

for P2 = Po• P3 = Pt· In order to find the equation 
for (17), we represent the expression under the 
average sign in the form of a series of successive 
approximations, and then average and sum this 
series. 

In order to carry out this program, it is con­
venient to introduce diagrams. We shall represent 
(T(PtPo)) and (T+(p3p2)), respectively, by the 

crosses has similar meaning. The set of pos­
sible connections of two lines is indicated by a 
wavy line. We represent the quantity 

S (PIPo) = G~1 (pl) 6 (pl -Po) + N (T (P!Po)) (20) 

in the form of a segment with a cross in the middle. 
By means of these designations, Eq. (11) can be 
represented in the form 

-x- =----.- + 
r----. 

--<o---x- + __.__*- , (21) 

where the last term on the right is small in com­
parison with the sum of the first two. The expres­
sion (17) is the sum of diagrams (see Fig. 1) with 
an arbitrary number of points-on each of the lines 
and all possible connections. In each of the dia­
grams there can be only a single connection be­
tween lines. 

Diagrams with connections of points on one of 
the lines contain integrals of the type (12). In all 
cases, they are smaller than similar diagrams 
without connections by the factor N 0 I a 12 7t ( see 
Fig. 1c and Fig. 1a). We shall neglect all dia­
grams of such a type. The same can be said rel­
ative to diagrams with intersecting connections 
(the types of Fig. 1e, f, etc.). For example, let 
us evaluate Fig. 1e. To it corresponds 
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N2 ~ dl~ dmG0 (l)G~ (m) a(p11) a(lp0) a+(p3m) a+(mpz) 

X F(p1 - I + Pz - m) 

X F (I -Po + m - Pa) ~ Na(PlPo) a+(PaPz) 

X F (Pl - Po - Pa + Pz) 

x NoJal2 (!Pa + Po[t1 tan-! {[Pa + Po[R). (22) 

We see that (22) differs from (19) by a small factor 
of the order of No I a l2 7t. This is incorrect only for 
a narrow range of angles ~ i\./R near Pa = -Po· By 
limiting the accuracy to within less than i\./R, and 
neglecting the corresponding diagrams, we need 
average in the estimates over the range of angles 
~ i\./R. Then the smallness of (22) becomes ob­
vious. 

The expression for the diagram of Fig. 1d, whose 
connections do not intersect, differs from (22) by 
the argument of the F function, namely, 
F(p1 -1 + m -Pa) F(l-p0 + p2 -m). Therefore, 
instead of (22), we get an expression which differs 
from (22) only by the substitution of I Po - p2 I for 
I p3 + Po 1. The value of this quantity is of the order 
of N0 I a 12 R, which is not small in comparison with 
unity. 

By writing down the expressions for the differ­
ent diagrams, it is not difficult to establish gen­
eral rules which allow us to estimate without cal­
culation. Let n0 be the number of nonintersecting 
connections between lines and n1 the number of 
intersecting connections. If the connection passes 
through more than two points, but is not inter­
rupted (see, for example, Fig. 1e), it may be re­
garded as a single connection, but classified as 
intersecting. 

The intersecting connections can be broken up 
into groups such that no one of the connections of 
one group intersects the connections of the others. 
The number of such groups is denoted by n2• The 
numbers n3 and n; are the numbers of points 
which the intersecting connections approach, n4 

and n; are the numbers of free points between 
intersecting connections (for example, the points 
between l and m in Fig. 1e ). The numbers n5 

and n; are the numbers pf remaining free points. 
The superscript + denotes that the point is located 
on the lower line. For example, for Fig. 1a, n0 = 1 
is different from zero; for Fig. 1b, n0 = n5 = 1; for 
Fig. 1c, n1 = 2, n3 = 3, n2 = n; = 1; for Fig. 1d, 
n0 = 2; for Fig. 1e, n1 -n3 = n; = 2, n2 = 1; for 
Fig. lf, n1 = n2 = n; = n4 = 1, n3 = 2, etc. 

A diagram of general form is equal to 
NN~1aa2 (a+) aa71.a4Ra5 in order of magnitude, 
where 

a 1 = n0 + n1 + n4 + nt + n5 + nt - 1, 
a 2 = n0 + n3 + n 5 , tX 3 = n0 + nt + nt, 

oc4 = 3 (n1 + n4 + nt) + n5 + nt - n3 - nt - nz, 
ai = no + nz + ns + nit - 1. 

A similar method of averaging over the loca­
tions of the force centers for the Green's function 
of electrons in a superconductor, with account of 
scattering by impurity atoms, was proposed by 
Abrikosov and Gor'kov. [9] It should be noted that 
in our case, one must consider a rather broad 
class of diagrams, many of which are unimportant 
in the theory of superconducting alloys. [9] 

We now proceed to the summation of the dia­
grams, which give the fundamental contribution. 
The following equality holds (Fig. 2a): 

~--- --------1 
~ (tn (PlPo) T~ (PaPz)) = Na (PlPo) ~ dp Go (p) ~ df a; (f) 
nm 

xs+ (PaP) a+ (pf) F (p1 - Po-p+ f) s+ (fp2)- (23) 

For proof, we substitute a series of successive ap­
proximations for Tm (p3p 2 ) on the right side of (23) 
and make use of the fact that a dependence on the 
signs of n is lacking in the averaging. Making use 
then of (20), we verify the validity of (23). We can 
prove the equality indicated in Fig. 2b 1n an entirely 
similar way. 

Taking Fig. 2b and Fig. 1 into account, we get 
the following equation for (17) (see Fig. 3 ): 

U (PlPoPaPz) = ~ dpGo(p)S(P1P)~dfG6(f)S+(paf)P(ppofPz), 
(24) 

P (PPofPz) = Po (PPofPz) + ~ dm ~ dm' 0 0 (m) G0+ (m') 

XP0 (pmfm') P (mp0m'pz), (25) 

P 0 (PPofPz) = N ~dl~dl' 0 0 (l) Gri (l') S (lp0) s+(J'pz) 

xF (p -I-f+ I') a (pi) a+(fl'). (26) 

The expression (25) is represented in Fig. 3a by a 
rectangle, while the first diagram in Fig. 3b is 
equal to (26). We substitute (20), (25) and (26) in 
(24). The resultant expression will contain inte­
grals of the form 

~ dp 0 0 (p) a (pi) (T (qp)) F(p - s). (27) 

In order to calculate them, use is made of the 
steepness of F ( p - s). By replacing a ( pl) by 
a(ps)a(sl) [a(ss)]-1, we can take a(sl) [a(ss)]-1 

from under the integral. We are left with an in­
tegral equal to 

-x~--+-- = -x-- - (28) 

which follows from the equation for ( T( p1p0 )) and 
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the relations (15) and (A.14). Again collecting the 
terms, we obtain 

U (PlPoPlPo) = e-aRp ((po + !1) n1Po• (po + !1*) nlpt;). (29) 

We have chosen p2 = p0, p1 = p3 = p0n1, a = N0a0, 

since precisely this case is .needed for the calcu­
lation of the intensity. 

We now transform Eq. (25). Substituting the 
quantity P(mp0m 1p2 ) in the form of (25) and (26) 
on the right side of (25), we get an expression 
which contains the integral 

J (g1g2) = ~ dl ~ dma(pl) a(ms) G0 (l) U0 (m) S (lm) 

x F (g1 - I) F (m - g2), 

gl = p- f + 1', g2 = ml + s- S1 , (30) 

where 11 , m 1 , s and s 1 are variables along which 
the integration is carried out in what follows. Tak­
ing out the amplitudes and substituting (20) in (30), 
we get two components, one of which contains 
( T (1, m)). Rewriting ( T (1, m) ) in the form of 
(11), integrating, and discarding terms of the 
order N0 I a 12 7t", we get 

J (g1g2) = ~ dx G1 (x) F (g1 - x) F (x - g2) a (pg1) a (g2s), 

G1 (x) = (2n2t 1 (x2 - p~- 2Poflt1• (31) 

Subsequent integration over 11 and m 1 is carried 
out in a fashion similar to that of (30). 

Then, collecting all the terms, we get 

P (PPofP2) = Po (PPofP2) + N ~ dx ~ dy G1 (x) Gi (y) 

X a (px) a+ (fy) F (p- f -X-i- y) P (XPoYP•). (32) 

We shall compute Eq. (26) by substituting (20) 
therein, and making use of (15); 

Po (PPofP2) 

= Ne-aR a (PPo) a+ (fpo) F (p- f- (Po + f.t) no-i-(Po + fl *)no)· 
(33) 

In (32), we replace f, p2 and y by the new vari-
ables u = p - f, z = Po - p2 and w = x - y. We de­
note the quantity P(pp0fp2 ) in the new variables by 
K(pp0, uz )e-aR. Its dependence on u and z is 
steep, since u and z are contained in the F-func­
tions, while its dependence on p and Po is com­
paratively smooth, since p and Po only enter in 
the amplitude. 

As above, we shall assume that the amplitudes 
do not have steeper singularities than resonance 
poles. In the integration over x, one can evaluate 
a ( px ) a+ ( p - u, x - w ) K ( xp0, wz ) at the point I x I 
= p0• There is then left 

~ GI(x) at (I X - w I) x2 dx = G (wnx) = (a + iwnx)-1• (34) 

In the case in which 
P = (Po+ !A) n1, 

we get 

K CP1Po. uz) = cr (n1n0)F (u - z) + (2n)-3 N ~ d Qx cr(n1nx) 

X ~ dw F (u - w) G (wnx) K (xp0 , wz). (35) 

In order to find K(p1p0, uz) it is necessary to 
know the angular dependence of a(n1n0 ). Accord­
ing to (28), in the important case for which the 
transverse cross section is isotropic (for exam­
ple, for slow neutrons), the intensity of multiple 
scattering has the form 

I (t't) = Ncr. e-2"RK (t't)/4n, (36) 
where 

u = ian1 , z = ian0 , 

cos {} = n1n0• 

Equation (35) is identical with (A.3), if we set 

e = cr.cr01 , cr. = ~ cr (t't) dQ 

in that expression. 
The function K(p1p0, uz) is found in the Appen­

dix with an accuracy to within ~ t;2 ( E/2 )2 ln 2 in 
comparison with unity. It is written as K(uz) 
there. If [ E:C/4{32 ( a + {3 )] « 1, which is well sat­
isfied at E ::::: 0. 7, then, according to (A.5) and 
(A.18), we get 

K (t't) - F (ietn1 - ietn0) 

a2 (1 -e)+ ~2 3 
X a•(i-e) -~· + R" L] (21 + 1) P1 (cos t't) 

l 

{ 2~3 (a2 - ~2) 
X a• (l _e)_~· Bt (ia, i~) A 1 (i~, ia) 

r [A1 (ia, ia) A (" . )]} +ea .\ dx 0 (x) x• _ a• - xB1 (ia, ix) 1 tX, ta • (37) 
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All the notation entering into (37) is given in the 
Appendix. 

Equation (37) is a converging series in l so 
that it suffices in practice to sum up to l = aR. 
With accuracy up to (a - {3 ) a -1, the value of 
Bz(ia, i{3) does not depend on Z, which makes it 
possible to sum (37) completely, using (A.4). For 
example, for E = 0.6, the quantity (a -{3)a-1 

~ 0.1, and decreases with decrease in E. More­
over, B(x) is small if x < x0 = a 2{3-1; it has a 
sharp maximum if x = x0; and it is close to unity 
if x > x0• This makes it possible to reduce (37) 
to the form 

K ('fr) = F (i<J. n1 - i<J.n0) 

x { 1 + f [0.577 + In 2aR - Ei (- 2aR)l} 

+ 132 + :f;e -i) [e<ct-/3lRp (i~n1 - ian0)- F(ian1 - ian0)l 

+ aer (e) [F (ianl - i<J.no) - e-ct(ct-/3)R//3 
2 (ct -!3) 

x F(i ~· n1 -iano)]-fCD('fr), 
co 

1 \' 3 (sin xR ) r (e)=~ j dx [a (x)- 1l,F (x) = (xR)• ---xR"- cos xR • 

Cl ~~ 

The function E1> ( ~/2) ~ 0 in all cases, except 
2aR sin ( ~/2) » 1, when 

2ctRsin(lf/2) 

cD ('fr) .::::::: F (i<J.n1 - ian0) 2] * (sin ~ r. 
n=l 

(39) 

4. DISTRIBUTION OF SCATTERED PARTICLES 
INSIDE THE BODY 

If we are interested in the number of particles 
then it is necessary to find the wavefunction. Using 
the expression (2), and the explicit form of (15) and 
(17), we get 

<I 'I' (r) j2) = I ('I' (r))j 2 + N ~ dp G0 (p) ~ df G~ (f) 

<I 'I' (r) j2) = exp [-a (R + n0r)l 

+ N \' d exp [ct I r- P 11 p ( f ) 
0 .\ p lr-pJ p,p. 

n 
(43) 

If the amplitudes do not depend on the angles, 
then it follows from (32), (42), and (43) that 
P(pf, p) = u ( 1-.J~(p) 12 ), and Eq. (43) takes the 
form of (A.1). The solution of it is 

<I 'I' (r) j2) = e-ctR {exp [- an0r] + (2~)" eQ ~ dq f(q - iun0) 

X ~ dp:e1PrG2(p) K(pq). (44) 

Substituting (A.18) and (A.10) in (44) and integrat­
ing, we get 

co 

+ ea I dx a (x) exp.<-a~or) 
j X -ct 
Cl 

+ 2] i 1 (2l + 1) Pr (cos 'fr) [a;~: ~28) ~·~. Br (ia, i~) it (i~r) 
l 

co 

- e<J. ~ dx x a (X) Bz (ia, ix) jz (ixr) ]} • (45) 

In the same approximation as for the case (38), 
it follows from (44) that, for R- r > a -1, 

<I 'I' (r) 12> 

= e- 11 R {exp [- an0r] [ 1 + T ( 0.577 +In 2a (R+ n0r) 

ear (e) e11R ( + 2 (cx-!3) exp [-<J. (R + n0r)l 

(46) 

X exp [i (p -f) r]U (PPofPo), (40) 5. DISCUSSION OF THE RESULTS 

('I' (r)) = lf~'-R exp [ i (po + tL) nor.!. (41) 

Then, substituting (24), and carrying out transfor­
mations similar to (30)-(32), we get an equation 
which differs from (40) only by the replacement 

Go (p) Gt (f) ..... G1 (p) Gt (f), 

Transforming then to the coordinate represen­
tation 

P (PPofPo) = Q-l ~ dp exp [i (f- p) p] P (pf, p) (42) 

and integrating (40) over p and f, we get 

A. Let us consider the physical meaning of the 
diagrams whose sum corresponds to the solution 
of the transport equation (Fig. 2b and Fig. 3). Each 
such diagram describes scattered radiation of a 
definite multiplicity. A diagram with a single 
dashed line describes single scattering, one with 
two such lines, double scattering, etc. Each of the 
diagrams depends on the ratio of the dimension of 
the system R to the value of the total path length 
of the particle in the medium, (N0u0 )-1; it grows 
with increase in R and tends to zero as R- 0. 

All the corrections to the transport equation 
can be divided into two groups. The first group 
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28 Ni", 8=0.27 111K,3•, t -0,43 

&, deg 
cxR=1 I 5 1 

I 
5 

0 0.120 6. 7 ·10-3 13 0.965 
90 0.144 0.183 15.6 17.6 

180 0.177 L55 18.8 135 

Single 
value 0.747 93.5 69.4 8750 

of corrections (diagrams c, d, etc. in Fig. 1) is 
determined by the value of the ratio of the wave­
length of the incident radiation i\ to the total path 
length of the particle. It is associated with re­
peated collisions with a single force center. The 
second group of corrections contains the scatter­
ing amplitudes but cannot be expressed in terms 
of cross sections. 

Both the intensity of the scattering and the dis­
tribution of particles inside the body are deter­
mined by a single function K for which an integral 
equation is obtained. 

B. In order to illustrate the application of the 
formulas that have been obtained, let us consider 
the multiple scattering of thermal neutrons by a 
macroscopic spherical target. This problem has 
independent interest for the solution of different 
problems in the theory of nuclear reactors, and 
also for an accurate account of scattering in the 
source and target in the study of nuclear reactions 
with participation of neutrons. In most cases, the 
transverse scattering of slow neutrons by nuclei 
is isotropic ( S-wave) and N0 j a 12 i\ « 1. There­
fore, the conditions of applicability (36) are sat­
isfied. All the conclusions are valid with the same 
accuracy with which one can neglect the energy of 
the recoil nucleus in comparison with the energy 
of the neutron. 

Let us consider scattering from targets con­
sisting of KU and Ni~~ (see the table). In all 
cases for aR = 0.1, the intensity is almost inde-

' ~ pendent of the angle and is equal to 0. 06 for K 
and 6.3 x 10-4 for Ni60• We see that I( J.) in­
creases with increase in the angle J. for any aR. 
For fixed J., the intensity first increases with in­
crease in aR, and then falls off. For small angles, 
the decrease begins earlier than for large angles. 
As R - 0, we get the well known formula for the 
single scattering Na. 

If the scattering is principally elastic, E ~ 1, 
then the solution to the problem is given by (A.21). 
For high accuracy, one can use the method of suc­
cessive approximations in (A.20). 

APPENDIX 

We consider the equation 

I (r) = b (r) + e\ dr' 0 2 (\ r -r' \)I (r'). (A.1) 
n 

Equations (35) and (11) can be reduced to (A.1) in 
many cases. In order to get the solution of (A.1), 
we convert to the Fourier transform: 

I (u) = b (u) + (2n)-3 c,Q02 (u) ~ dp K(up) b(p), (A.2) 

K (up) = F (u - p) + (2:n:)-3 c,Q ~ dq 02(q) F(u - q) K(qp). 

(A.3) 
We assume that the region of integration Q is 

a sphere of radius R. Taking it into account that 

F (u-p)=~~ (21 + 1) At (u, p) Pt (cos~), (A.4) 
t 

x [ph-1 {pR) h (uR) - uh-1 (uR) it (pR)l (A.5) 

( J. is the angle between u and p ) , we get 

K (up) = ~ ~ (21 + 1) Kt (u, p) Pt (cos~). (A.6) 

Substituting (A.4) and (A.6) in (A.3), we get 

+OO 

Kt (u, z) =At (u, z) + ~ \ dpp 2 0 2 (p) Bt (u, p) Kt (p, z), 

-~ (A. 7) 

Bt (u, p) 

= R 2 (u2 - p2t 1 [pht-1 (pR) it (uR) - uh-1 (uR) ht (pR)l, 

(A.8) 

it (x) = Y :n:j2x lt+'i, (x), ht (x) = Y :n:j2x H)~'f, (x), (A.9) 

where J 11 (x) and H11 (x) are the Bessel function 
and the Hankel function, respectively. 

Equation (A. 7) is a special integral equation 
with a kernel of the Cauchy type. We find its solu­
tion in two cases: 

{p) [ 2 2 • j-1 1. 0 2 = P - Po - ~TJ ' 
2. 0 2 {p) = (a/p)tan-1 {p/a). (A.10) 

In the solution of (A. 7) by the method of successive 
approximations, it is easy to establish the fact that 
the expansion parameter is not just E but in fact, 
EaR. We reduce the singular equation (A. 7) to a 
Fredholm type (A.19) with a non-singular kernel. 
Here it happens that all the essential dependence 
on R is taken into account in the free term. Equa­
tion (A.19) can be solved by the method of succes­
sive approximations, where the convergence of the 
expansion is improved, since the parameter is 
seen to be E while the expansion begins with terms 
E2. 

1. Instead of Kz(u, z) we substitute Az(u, z) 
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[ 1- EG2(u)]-1 in (A.7) and transform to a contour 
integral, inasmuch as the integrand falls off suffi­
ciently on the large circle. As a result of the in­
tegration, we get 

K(o) ( ) - At(u, z) 
t u, z - 1-eG2 (u) 

+ ie Ypg + eBt (u, V pg + e)At (Yp~ + e, z).(A.ll) 

We construct the equation relative to Mz(u, z) 
= Kz(u, z) - K~0 >(u, z ): 

+oo 
e2 ~~-2-- ~~-2-- \ dpp" 

Mt (u, z) = i-;;;- r p0 +eAt (r Po+ e, z) 2 2 . 
•• '· p -p -ll] 

-00 0 

+oo 
e \ p" + -;t .\ dp 2 2 . Bt (u, p) Mt(p, z), 

_::, P - Po- 1lJ 

Dt (p, ~) 

= R. 2 (p2 - ~2)-1 (~ht-1 (~R.) ht (pR.) - pht-1 (pR.) h, (~R.)l. 
(A.12) 

The resolvent of (A.12) is the function (A. 7). 
Therefore, 

K1 (u, z) = K~o> (u, z) + i (e2/n) V p~ + eAt (Y pg + e, z) 
+?" 1 

x I dpp2 ---=---- Kt (u, p) Dt (p, Y pg + e). 
.\ p2- p2- il] 

-oo 0 (A.13) 

Equation (A.13) has a degenerate kernel; therefore, 
its solution has the form 

Kz (u, z) = Kz (z, u) 

22 _ p~ [ = 2 2 A1 (u, z) -
z -Po-e 

At (u, Jf~) Bt (z, Po) ] • 

Bt<V p~ +e, Po) 
(A.14) 

Here well known relations between the Bessel func­
tions have been used. [10J If z = p0, then carrying 
out the summation over l, we get, with accuracy 
up to terms of order E: 

K (up0) = exp (ieR./2p 0) F (u- (p0 + e/2p0) n0).(A.15) 

2. Similar contributions for a kernel with a 
branch point lead to the following equations 

Kz (u, z) 

= Wz (u, z) + iae At (i~. z) ~ dx xKt (u, x) Dt (x, i~). 
L (A.16) 

Wt (u, z) = Zt (u, z) 

+ (ae) 2 ~ dx x Kt (u, x) ~ dy yfl (- iy) D1 (x, y)At (y, z), 
L 1.. (A.17) 

Zt (u, z) =At (u, z)[l - eG2 (u)J-1 + iecB1 (u, i~) A 1 (i~. z) 

+ ae ~ dx xfl (- ix) B1 (u, x) A1 (x, z): (A.18) 
L 

The integrals L are taken along the cut which ex­
tends from the point ia to the point ioo: 

In ex+ 13 = ~ c = - 2il33 (ex2 -13•) 
ex -13 exe ' ex2 (1- e)- [3• ' 

a = N oCTo, fl (x) = [( 1 + 2exe In x- ex)2 + ( nexe )21-1 
x x +ex 2x • 

-(A.19) 
The first equation of (A.16) has a degenerate ker­
nel. Solving it for Kz(u, z ), we get the following 
set of equations: 

00 
r 

K1 (iu, iz) = E1 (iu, iz) + (ae)2 ~ dx xEz (iu, ix) R.1 (ix, iz), 

a (A.20) 
00 

Rz (ix, iz)=f1 (ix, iz) + (ae) 11 ~ dy yf1 (iy, iz) R.1 (ix, iy), 
a (A.21) 

Et (iu, iz) = Zt (iu, iz) 

co 

- ie cQtAz {i~, iz) ~ dx xZ1 {iu, ix)Dt (ix,i~). (A.22) 
a 

ft {ix, iz) = rlo) (ix, iz) 

00 

- ie c QtAz (i~, iz) ~ dy yfl0> (ix, iy) D1(iy, 'f~), (A.23) 
a 

00 

rlo> (ix, iz) =~ dy yfl {y) D1 (ix, iy) At (iy, iz), (A.24) 

00 -1 

Q1 = [ 1 - iaec ~ dy yAt (i~, iy) Dt (iy, i~)] • (A.25) 
a 

(A.20) is an equation of the Fredholm type. An es­
timate of the integral term shows that it is smaller 
than the free term by a factor of at least % ( E/2 )2 x 
In 2 x [1 + (,B/a) 2y(E)]. The integral term in 
(A.22) can be neglected if E ::::; 0. 7. In this case, 
Kz( iu, iz ) is determined by (A.18). The formula 
(37) is obtained from (A.18) with the use of the 
Cauchy formula for the function G2 ( u ) [ 1 - EG2 ( u ) ] -t. 

By the method considered earlier, we can solve 
an equation of the type (A.1) with kernels that have 
several poles and branch points. A similar method 
of transformation of the integral equation can be 
applied also in the case of anisotropic scattering 
(see (35)), only in this case, it is convenient to 
isolate the fundamental dependence on R (term of 
the type of (A.22)) by the method of successive 
iteration (35). 
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