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Using the exact solution of the SchrOdinger equation, we study the motion of Regge poles for 
potentials of the type r 2E-2 exp [- (rJ.t) 2T], with E > 0, T > 0, as a function of the coupling 
constant g and the energy E = k2/2m. 

1. INTRODUCTION 

RECENTLY in high energy physics a great deal 
ot attention has been given to the study of the ana
lytic properties of partial wave amplitudes. The 
hypothesis that in quantum field theory the only 
singularities of the partial amplitudes are moving 
poles is one of the basic assumptions for deriving 
the relations between cross sections of different 
processes at high energy. For this reason a great 
many papers have been written about Regge poles 
in nonrelativistic quantum mechanics. [i-5] Al
though many general results have been obtained, 
the motion of Regge poles is well understood only 
for the Coulomb potential and the square well. [GJ 

Trajectories for a Yukawa potential were found by 
Lovelace [TJ using a machine computation, while 
the work of Arbuzov et al [BJ and Azimov et al [9] 

is only to second order in perturbation theory. 
In the present work we consider a potential 

which can be varied from a square well to a Yu
kawa potential. The wave function is found in the 
form of a triple series in powers of r. A method 
is proposed for transforming the equation for the 
Regge poles, which comes from the S matrix, to 
a simpler form. Using this method, in Sec. 4 we 
find, in first order perturbation theory, the equa
tions of the trajectory for an arbitrary potential 
V ( r) in a form which is very convenient for study. 
Section 5 treats the motion of Regge poles as a 
function of the coupling constant g at low energies. 
In a later paper we shall study the motion of the 
poles with varying energy. 

2. SOLUTION OF THE SCHRODINGER EQUATION 

In nonrelativistic quantum mechanics, the S 
matrix for a centrally symmetric potential V ( r ) 
is expressed in terms of the radial function ¢( r) 
in the form 

00 

X [ I - ~; ~ dr'i' (r) V (r) V n;r H<~> (kr) J', (2.1) 
0 

where H~ 2 ( kr) is a Hankel function, v = l + %. 
The radial function 1/J( r) satisfies the following 
integral equation: 

, 
'I' (r) = y n~r J. (kr) + ~G (r, r') V (r') 'I' (r') dr', (2.2) 

0 

where G(r, r') is the kernel of the Bessel equation. 
To study the properties of l/J ( r) by integration with 
this potential is too difficult. For example, already 
in second order we get an integral which is not ex
pressible in terms of known functions. We there
fore must go to the original differential equation 
for 1/J(r): 

'!'" + k2 '1' -l (l + 1) ,-2'1' =2m V (r) 'I'· (2.3) 

Equation (2.3) is a second order differential 
equation, and therefore has two linearly independ
ent solutions. In order to construct the solution 
of (2.3) satisfying the integral equation (2.2), we 
must impose the following asymptotic condition 
on the solution: 

lim 'ljl(r)=Jinkrf2J.(kr). (2.4) 
V-+0 

Exact solutions of (2.3) are known for only two 
potentials: ar and the square well potential. We 
shall treat a broader class of potentials of the 
type 

V (r) = ln r2•-2 exp [- (ru)2~ ]. (2. 5) 

The parameters E, T will be assumed to be positive. 
We point out that as special cases the potential 
(2.5) contains the well ( T = co, E = 1 ), the Cou
lomb potential ( T = 0, E = % ) and the Yukawa 
potential ( E = T = %) ; the last is most interest
ing. 

775 
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The differential equation to be solved has the 
form 

For arbitrary T, E, Eq. (2.6) is an equation with 
two irregular singular points: r. = 0 and r = oo. 

Thus the usual Laurent expansion in a single series 
in powers of r is not applicable. It is easy to see 
that we need a solution which contains all the pow
ers of r which are contained in the potential. Thus 
in our case ljJ(r) should be assumed to have the 
form of a triple series: 

co co co 

n=O p=O m=o 

Substituting ljJ in (2.6) and comparing coeffi
cients of like powers of r, we get a functional 
equation for c (n, p, m ). From the condition that 
1/J( 0) be finite, it follows that y = v + Y2• In solv
ing the equation for c (n, p, m) it turns out that 
some of the coefficients are zero. We denote the 
nonzero coefficients by b. Furthermore, in order 
that the equation for b contain no superfluous 
factors and be convenient for solution, we must 
redefine ljJ: 

- 000000 

\jJ (r) = v n;r (~f 2J 2J 2J [i~rr 
n=O P=O m=O 

(2.7) 

The functional equation for b is a multiterm 
equation: 
(n + Tp + em) (n + Tp + em + v) b (n, p, m) 

l=P 
=b (n _ 1 p m) + -v b (n, l, m -1) . 

' ' ~~ 1'(1+p-l) 
(2. 8) 

If g = 0, Eq. (2.6) becomes "free," and so (2. 7) 
must reduce to a Bessel function according to con
dition (2.4). The coefficients b (n, p, 0 ), which 
will then determine (2. 7), satisfy the two-term 
functional equation 

(n + Tp) (n + Tp + v) b (n, p, 0) = b (n- l, p, 0), 

which is easily solved in terms of r functions: 

ll0,pbo {1, p=O 
b(n,p,O)= f(1+n)f(1+n+v) ,llo,p = O, p=f=O ·(2.9) 

According to (2.4) b0 should be set equal to one. 
We note one important point. Since the coupling 

constant g is not contained in the equation for b, 
we can establish a connection between the series 
(2. 7) and standard perturbation theory: the order 
in perturbation theory coincides with the index m. 
This in turn enables us to follow the changes in-

troduced by treating different orders in perturba
tion theory. This point represents one of the ad
vantages of this method over those methods which 
use the integral equation for 1/J. 

3. THE COEFFICIENTS b (n, p, m) 

The coefficients b (n, p, 1 ), b (n, p, 2) etc. are 
no longer expressible in terms of products of r 
functions, except in special cases. We shall try 
to find a form for b in which its properties and 
values are simply determined. We first establish 
a relation between the coefficients of order m and 
(m -1 ). To do this we express the coefficient 
b (n -1, p, m) in (2.8) in terms of b (n -1, l, m -1) 
and b (n- 2, p, m ), then express b (n- 2, p, m) 
intermsofb(n-2, Z,m-1) and b(n-3,p,m), 
etc. As a result we get the following relation be
tween the coefficients: 

k=n l=p 

b (n, p, m) = 2J 2J D (m; np-+kl) b (k, I, m- I), m =1= 0; 
k=OI=O 

D (m; np--+ kl) 

r (k +em+ -rp) r (k +em+ -r:p + v) 
= f (1 + n +em+ -rp) f (1 + n +em+ -r:p + v) f (1 + p -LJ. 

(a·: 1) 

The further arguments and computations are 
conveniently done using the following scheme. Let 
the point M with coordinates ( n, p, m ) correspond 
to the coefficient b (n, p, m) and the line joining 
the points ( n, p, m) and ( k, l, m- 1) to the func
tion D ( m; np - kZ). In this sense the function D 
plays the role of a propagator. The formula (3.1) 
connects the point Mm = (n, p, m) with the points 
Mm-t = (k, Z, m -1 ), located on the m -1 plane 
in the rectangle ( n, p ) . It is obvious that each 
point of the plane (m -1) can be expressed in 
terms of points of the plane (m- 2 ), etc. Carry
ing this series of substitutions to completion, we 
get the general formula for the coefficients 
b (n, p, m ): 

b (n, p, m) 

1 , n, p k, t 

r (1 + v) 2J D (Mm--+Mm-1)... 2J D(M1-+M0}.(3.2) 
Mm-1 Mo 

We shall write this formula in a more compact 
form: 

1 
b (M) = r (1 + v) 2J D (L), (3.3) 

L 

where the sum goes over all paths L joining the 
point M with the origin, and D ( L) is the product 
of M propagation functions along the path L. 
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As a first example we shall determine the co
efficient b ( 0, 0, m ). The point M = ( 0, 0, m) can 
be joined to the origin in only one way, along the 
m axis. There is therefore only one term in (3.3): 

b (0, 0, m) = D (m; 00---+ 00) ... D (1, 00---+ 00) r-1 (1 + v) 
=r(1 +v1 e)/f(1 +v)r(l +m+vfe)f(1 +m)e2m. 

(3.4) 

The second example will be a more complicated 
one. Let us find the coefficients for the case of the 
potential well ( E = 1, T = oo ). For all points M not 
lying on the plane (n, m ), the functions D( L) are 
zero, since the denominator contains T = oo. Thus 
only b (n, 0, m) is different from zero. Let us 
choose some path in the (n, m) plane (Fig. 1) and 
determine D( L) for it: 

1 1 
D (L) = (m + n)(m + n + v) · · · (1) (1 + v) r (1 + v) 

1 
= f(1+m+n)l'(1+m+n+v)" 

We see that D ( L ) is independent of the shape of 
the path. Therefore in (3.3) D( L) can be removed 
from the summation sign, and to determine the co
efficient b (n, 0, m) we shall need only to determine 
the number of possible paths L. 

It is easy to prove by induction that for the point 
( n, p, m ) the number of different paths L is given 
by the following formula: 

L(n, p, m) = r(m + p) f(1 + m + n)/f(m) 

x f(1 + m) f(1 + p) r(l + n). (3.5) 

Using (3.5), we find for b (n, p, m) in the case of 
the square well 

b (n, p, m) = <'l0 ,p/I' (1 + m) r (1 + m + n + v) r (1 + n). 

(3.6) 
We now turn to the general treatment of the 

properties of the coefficients b. Let us, for ex
ample, write out b (n, p, 1) in detail: 

Mm 

~MmJI 
ll"'x Mm-2 

+t' f--· ............... 

I__ J ',,,',,,~ 
I I I n 

-------;) n-1 ;1-2 n-J 

FIG. 1 

1"-. 

m 
m-f 

m-2 

f 
0 

P = p and N = 0, 1, 2, ... ,n, and if M = 1, 2, ... 
m - 1, then P = 0, 1, ... p and N = 0, 1, ... ,n. 

In conclusion we consider the question of the 
convergence of the series (2. 7). The only singular 
points of the differential equation (2.6) are 0 and 
oo • From the divergence of the series at some 
point r 0 it would follow that there is at least one 
other singular point of the differential equation 
on the circle I r I = I r 0 1. A rigorous proof of the 
convergence of the series can be given on the basis 
of the following approximate formula: 

ib(n, p, m)I<L(n, p, m)ID(L)I, (3.8) 

where D( L) is the largest of the D( L ). 

4. TRANSFORMATION OF THE EQUATION FOR 
THE POLES OF THE S MATRIX 

As was shown in papers of Regge [iJ and Man
delstam, [2] the only singularities of S( v) in the 
v plane are moving poles whose positions are de
termined by the zeros of the denominator in (2.1): 

2m r -. /nkr 
1 =iii.\ V (r) V 2 H;(kr)'¢(r)dr. (4.1) 

0 

The v dependence in this integral enters in H~0 
and 1/J. The behavior of H~}> in the complex plane 
has been little studied and is nothing simple. It is 
therefore expedient to transform (4.1) so that the 
integrand contains better known and simpler func
tions. Among the integral representations of the 
Bessel functions only the Mellin transforms have 

k=n f (k + Tp + B + v) f (k + Tp +B) these propertieS. 
X); r (1 --r- n + -rp ,_ e + v)r (1 + n +-rp +e) r (1 + k + v)r (1 + k)" The transform F( s) and the original f(r) are 

k=o (3. 7) related in the Mellin transformation by the follow-
Like the coefficient b ( n, p, 1 ) , the coefficient ing relations 
b ( n, p, m) is a finite sum of terms of similar 
type. As we see from (3. 7), the denominators of 
the terms are products of terms of the type ( n + rp 
+ Em) and ( n + rp + Em + v). Therefore, because 
of the factors of this second type, the coefficients 
b (n, p, m) have singularities in the variable v, 
poles of first order, located on the negative axis. 
Starting from formulas (3.2) and (3.3) one can as
sert that the coefficient b ( n, p, m ) has poles at 
the points v = -EM- TP- N, where, if M = m, 

"? \ ds F (>) 
F (s) = ~ dr·rH f (r), f (r) =~ .) 2ni -;.-s · (4.2) 

0 

Let F1, F2, Fa be Mellin transforms of the func
tions f1, f2, fa respectively. Then the Mellin trans
form of the product f1f2fa can be written in the form 
(folding theorem ) 



778 V. A. KOLKUNOV 

Relation (4.3) is fundamental for the transformation 
of Eq. (4.1). 

We now proceed to transform Eq. (4.1). We first 
do the calculations in first order perturbation the
ory. There are two reasons for this. First, pertur
bation theory in first order coincides with the first 
term in the expansion in 1/k, since the expansion 
parameter is g/k2E. Second, formula (4.4), which 
we shall obtain, does not contain the potential ex
plicitly. 

We introduce the notation 

f = 2m Vnk 2r2 V ( ) 
1 4ik r ' 

[z=(¥r-1 H~l). fa=~b(x)rx, f;k=fdn· 

Setting 1/J = ·hrkr/2 Jv(kr), using (4.1) and (4.3) 
we get the following equation for the Regge trajec
tory in the first order of perturbation theory: 

m \ d~ ( k )" 
= - 2 -v-n j znr T 

fl 

r (- cr/2) r (v- cr/2) r (1/2 + cr/2) V (2 + ) 
X r (1 + v + crj2) Ci ' 

As an example of the application of (4.4) we 
consider the potential (2.5): 

1 = - ~ \ ,d~ (_!:_)zo [ (B + u) f (V- Ci) 
4Tft2c f :rt ,) 2:rtt tft , T 

!) 

x r (-a) r C/z +a) r~ 1 (1 + v +a). 

(4.4) 

(4.5) 

The integration contour Q in (4.5) is chosen so that 
the poles of r ( v -a), r (a) are to the right and the 
poles of r (( E +a )/T ), r( Y2 + a) are to the left 
(Fig. 2). The behavior of the integrand on the 
circle R- oo is determined by the value of T. 

For T > %, the contour Q can be closed to the 
right, while for T < %. it can be closed to the left. 
When T = Y2, everything depends on the ratio I k/ Ill 
"'§: 1. Using the Cauchy residue theorem gives an 
expansion of the integral (4.5) in powers of k or 
k-1• In the intermediate case of I k I ~ Ill I, it is 
convenient to use the saddle point method in (4.5) 

We give some more details of the results for 
the case of I k I - oo • Closing the contour to the 
left for T ::: Y2, we get 

[
. ,_, ( ift )zs+z~n (-)n f' (\' -t- e +Tn) f(e +Til) f ('/,- P- Tn) 

X -r LJ T r (1 + n) l'(i + v- e -- Tn) 

+ '); ( ikft )r+2n (- )n f ('f, -i- n) I' (v -t- 1/2 -t- 11) I' ((e- n- 1/2)/T) J. 

....... r (1 + n) r (1/. + v- n) · 

(4.6) 

)ImO 
. V V•l Y+2 

0 0 0 

-e~r 

FIG. 2 

V+J 
0 

2 

0 

Rea 
J 

Let us determine the finite roots v of this equa
tion when I k I = oo. If v does not make any of the 
r functions in the numerator become infinite, then 
when I k I = oo each term of the series is zero, and 
the particular value of v is not a root of (4.6). A 
different situation arises when v can make one of 
the r functions infinite. Let v = - E- TP- N + €1 

where I E1 1 « 1, while P and N are integers. Ex
panding (4.6) in powers of E1, we get 

v = -B-TP-N 

g (-)P+N r (e + TP) r ('/2- B- TP) (ift/k)28 + 2TP v . (4. 7) 
4ft28 :rt r (!-2s- 2TP- N) f (1 + N) f (1 + P) 

In deriving (4. 7) it is essential to assume that E 

and T are irrational numbers. If E and T are ra
tional, then E1 will be given by a finite polynomial 
in k-1• For example, for the Yukawa potential, 
E = T = %. these will be the Legendre polynomials. 

The further motion of the poles of (4. 7), i.e., 
when I E1 1 2:1, is conveniently studied by using 
the integral (4.5) directly. But first we shall es
tablish how one gets (4. 7) from (4.5). When I k I 
- oo the integrand also tends to infinity in the 
right half plane of a, while it goes to zero in the 
left halfplane, except at the poles of the r func
tions. Therefore if the contour Q runs in the left 
halfplane, the integral will be zero. However, if 
v--E-TP-N, thenonepoleof r(v-CJ) 
squeezes the contour onto a pole of r ( ( E + a) IT). 
A saddle develops between the poles. The value of 
the integral at the saddle point depends on two fac
tors: the value of I k I and the distance between the 
poles, which is of order E1• With increasing I k I 
the integrand decreases and the decreased separa
tion between the poles leads to an increase of the 
modulus only in the neighborhood of the saddle 
point. Since we can neglect the integrand every
where on the contour Q except near the saddle 
point, it is clear that there is some relation be
tween I k I and E1 for which (3.5) is satisfied. Tak
ing the residue at the point a = v and dropping the 
other terms, we get relation (4. 7). From these ar
guments it follows that the motion of the pole 
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( v = a) is the motion of the Regge pole. The mo
tion of the poles (4. 7) for the case of the Yukawa 
potential in first order in g was studied in [B, 9J. 

The transformation of (3 .1) with the exact 1/J 

differs from that given above in the order of inte
gration in (4.3). After some minor calculations 
we get Eq. (4. 7) in the form 

1 = ~ g~: F 2 (1- <r2) F1a (cr2) 

= _ _!_I 2dcr. x2" r (v- cr) r (-a) ~b (n, p, m) 
'I" ~ 1tt 

n 

X r(e+cr+n'l"+-rr+em)x2n (-)PQl+m, (4.8) 

where K = k/2iJ.L, G = g/4J.L2E. The contour of in
tegration is the same as in (4.5). It is true that 
now there are many more singular points on the 
negative a axis. Using (4.8) we shall study the 
trajectories of the Regge poles. 

The series under the integral sign converges 
for all a, if T > 1/ 2• For example, in first order 
in G it is equal to 

A general proof follows from the properties of 
the Mellin integral: 

2J (/) ~ dr'ljJ (r) V (r) rH+'f,. 

We see that the integral can diverge only at the 
lower limit, which is caused by the r function; 
there are no other points of divergence so long as 
T > %. The integration contour in (4.8) when T 

2: 1,12 can be closed to the right and the integral 
calculated using residues: 

= _n_ ~ (-)PQ1+m~2n+2r [ ~2vr (p + (v + e +em+ n + r)f-r) 
1 -rsin nv r (1 + r) r (1 + v + r) · 

_ r (P + (e +em+ n + r)/T) J b ( ) (4. 9) 
r (1- v + r) n, p, m · 

This series converges for all K when T 2: 1,12• But 
the formulas obtained when T 2: 1,12 from (4.9) can 
be continued analytically to any T. This statement 
is directly verified in first order in g. 

The roots of Eq. (4.8) are certain functions v 
of the two variables k and G. The dependence of 
v on G is important for problems of bound states. 
We shall therefore begin the analysis of (4.8) with 
a study of the dependence of the roots v on G when 
k- 0. 

5. REGGE TRAJECTORIES AT LOW ENERGIES 

In the preceding sections we treated general 
questions related to the solution of the Schrodinger 

equation and the transformation of the S matrix. 
Now we proceed to a specific study of the motion 
of Regge poles. We start with the determination 
of the trajectories at low energies. To get the 
equations of the trajectories in this case, we use 
the relation (4.9). Because of the presence of the 
factor K2V, Eq. (4.9) for K - 0 will have three 
different limits depending on the magnitude and 
sign of Rev. 

If Re v > 0, it is obvious from (4.8) that we 
must keep the term in (4.9) that corresponds to 
the residue at the point a = 0: 

1 =- 1t 'V (-)PQl+mb (0 m) r ( + e +em )' -rl' (1- v) sin vn LJ ' p, P -'1"- · 

(5.1) 

For the second case, Re v· < 0, we get from 
(4.9) 

0 :n: 'V ( )PGl+mb (O ) r ( . v + e +em) 
1:1' (1 + v) sin nv LJ - • p, m P -t- -r . 

(5.2) 
If we write Eqs. (5.1) and (5.2) in the form 

it is clear that for v = 0 they coincide, i.e., the 
Regge trajectories pass continuously from the left 
to the right halfplane of v through the origin. 

Let f1 ( G ) and f2 ( G ) be the analytic functions 
which describe the motion of the trajectory in the 
right and left v half plane, respectively. We have 
shown that if f1 ( G0 ) = 0, then f2( G0 ) = 0. The 
question arises whether the functions f1 and f2 

are not the same analytic function. For the ex
ample of the square well potential, we shall show 
that f1(G0 ) ¢ f2(G0 ). This means that the Regge 
trajectory v = v(G) when k = 0 is not an analytic 
function. We shall explain the reason for this later. 
Finally, in the third case, when v "' 0, we rewrite 
(4.9) in the form 

1 + -r si: nv [~ . .. r (P + e +em~ n + r ) r 
~ ... r (P + v + e + e; + n + r ) 

= x2" ------------
~ ... I' (P + e +em~ n + r ) . (S.5) 

Let us expand (5.5) in the neighborhood of the 
point K = v = 0: 

(5.6) 

Its solution determines the bundle of trajectories 
emerging from the origin: 
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~nm 4n2n2 (12- p2 + t;.p~- t;.y~) C 
v ~ (2 In'"'+ y1 - Pt) + (2 In X +It- Pt)3 

n=±l,±2,... (5.7) 

Trajectories of this type were first obtained in the 
work of Gribov and Pomeranchuk.[1o] 

So at low energies there are three families of 
trajectories which satisfy respectively Eqs. (5.1), 
(5.2), and (5.6). We note that we have not consid
ered the neighborhoods of the points v = -EM- rP 
-N, where M, P, and N are integers. The behav
ior of Eq. (4.9) at these points will be studied later. 

Now for an example of the potential well type 
(the power law well ) : 

{(g/2m)r2•~2, r <, !1~1 
V (r) = 0 r:::::, 11~1' 

' """r 
(5.8) 

we shall explain the general character of the loca
tion and behavior of the roots. For this potential 
it is sufficient to know just the one coefficient 
b ( 0, 0, m) [ cf. (3.4)]. In th~ first approximation 
in K, Eq. (5.5) has the form 

X2' ~ r (v) lv/E~l '-, - r (- v) lv/£+1 -, - • (5.9) '2 yo) j (2 yo) 
\ 18 ; IE 

It clearly shows the reason for the breakdown of 
analyticity of the Regge poles when we go through 
v = 0. The point v = K = 0 is an essentially singu
lar point of the second kind for the function K2v 
(this is a function of two complex variables!), i.e., 
the value of K2v depends on how K and v tend to 
zero. We therefore get different equations from 
(5.9) for Re v > 0 and Re v < 0: 

lv;H (2JfG/ie) = 0, Rev> 0, 

lv;m (2JlG/ie) = 0, Rev< 0, 

which coincide respectively with (5.1) and (5.2). 
From the theory of Bessel functions it is known 

that the equation J A. ( z ) = 0 defines an infinite but 
countable set of roots A. = A.n ( z ) . Each root can 
be regarded as some analytic function of z or as 
the branch of an analytic function A(z) given im
plicitly by J A ( z ) = 0. A separation of the differ
ent branches is conveniently made when z- 0. 
The coefficients in the expansion of the Bessel 
function 

(z/2)1. (-)n (z/2)2n 
h (z) = 1'(1 +f.) ~ r (1 + n)(1 + 1.)(2 +I.) ... (n -1 +I.) (n +I.) 

(5.10) 

have poles at the points A.= -1, -2, .... Thus 
the point z = 0 and A.= -n is an essentially sin
gular point, and therefore satisfies the equation 
J A. ( z ) = 0. Consequently the roots for z - 0 can 
be written in the following form: A.= -n + E1, 

FIG. 3 

where I E1 1 « 1. The value of E1 can be easily 
determined from the series (5.10): 

z 2n col iz 2k 

An (z) =- n + (z-) 2J ( 2) 
k=O 

I n-1 2k 
1 r (n- k) z 

x r (1 + k) r (1 + k + n) k~o r (1 + k) (z) (5.11) 

If we were interested in the further terms in the 
expansion (5.11), we would have to write A. in the 
form A.= -n + E1 + E2 and, noting that I E2l < I E1l, 
expand (5.10) in E2. We note that the expansion 
(5.11) is valid not only when z- 0, but along the 
whole negative A. axis. It then follows that the 
trajectories of the Regge poles in the case of a 
power law well are representable in the form 

Vn = 8 (1 + An), ReV > 0; 
Vn=S(-l+)..n), Rev<O. (5.12) 

Graphs of these functions for an attractive po
tential (G < 0) are shown in Fig. 3. The picture 
changes drastically for a repulsive potential 
(G > 0 ). As expected, there are no positive so
lutions v. It follows from (5.12) and (5.11) that 
the negative roots v for small G move from the 
even points toward the odd points, collide and di
verge along complex-conjugate trajectories ( cf. 
Fig. 3 ). The last statement follows from the re
ality of the coefficients of the Bessel function. 

In conclusion the author expresses his grati
tude to V. N. Gribov, L. B. Okun' and the members 
of the theoretical seminar of the Leningrad Phys
ico-technical Institute for valuable remarks and 
fruitful criticism. 
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