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Singularities of the scattering amplitude for l = -1 are related to the singularity of the irre
ducible four-pole network in the Bethe-Salpeter equation. Under some reasonable assumptions 
concerning the properties of the network, it is shown that the contribution to the asymptotic 
amplitude due to accumulation of the poles is small, providing the poles are close to l = -1. 

l. INTRODUCTION 

It is known that the asymptotic value of the am
plitude U(s, t) for the conversion of two particles 
into two others at high energies vs and at fixed 
momentum transfer .J -tis determined by the 
singularities of the partial wave amplitudes f z(t) 
as functions of the angular momentum l in the 
channel where .jt is the energy [1•2]. Therefore 
the study of singularities of f 1 (t) in the l plane 
makes it possible to gain information on the be
havior of the amplitude at high energies. Thus, if 
f z (t) has a singularity in the form of a Regge pole 
at l = l (t), then U(s, t) contains a term proportional 
to s l (t). At the present time little is known about 
the position and character of the singularities of 
f z (t) in the l plane, and any information concern
ing these singularities is of considerable interest. 

Gribov and Pomeranchuk [3] have pointed out 
that in relativistic theory f z(t) has an essential 
singularity at the point l = -1. They have shown 
that the jump in f z (t) across the left-hand cut in 
t is proportional to ( 1 + 1)-1 • Inasmuch as a sta
tionary, t-independent, pole in f z (t) is forbidden 
by the unitarity condition (since the amplitude of 
f z (t) has a limited modulus in the interval 
4 J.L 2 < t < 16 J.L 2 for real l) the contribution of 
this jump to the dispersion relation in t should be 
compensated by some sort of accumulation of the 
singularities at l = -1. This leads to a limitation 
on the rate at which different processes decrease: 
the invariant amplitude U(s, t) cannot decrease 
with decreasing energy more rapidly than s-1 • 

Gribov and Pomeranchuk used only the most 
general properties of the amplitude, namely uni
tarity and analyticity in z and t, so that their re
sults are quite general and at the same time yield 
no detailed indications on the position of the singu
larities Zn(t) or on the values of the coefficients of 
the s l n(t). In addition, their results are not appli
cable directly to cases of "anomalous" relations 

between the masses, that is, to processes in which 
weakly-bound systems participate. Yet all these 
problems have grown in interest in connection with 
a remark made by Azimov r 4] that the presence of 
spin-possessing particles (nucleons, nuclei, and 
resonances) in intermediate states can cause the 
singularities in the Z-plane to shift to the right, 
that is, it can lead to terms of order s 0 , s 1 , etc. 
in the amplitude. 

In the present paper we study this singularity 
with the aid of the equations of field theory. In this 
approach, the mass ratios are generally speaking 
inessential, and the anomalous case can be consi
dered together with the normal one. At the same 
time, we shall attempt to consider the general 
analytic properties of the equations, which do not 
depend on their specific form, particularly on the 
method of eliminating the divergences at large 
momenta. 

Of importance to the analysis is the fact that the 
kernel of the integral equation has in the l repre
sentation a simple pole at l = -1. We shall demon
strate this in any order of perturbation theory for 
converging theories of the cp 3 type and for a model 
example, in which the asymptotic behavior of the 
Green's functions has at large momenta p a power
law form p w- 2 • In theories of type cp 4 , logarith
mic divergences make it difficult to glean from 
perturbation theory any information on the singu
larities of the kernel at l = -1, but it is to be ex
pected that the kernel has a singularity in the form 
of a simple pole, not connected with the large 
momenta, also in the real case. 

Then, if the kernel of the equation is of the 
Fredholm type, that is, it decreases sufficiently 
well at large momenta, the scattering amplitude 
has an accumulation of poles near l = -1. We 
shall consider various properties of the poles 
and residues of the amplitude at these points. In 
the case when the poles are situated to the right of 
-1, the total contribution to the asymptotic value of 
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the amplitude U(s, t) at large s is proportional to 
the square of the distance 0! 0(t) of the extreme 
right pole from -1: 

I U (s, t) I~ :rt:xZ,s>,-l (t-t2- tj4)1-a,, (1) 

and is small when a 0 is small. 
If the kernel of the integral equation decreases 

slowly at large momenta, so that it is not of the 
Fredholm type, the accumulation of the poles ap
parently turns into a branch point, but it can be 
thought that an estimate of the type (1), in which 
0! 0 has the meaning of the distance of the right end 
of the cut from -1, remains valid as before. 

2. EQUATIONS FOR THE AMPLITUDE 

The equations for the amplitude U(p, p') are of 
the form CsJ 

U(p, p') = -iK(p,p') 

-(2nt4 \K(p, q)D(~ +q)D(~ -q)U(q,p')dq4 • 

• ( 2) 

We are considering identical spinless particles of 
mass J.l; Dis the exact (renormalized) Green's 
function: 

00 

D ( 2) = \' P (cr) d:-; 
p ,\ p• + cr' 

l'-' (3) 

k is the 4-momentum of the center of inertia; 
K(p, q) is a 4-pole which is irreducible with res
pect to separation of the ends k/2 ± p from 
-k/2 ± p' by two lines. The quantities K(p, p') 
and consequently U(p, p') satisfy the symmetry 
relations 

K (p, p') = K (p', p) = K (-p, p') =J<. (p, -p'). 

Equation (2) is analogous to nonrelativistic 
equation (5) of[6]. As in the latter case, the 
"initial" momentum p' and the total 4-momentum 
k are parameters, while the quantity iK(p, q) plays 
the role of the potential V(p, q). The physical scat
tering amplitude U(s, t) = U( -(p - p' )2 , -k2) is 
the value of U(p, p') on the mass shell, that is, 
p2 = p' 2 = -J-! 2 -k2/4 when pk = p'k = 0, and is 
connected with the amplitude f( e, t) of the phase 
shift theory of scattering by the relation 

f (e, t) = (8nt'l·)- 1 U (s, t). 

In the present paper we are interested in the 

region t = -k2 < 0 . We can then change over in 
Equations (2) and (3) to a Euclidean metric, re
placing the fourth components of all the vectors by 
imaginary values in accordance with Po- ip/7• 8-, 

after which the quantities iK and U in (2) are ob
viously real. The values of U(p, p') for timelike 
p and p' will be obtained by analytic continuation. 

We change over, further, into the center of mass 
system (c .m.s .) with k = 0, and expand (2) in 
Legendre polynomials of the angle between p and 
p' . Introducing the notation 

1 

qJ1 (p, p') = I PI~ p' I ~ dzPt (z) U (p, p'), 
-1 

1 

l\1 (p. p') c~c ~_'_L \ dzPt(z)(-i) K(p, p'); 
-1 

00 00 

~d2q~~\dlqi ~ dq0 , D±(q)=D(~ ±q), 
0 -00 

we obtain 

{j)t (p, p') = Kt (p, p') 

+ 4~3 ~ d2 qK1 (p, q)D+ (q) D_ (q) qJ1 (q, p'). (4) 

Starting with Eq. (4), we shall designate by p the 
aggregate I p I , Po . 

When ( 4) is analytically continued into the com
plex l plane it is necessary, taking into account 
the exchange character of the interaction, to con
tinue seGarately the even and odd harmonics cp 1 
and K z tJ: 

{j)l =f(l + (-/){j)7+f(l-(-)1)(j)/, 

K1 = f [1 + (-/1 K7 + f [1- (-)11 K/. (5) 

The cp~ satisfy the equations 

qJ/ (p, p') = Kr (p, p') 

+ 4~3 ~ d2qK"i(p, q) D ( ~ + q) D ( ~ -q) qJT (q, p'), (6) 

where Kt stands for the analytic continuation of 
K z from the even (odd) positive l; this continua
tion being regular and bounded in the right half 
plane Re l > const. On the mass shell Po = Po = 0 
we have cpz = 0, and we consider henceforth only 

<Pz. 
If K z (p, q) decreases sufficiently well at large 

momenta, so that the integral 

~ d2pd2qD+(p) D_ (p) D+(q) D_ (q) (KJ(p, q)) 2 < :::>o, (7) 

that is, it converges, then (6) is of the Fredholm 
type C9J. In this case, in the region of analyticity of 
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the kernel K{ in l, the only singularities of the 
amplitude in the l plane can be the poles l = Zn, 
which have no finite accumulation point LsJ. All 
other singularities of cp[ in the l plane should 
coincide with the singular points of the kernel K z . 

If there are several sorts of particles, then 
Equations (2) and (6) are best written in the form 
of a system of several equations, separating all the 
two-particle intermediate states. Thus, if there 
are two spinless fields cp and x , this system is 
written graphically as 

+ )JJ1 
+ )1}1 

' ( 8) 

where the four-poles, which serve as kernels of the 
equations, are irreducible for the separation of the 
left ends from the right ones by any two lines. 

In the case of interactions of the type A.cp 4 , the 
wavy line corresponds to the chain 

.D(k 2j;:....,..,.,=x +~ +~ = - 1- • (9) 
J-~ 

and the system of equations is written again in the 
form ( 8), where the left parts of the four-poles can 
not be separated from the right ones by either two 
lines or two chains. 

Equation ( 8) can be rewritten in the form 

Ff~ (p, p') c= - iKa~(p, p') 

-(2n)- 4 2.;\d1qK"'(p, q)D:(q)D~(q) W~(q,p'), (2') 

where the indices a, {3 , and y correspond to 
solid or wavy lines. From (2') follow all formu
las (4)-(7), if the equations are interpreted as 
matrix equations. The properties of Z-component 
integral equations (2) and (2') considered below 
are perfectly identical, so that we shall discuss 
here Eq. (6). 

Since we are interested in the region 
l ~ -1 < -1/2, then to reconstitute u± (z) in 
terms of cpl it is necessary to use the Regge 
formula in the Mandelstam form [1o]: 

IPIIP'iU (p,p') 

L-j--icc 

4rt \.• ':!!:.___(21- ;- 1) r. r Q ( ) ± Q ( ) J 
. cos :tl ll 1-1 -- z -1--1 z 

L-ioo 

00 

- 2~ h (-r'2ncpii'-•;, ( Qn•;, (z) ± Qn •;, (- z)) 
n=1 

where -3/2 < L < -1, lp are the poles located 
to the right of the line Re Zp = L, and Qz(z) is 
the Legendre function of the second kind. 

3. SINGULARITY OF THE KERNEL Kz AT THE 
POINT l = -1 

The kernel Kz of Equation (6) is a sum of a 
series of diagrams which do not contain 2-particle 
cuts. We shall show that each of these diagrams, 
for which the Mandelstam spectral function 
p(s, u) -.c 0, has a pole at the point l = -1, and 
if the diagram does not contain logarithmic diver
gences at large momenta, the residue at this pole 
is finite, so that the pole is simple. Since this 
property is possessed by each term of the series, 
it can be thought that the sum of the series, that is, 
the complete kernel K z, also has a simple pole 
at the point l = -1: 

Kt (p, p')z=t_ <D (p, p')l(l + 1). (11) 

Let us consider first an interaction of the type 
gcp 3 • Here K is represented by a sum of diagrams 
of the type of Fig. 1. For the Green's functions in 
Fig. 1 we shall use the Lehmann representation 13'. 

i";nij J' 

+X+ " 
=>-< ~ 

P, P, C" .XJ 

li+ = 1<, + l<z + 1<3 

The term K 1r has vanishing analytic continuation 
in l and is of no interest to us. In the term K 2z , 
the members of lower order in r yield 

K'tl = g2 f pdr:; [ Q l ( p2 + p'2- 2PoP~ + cr ) 
2 2.\ 2IPIIP'I 

1'-' 

_ Q 1 ( _ P2 + P'2 + 2p0p~ + cr ) J. 
21 P II p' I 

Hence 

00 ' 

K'l)+ = .K:_ \' pdr:; r Q ( p2 + p'2 - 2PoPo + cr ) 
21 2 .\ l 1 2 I P II p' I 

1'-' 

(12) 

+ Q (P2+P'2 +2PoP~+cr )]->-1_fpdr:;. (13) 
I 2 I p II p' I l + 1 ~2 

The integral in the right half of (13) converges 
in any order of perturbation theory, and for the 
time being we shall assume this property to be ex
act. Then (13) is the exact analog of the nonrela
tivistic formula (11) of [S] for a potential that be
haves like r- 1 for small r, and everything said 
previously with respect to Formulas (11) and (12) 
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of [s] is applicable to ( 13), namely: this kernel is 
degenerate, so that account of only this one-meson 
interaction does not lead to an amplitude singular
ity at l = -1. 

The remaining components of the kernel have 
the property, that if (prior to going over to the 
[-representation), we consider the asymptotic be
havior of each diagram K(n) (s, t, (p ± k/2) 2 , 

(p' ± k/2) 2 ) for large s and the other five argu
ments fixed (the "external masses" and t), then 
the diagram decreases more rapidly than s-1 (see 
Appendix 1). 

In the nonrelativistic problem with non-exchange 
potential V(p - p') = V( I pI , I p' I , z) it would 
follow from the fact that V(z) decreases more 
rapidly than z-1 at large z that V l (I pI , I p'l ) is 
regular at l = -1. On the other hand, in the rela
tivistic case the analytic continuation of the even 
and odd harmonics of Kz is given by different 
functions of l, namely K [ and K z , in which con
nection a formula of the type ( 1 0), which reconsti
tutes K + (z) through K z , contains a factor 
1 + exp (i 1r l), which can cancel a simple pole in 
K l . Therefore the indicated decrease of K(n) (z) 
still does not signify that there is no pole in Kfn)+, 
and the latter quantities must be investigated di
rectly. A difference is then observed between the 
diagrams of type K4 and K6 , for which only the 
spectral function p(s, t) or p(u, t) differs from 
zero, and diagrams of the type K3 and K5 , for 
which p(s, u) .r 0 . 

Any diagram can be represented, accurate to a 
positive factor, in the form of a Feynman integral 

00 1 

K.(n) = ~ p (a1) da1 ... p (an) dan ~ dx1 ... dxn 
~ 0 

X 6 (x1 + ... + Xn - 1) 

X L~1 p~cp;(x) - tcpt(X) - 2pp'cps (x) + k~1 (jkXk rm. 
Pi.2 = (k/2 =t= p) 2, p;,4 = (k/2 =t= p') 2, - t = k2 , m > 2. 

(14) 

Introducing for brevity the notation 

~ P (a1) da1 ... p (an) dan=~ da, 

~ dx1 . .. dxn6 (x1 + ... + Xn -1) = ~ dx, 

4 n 

~ p~cpt (x) - tcpt (x) - 2p0p~cps (x) + ~ akxk = A, ( 15) 
(=1 k=1 

we obtain for the l component 

K.(n) _ _!__ (-)m dm-1 I \ dcrdx Q ( ct +A ) ( 1S) 
1 - 2 (m- 1)! dctm-1 a=O" q>s (x) 1 2 I P II p' I q>s (x) ' 

A is a positive quantity, since it coincides with 
the denominator of ( 14) when p · p' = 0 and cannot 
vanish because (14) is real for the Euclidean p, 
p', k being considered. 

If only p (s, t) differs from zero in the diagram, 
then <Ps(x) ~ 0. Indeed, were we to have, for ex
ample, for some x <Ps(x) < 0, then by taking the 
quantity -2pp' = (u - s)/2 sufficiently large, we 
would make the denominator of (14) go through 
zero, that is, (14) would have an imaginary part at 
s , t, ,u I < 0 , and this contradicts the known anal
ytic properties of this diagram. For this diagram 
the argument of Q1(z) is positive and, as in the 
nonrelativistic non-exchange case, K(r)+ = K(?)-
= Kl' so that the singularity at l = -1 is exclu
ded by the already indicated fact that K(n) (z) falls 
off rapidly with z 1l. 

Let us consider now terms of the type K3 and 
K5 , for which p(s, u) differs from zero. The quan
tity <Ps(x) now, generally speaking, passes through 
zero. In particular, if the diagram is symmetrical 
under the substitutions s - u and pp' - -pp', 
as in the case of the simplest diagram in K3 , then 
the region of variation of <Ps(x) is symmetrical, 
and <Ps(x) must have a zero inside the integration 
region. Therefore 

K(n)+ - _!__ (-)m-1 dm-1 \ r• da [ \' ___!!!____ ( ct + A ' 
1 - 2 (m-1)! dctm-1 a=o~ "';\> 0 q>s(x)Q1 21P\IP'Iq>s ,J 

(17) 
'Ps < o 

If we attempt to expand Qz in (17) near l = -1, 

then the integral will diverge at small <Ps • We 
therefore use for Qz(z) the limiting expression 
for large z: 

'Psmax 
1 ( )m-1 dm-1 I ~ d'"' (' K)n)+ =------- _J_ \ 

2 (m- 1)! drxm-1 a=o l + 1 " 
(fismin 

~ _l_\' dcrdxc5(q>5 (x)) 
~ l -!_ 1 ,\ Am-1 ' (18) 

The quantity K~n)- is regular when l = -1 . 
The integral in (18) is already convergent, for 
otherwise K (n)+ would have a pole to the right of 
l = -1, or w~uld have at l = -1 a singularity 
which is stronger than a simple pole; in either 
case the asymptotic expression for K (n) (z) would 
contain z 1P with Zp ~ -1. 

!)If we expand Qz(z) near l = -1 and differentiate with re
spect to a in (16), then the pole term Qz obviously drops out; 
but in order for this operation to be valid, it is necessary to 
verify that the resultant integral is convergent at small 
Cjls(x); thus, for example for ladder diagrams of the type of 
Fig. 2e (see below) this integral diverges, and a singularity 
exists at l = -1. 
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Returning to the notation of (14), we have 

Kin)+ = 1 -~ 1 \ da dx <'l(<:ps (x)) 
z--1 r "' 

X [~1 pJ<:pi(X) - l<:pt(X) + (19) 

Thus, the singularity of the kernel Kz is a simple 
pole and is given by a sum of a series of positive 
terms of the form (19). 

J 1 

By way of an example, which will also be used 
in what follows, let us consider the simplest dia
gram of the type K3 • Using the well-known ex
pression for a square diagram [2] and introducing 
in place of the Feynman parameters Xi indicated 
in Fig. 1 the variables ~ and 77 using the formulas 
~ + 1 = 2(x2 + x 3) and 77 + 1 = 2(x1 + x 3 ),we 
obtain after eliminating the 6 functions 

(1)+ ( g ) 2 1 K 3t = 4n 1 -1- 1 
. (' d\;dY] 

~ j (p + kYJ/2)" (1_- £2) + (p' + k£!2) 2 (1- YJ 2) + '/4k2 (1- £2) (1- 112) + 1[12. 
(20) 

1~1 
-1-• 

All the foregoing pertained to a type q;3 inter
action and can be applied without modification to 
the case of a coupling of two fields of the type q;2x. 
To discuss the possible generalizations of the re
sult (11), let us consider the case when the asymp
totic value of p(u) in (3) has at large u a power
law form 

p (a)--> const a'H, 0 <a< 1, (21) 

which corresponds to an asymptotic form 
D(p2) ~ p20 -2 as p2 - oo. We do not discuss here 
such questions as whether such an asymptotic form 
is possible in theories of the q;3 or q;2x type, or 
whether it is sensible to use the exact asymptotic 
form of D when using perturbation theory for the 
vertex part r, inasmuch as example (21) is in 
character of an illustration. 

For the "one-meson" term K~[l+ the first 
equation of (13) is valid as before, but the second 
becomes meaningless because of the divergence of 
the integral. Separating in Qz(z) the part that is 
singular at l = -1, we obtain from (13) 

K~}l+ = g 2 r ~! <t ~la;~-n (I p II p' 1)1+1 r pda {-- l(A+ + ar1- 1 

p.2 

+ (A_ + arl-1]; 

diverges, so that its value near l = -1 is obtained 
by analytic continuation in l. For example, when 

p = (\ (a - ft 2) + e (a - 4ft2) (a/4f12t-1a/4f12 

we have 2l 

oc 

\ pdcrcr-1-1 = (ft2rl-1 + t +:- _ ____,. 1- _!<__. (24) 
~z ct l---1 a 

We note now that the answers (22) and (13) can 
be written in an identical manner with the aid of 
the formula 

co 

K(1) 1 ((' d -1-1 ) 21 ---+ 1 + 1 \ p a a , 
l-+-1 eJ 

p. 2 1=-1 

(25) 

where it is necessary to take, in the case when the 
integral diverges, the analytic continuation of the 
function in the brackets to the point l = -1. As 
can be seen from the example (24), the residue at 
l = -1 is now not necessarily positive, but in all 
other respects the formulas retain the same form, 
including the degeneracy of the kernel of (25), and 
consequently, including the result that the ampli
tude q;[ in (8) has no singularity at the point 
l = -1 in the case of the interaction represented 
by diagrams K 2 . 

Generalizing Formula (19) by the same method, 
we obtain 

A= = p 2 + p' 2 ± 2PoP~· (22) K)nl+ 
1
_:=_11+1

1 (~ da dx (\ (<:ps (x)) 

It is convenient to rewrite the integral over u 
in the form 

co 

J (l) = ~ pda [ ~ (A+ + ar1-1 

I"' 
co 

, 1 (A , )-t-1 -t-1] , (' d -1-1 -, 2 _ -, a -a -:- .\ p aa . (23) 
p.2 

As l - -1 the first integral in (23) converges 
and tends to zero. The second term has a pole at 
l = 0' -1, and to the left of this point the- integral 

(26) 

As in (25), in the case of divergence at large u 
(which is possible when 0' > 1/4), the integral is 

2lThe resultant degenerate pole of the kernel (24) at 
l = a- 1 is precisely analogous to the pole in the non
relativistic potential- Vz(lpl, IP' I) in Formula (11) of [•], in
asmuch as V(r), which corresponds to the D-function (14), be
haves like r-l-2a for small r. 
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meant in the sense of analytic continuation from 
the region of large Z, where it converges, and is 
not necessarily positive. As indicated in Appendix 
1 , the powers of s in the individual terms of the 
kernel K(n) (s) are generally speaking different 
from -1, from which it follows, as in the case of 
(20), that the residue in (25) is regular at l = -1. 

Thus, although on going from the nonsingular 
case jpdu < oo to (21) the properties connected 
with the behavior at large momenta and small dis
tances change, including for example the appear
ance of degenerate r,oles to the right of l = -1 in 
the "potentials" K t)+ [see (24)] , the singularity 
at l = -1 keeps the form of a simple pole (25), 
(26). As can be seen from the derivation of 
(14)-(19), this singularity is connected not with 
the behavior at large momenta, but with the sym
metry properties of the two-particle states, the 
need for introducing' two functions qyz and qy[ for 
the single-valued and regular continuation in the 
Z-plane, and therefore does not change in form on 
going over to the more singular interaction. 

We have considered cases when the diagrams of 
perturbation theory were convergent and it was 
possible to investigate directly their analytic pro
perties near l = -1 . On going over to the type 
qy 4 case, the situation becomes more complicated 
by the fact that the diagrams of perturbation theory, 
both for the functions D(p2) and D.(p2) (9) and for 
each term of the series Kn, diverge logarithmi
cally. If we calculate these diagrams in the usual 
manner, cutting off the integrals at large momenta 
and then subtracting the divergent constants, then 
there appear in Kn for large s expressions of the 
type s-1lnms, corresponding to (l + 1)-m-1 in 
Kln. This accumulation of logarithms occurs in 
the same manner both in diagrams with p(s, u) .,c 0 
and with p(s, u) = 0, and the resultant singularity 
of the kernel K/ is then not clear. We note also 
that Equation (8) ceases to be of the Fredholm type 
and the integrals (7) calculated by perturbation 
theory diverge logarithmically. 

It can be assumed that the method described for 
obtaining information on the singularity of K{ from 
perturbation theory is not adequate in this case. 
Thus, if the increasing powers of the logarithm in 
D(p2) or D.(p2) were to add up to a finite power: 
D, D. ~ (p2)0! as p2 - oo, we would encounter a 
situation of the type (21). It is even more natural 
to expect that the adding up of the logarithms into 
a power of the '' Regge'' type occurs in those in
ternal vertex parts of the Kn diagrams, which are 
four-point diagrams with virtual momenta. In any 
such case when the Kn diagrams exhibit a non
logarithmic behavior at large virtual momenta, 

the residue at (Z + 1)-1 in formulas of the type (26) 
is finite, and we again arrive at the result (11). 

We note, finally that even if (11) does not corre
spond to a real case and the singularity of Kz has 
a different form at l = -1, Eq. (6) can apparently 
be investigated by methods analogous to those em
ployed below. 

4. ACCUMULATION OF POLES AT l = -1 AND 
THEffi CONTRIBUTION TO THE ASYMPTOTIC 
VALUE OF U(s, t) AT LARGE s 

We shall consider essentially case (7). Then 
Equation (6) has near l = -1, in accordance with 
(11), the form of a Fredholm equation of the second 
kind, in which the role of the parameter .\ is 
played by ( l + 1)-1 : 

q;; (p, p') = ~ ~· t> 

The symmetrical kernel <I>(p, q) can be repre
sented as a series in the eigenfunctions (/Jn(P) and 
eigenvalues Zn + 1 = O!n(t) of the homogeneous 
equation (27) CsJ: 

n 

If the kernel <I>(p, q) is nondegenerate, as in our 
cases (20) and (26), then the series (28) contains an 
infinite number of terms, and the eigenvalues O!n 
decrease without limit in absolute value with in
creasing n (so that the series I:O!~ converges). 

Substituting (28) in (27) we obtain 

+ ( ') - 'V an (t) <rn (p) <rn (p') (29) 
q;l p, P - LJ l + 1- a (I) · 

n n 

From (29) we see that near l = -1 the amplitude 
has an infinite number of poles L3• 1J, which are real 
for the values t < 0 being considered. Inasmuch 
as the functions (/Jn(P) are orthonormal in the sense 
of (28) and bounded, the residues at the poles are 
proportional to their distance from l = -1, and 
tend to zero as Zn- -1. 

Let us substitute (29) in (10) and go over to 
large s = -(p - p') 2• Assuming that O!n(t) « 1, 
which is the condition for the applicability of our 
formulas, we obtain for the contribution made to 
the total amplitude U by the poles located near 
l = -1: 

'V ( s )"n (I) u (p, p', k) = JtiLJtX~, (t)q;n (p)q;n (p') TPTTP'I S- 1 • (30) 
lL 
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To change over to the physical amplitude U(s, t) 
it is necessary to continue (30) analytically from 
Euclidean values p2 , p' 2 > 0 to values on the mass 
shell p2 = p' 2 = -/J- 2 -k2/4, pk = p'k = 0. It is 
no longer possible to state here that qJn(P) do not 
increase with increasing n. To the contrary, we 
can see, for example, that the series (29) will 
diverge starting with t ::s - 81J. 2 , because in this 
case an imaginary part appears in the amplitude 
qJz(p, p') [more accurately, in its lowest term K~zl 
[(27)] ,and the functions q7n(p), as can be seen from 
the homogeneous equation (27), are real for all 
stable - (p ± k/2) 2 < 41J. 2 • Therefore the series 
(29) is a sum of real terms, so that the imaginary 
part can appear in the function represented by it 
only at the point where the series is divergent. 

But the series (38) converges on the mass shell. 
Indeed, if we replace all the sO!n in (30) by the 
maximum value s 0 0 , then, accurate to a factor, 
(30) will go over into the iterated kernel of (27): 

~ O:~(jln (p) fJln (p') = 4~3 ~ d2q<D (p, q)D+ (q)D_ (q) <D (q, p') 
n 

= <D(2) (p,p'). 

Therefore expression (39) divided by (Z + 1)2 is the 
term that is principal in (l + 1)- 1 in the aggregate 
of diagrams comprising the first iterati<;m of the 
kernel K[(p, p'). The divergence of the series 
( 31) for certain p2, p' 2 < 0 would indicate the ap
pearance of a singularity and consequently of an 
imaginary part in the function represented by it. 
This would lead to the presence of a discontinuity 
in this expression at t < 0, proportional to 
(Z + 1)-2, in contradiction to the result of Gribov 
and Pomeranchuk [3], we have shown that when 
t < 0 the discontinuity in the expression, which 
satisfies the dispersion relation in s, is propor
tional to (l + 1)-1• 

It is seen from the foregoing, incidentally, that 
the discontinuity in the total amplitude near l = -1 
coincides with the discontinuity of the kernel 
Kz(p,p'), which is equal to (l + 1)-1 cl>(p,p'). The 
foregoing is well illustrated by the example (20): 
by putting (k/2 ± p) 2 = -m2 , we obtain in the de
nominator the expression -m2 (1 - ~ 2 ) 
+ (q- k~/2)(1 - 172) + 41J. 2 , and inasmuch as in
tegration is over Euclidean q, in the case of stable 
m 2 < 41J. 2 the denominator does not go through 
zero and there is no singularity. 

Thus, the contribution of the considered aggre
gate of poles to the asymptotic value of U(s, t) for 
large s has the form 

:rti " ( s )an (I) U (s, t) = S .LJ C(~ (t) fjl~ (t) _ f12c+ 114 , 
n 

fJln (t) = fJln (p) lp,=O, P'=-t•'+l/4" (32) 

The presence of the term (32) in the amplitude 
leads to a limitation on the rate of decrease of the 
different processes: even when at large -t all the 
singularities of the amplitude in the Z -plane go 
over to the left, so that, in particular, for the ex
treme right pole a 0(t) the condition a 0 « 1 begins 
to be satisfied in (29), still the amplitude always 
contains the term (32), that is; terms of order s-1 • 

However, on the basis of Formulas (31) and (32) it 
can be thought that the total contribution of (32) 
also becomes small under these conditions, and 
satisfies the estimate 

I U (s, t) \ :'(; JtiX~ (st,-1 ([1 2 + k2/4)1-a', 0 < a0 < 1. (33) 

Let us assume first that the eigenvalue with the 
largest absolute value in (29), a 1 , is positive, that 
is, a 0 = a 1 ; this is satisfied, for example, for all 
the well-converging theories (see below). Then it 
follows from the variational properties of the posi
tive kernel c1> <2l(p, p') that a5 (t) is the maximum 
value of the integral of c1> 12 )(p, q) with arbitrary 
(normalized in accord with (2 8)) function </! (p): 

(34) 

If the function c1> <2l(p, q) has a smooth dependence 
on all the arguments, then it follows from the vari
ational inequality (42) that cl> <2\p, q) is generally 
speaking small, of order a5 (t) in the entire region 
of Euclidean p2 , q2 > 0. If furthermore c1> (2 ) does 
not have an essential singularity at infinity with 
respect to p2 and q 2 , so that its limits as p2 , 

q2 - ± oo coincide, then it can be thought that this 
smallness remains in force also for non-Euclidian 
p2 , q2 < 0. Such smoothness properties are pos
sessed, for example, by all perturbation-theory 
diagrams, particularly expression (20). Strength
ening the inequality by making the substitution 
sO!n- sao, we arrive at (33). Thus, if cl>(p, q) is 
given by (20), then the first eigenvalue a 1 is small 
only if the parameter (g2/4rr) 2 (IJ- 2 +k2/4)-2 ~ a 1(t) 
« 1 is small. Going over from (20) to q,<2\p, q) in 
accordance with (31) and putting p2 = p' 2 = -IJ. 2 

+ t/ 4 and Po = Po = o , we see that the estimate 
( 33) is correct. 

In the case 0! 0 = a 1 under consideration, the 
sum of the series (32) is of the order of the first 
term, and q7~ (t) ( IJ. 2 + k2 / 4) - 1 ~ 1 . Both properties 
are natural, since the series converges and the 
function represented by it is regarded as smooth. 
It is reasonable to assume that (33) is valid also 
in the case when several poles lie far to the left 
of -1, without making any contribution to the 



758 V. G. VAKS and A. I. LARKIN 

asymptotic value-it is to be expected that the 
series is here, too, of the order of the first term. 
The case when all poles lie to the left of -1 is 
little probable on the basis of the examples pre
sented below; it is apparently similar in its prop
erties to the previously considered [6J example of 
a non-Fredholm equation with a continuous eigen
value spectrum -a 1 < l + 1 < 0 situated to the 
left of -1 . In this case the total contribution of 
(32) is of the order of the smaller of the numbers 
s-1 ln-2 s or ais-1 • 

If the integrals (13) and (19) as well as the ser
ies of terms (19) converge, which, as explained 
above, occurs for convergent theories with not too 
singular an interaction, then the kernel in (27) is 
the sum of positive terms and cl>(p, q) > 0. In this 
case the eigenvalue a 1 (t) with the largest absolute 
value is positive [ 11 ], that is, the pole farthest from 
l = -1 in (29) is on the right for all values of t . 
For the simplest kernel (20) it is shown in Appen
dix 2 that at k = 0 and k2 » 16J.L 2 all the poles 
are situated to the right of l = -1. The clarifica
tion of the problem necessitates in the general case 
an investigation of the quasi -classical case an- 0 
of integral equations of type (27), but some idea of 
the position of the poles can be obtained from phys
ical considerations. As was already explained (see 
[ 6J) the accumulation of the poles at large (l + 1r1 

has the simple meaning of the existence of a large 
number of levels in the problem with some nonlocal 
(and retarded) potential cl>(p, p') when its "charge" 
(l + 1)-1 - oo. The constant-sign expressions of 
the type (19) and (20) apparently correspond to the 
case when this "potential" corresponds to attrac
tion in all of space, so that the accumulation of the 
poles occurs only in the case of positive "charges" 
(l + 1)-1 . 

So far we have considered only the term (11), 
which is of highest order in (l + 1)- 1 in the kernel 
K z· If for some reason cl>(p, q) in (11) is small 
compared with the other terms K [ , which are 
nonsingular at l = -1, 3' then it is necessary to 
retain also the next higher term in the expansion 
near -1: 

K7 (p, q) = (l + 1)-1 <D (p, q) + <D 1 (p, q) 

= (l + 1)-1(<D (p, q) + (l + 1) <D 1 (p, q)). (35) 

From (35) we obtain a formula of the type (29), in 
which the quantities an(t) and cpn(t) will now de
pend on l + 1. The poles are determined by the 

3)This case has been considered in greater detail (see 
[•]) in connection with the problem of the passage of poles 
through a region of l close to -1. 

zeroes of the denominators, that is, by the equa
tions ln + 1 = an(t, ln + 1). In Formula (32) 
aA is replaced by aAUn + 1)(1 - a~ Un + 1))-1 , 

but in all other respects the formulas retain the 
same form and, expanding the function ah. (ln + 1) 
for small ln + 1, we again arrive at the estimates 
(31) and (33). 

We note that for sufficiently large eigenvalues 
n » 1 the correction to an is apparently small 
for arbitrary ci> 1 • Indeed, the equation for the 
eigenvalues an is in the form of an equation that 
is linear in l + 1 with a ''perturbation'' 
( l + 1) ci> 1 (p, q): 

(l + 1) 'iln (p) = 4~3 ~ [<D (p, q) 

+ (l + 1)<D1(p, q)l'tn (q)D+(q)D- (q)d 2q. (36) 

If we assume for simplicity that the system of 
eigenfunctions cpn(P) of the operator cl>(p, q) is 
complete, then we can apply to (36) the usual meth
ods of perturbation theory, and we obtain in first 
order 

ln + 1 = [~O) + 1 + (ln + 1)(4~3)2!jln (p)<D1(p, q)!pn (q) 

X D+ (p)D- (p)D+ (q)D- (q)dp 2 dq2 • (37) 

At large n » 1 the functions cpn(P) in the integ
ral ( 37) oscillate rapidly, so that the correction to 
z~O) + 1 is, generally speaking, small. We note also 
that the form of equation (27) which is linear in 
l + 1 makes it possible (at least when n » 1) to 
obtain for the "levels" ln + 1 also other "quan
tum -mechanical" results, for example, the theorem 
on the non-crossing of the terms-poles-as tis 
varied. 

We have considered above the Fredholm case 
(7). The non-Fredholm behavior of the kernels 
corresponds to singular potentials I V(r) I ? r -2 

as r - 0 in the nonrelativistic problem, and to 
logarithmic and stronger divergences in the rela
tivistic problem. If, in spite of the uncertainty dis
cussed in section 3, we assume for K z a behavior 
(12) as before, then the accumulation of the poles 
will apparently be replaced by branching, which 
stretches to the right in the case of "effective 
attraction" and to the left in the case of "repul
sion." We have already considered [6] some of the 
simplest equations of this type. As mentioned 
above, the general form of Formulas (29)-(33) 
remains the same if the sums over n are replaced 
by integrals over the region of variation of an . It 
can be thought that an estimate of the type (33) will 
be valid also in the general case. 
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APPENDIX I 

The asymptotic behavior of the diagrams at 
large s = -(p - p' )2 and fixed (p ± k/2) 2 , 

(p' ± k/2) 2 , k2 can be investigated by a method 
which is close to that used by Sudakov in electro
dynamics [! 2]. In each diagram we introduce, in 
integrating over the virtual 4-momenta f, the 
variables x, y, z , and f 1 in accordance with the 
formulas 

f = px + p'y + kz/2 + fJ_, pfJ: = p'fJ_ = kfJ_ = 0. (A.1) 

Typical denominators of the diagrams have the 
form 

+ fl +a,+ 2pp' xy = B~yz + 2pp' xy;::::; B~yz + sxy; 

(f ± k/2)2 +a;= B~yz":.l + sxy, 

K~1 l = ~ df 1. dz da 

\ dx dy s V- t /4 

(f- p) 2 +a;= B~-1yz + s (x -1) y, 

(f-p') 2 +a;= B~y-1z + sx (y - 1). (A.2) 

The Jacobian of the transformation from f to xyzf 1 
is equal to 

D (f)ID (xyzf 1_) = + [p2 (p' k)2 + p'2 (pk)2 + k2 (pp')2 

-2 (kp) (p'k) (pp')- p2p' 2k2 J'1' z sVk2/4. (A.3) 

The variables (A.1) enable us to estimate simply 
the essential region in the integrals and its contri
bution in the case of large s ; from (A.2) we see 
that in the case of good convergence, generally 
speaking small x or y are important at large 
momenta. 

The diagram of Fig. 2a was considered by 
Sudakov; the greatest contribution ~ s -1 ln2 s is 
made by the region of small x and y. Inasmuch 
as the terms K2 in Fig. 1 contain r multiplied by 
D ~ s-1 , the diagrams of K2 with insertions r 
are of the order of s-2 ln2 s. The diagrams of 
lower order in r in K3 and K4 (see Fig. 2b, c) 
are given by the expressions 

(A.4) 

X (B~'y'z'-l + sx'y') (B:'-ly'z' + sy' (x'- 1)) (B~'y'-lz' + sx' (y' -1)) · 
(A.5) 

We see that in (A.4) there is no region of variables 
that would make a contribution ~ s-1 , so that 
K3 ~ s -2 , apart from the logarithms. In (A.5) the 
essential contribution is made by small x, x' or 
y, y'; in Fig. 2c, the first region corresponds to 
the absence of an extinction factor s -t in the right
hand and middle lines, the second corresponds to 
absence of such a factor in the left-hand and middle 
lines, but in both cases there remain two "uncom
pensated" lines each, with contribution s -2 • The 
insertions r do not give increasing powers of s 
and do not change the estimates. In similar fashion 
the maximum contribution in the more complicated 
diagrams, for example Fig. 2d, is the one in the 
region of small x, x' , y, y' of the "joining" lines, 
but the number of these lines is not less than three, 
which leads to the estimate Kn ;r;, s-2 • We note that 
the statement concerning a fall-off faster than s -t 
is valid only for diagrams without 2 -particle cuts. 
Ladder diagrams of the type of Fig. 2e are pro-

r-f-p-fl 

f-flp' v' {-pD-p 
f+f 

a b 

FIG. 2. 

portional to s-1 ln s, s- 1 ln2 s and 1/s, respec
tively, as can be seen from a more thorough ex
amination of the contribution of the region of small 
x , y , or more simply from the [-representation 
of these diagrams. Further, the foregoing is valid 
only for each K (n) diagram; if the powers of 
lnns at s -2 , which we did not estimate, were to add 
up, for example, into a Regge-type power sa, then 
the behavior of K(s) at large momenta would have 
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the form sa-2 , but this power is, generally speak
ing, also different from -1 . 

Let us discuss the case (21). For a < 1/4 each 
term of Kn with n > 2 is as before < s-1 , although 
for the simplest diagrams with a small, a-depen
dent, number of virtual lines the essential region 
is now £I ~ s , and not £i ~ 11 ~ , - t . When 
1/4 < a < 1/3 the simple diagrams decrease 
more slowly than s-1 (for example, Kjn ~ s 4a-2), 

but the powers obtained are linear in a and are, 
generally speaking, different from -1. For 
a > 1/3, each new complication of the diagram 
leads to increasing powers of s (at that for 
a 2: 1/3 Eq. (8) ceases to be of the Fredholm 
type), and when a > 1/2 the integrals diverge, so 
that some subtraction procedure is necessary, but 
the powers of s in the individual terms are as 
before, generally speaking, different from -1. 

APPENDIX II 

All the eigenvalues of the kernel K(p, q) are 
positive if for each real IJ;(p) we have [9 ~ 

The condition (A.6) is always satisfied for kernels 
of the type 

K (p q) = 1 d~ dl]g (£, p) g (lJ, q) 
' j[<p(p.s)+<p(q,lJ)+ct 

00 

\ xn-1 dx (' = .\ -----r(n) J d£ d'l]g (£, p) g (1], q) exp {- x [ c:p (p, £) 
0 

+ c:p (q, 1J) + C]}, (A.7) 

if~, T), g, cp are real and cp(p, 0 + cp(q, TJ) 

+ C 2: 0 . In cases k = 0 and k2 » 16 11 2 , the 
kernel (20) assumes the form (A. 7), so that all its 
eigenvalues are positive. 

1 V. N. Gribov, JETP 42, 1260 (1962), Soviet 
Phys. JETP 15, 873 (1962). 

2 V. N. Gribov, Lectures at Nor-Amberd, 1961, 
AN ArmSSR, Erevan, 1962, p. 59. 

3 v. N. Gribov and I. Ya. Pomeranchuk, JETP 
43, 1556 (1962), Soviet Phys. JETP 16, 1098 (1963). 

4 Ja. I. Asimov. Phys. Lett. 3, 195 (1963). 
5 H. Bethe and E. Salpeter. Phys. Rev. 84, 1232 

(1951). 
6 V. G. Vaks and A. I. Larkin, JETP 45, 800 

(1963), Soviet Phys. JETP 18, 548 (1963). 
7 G. Wick. Phys. Rev. 96, 1124 (1954). 
8 Abrikosov, Landau, and Khalatnikov, DAN 

SSSR 95,497 (1954). 
9 V. I. Smirnov, Kurs vysshe'i' matematiki (Course 

in Higher Mathematics) 4, Fizmatgiz, 1958. 
10 s. Mandelstam. Ann. Physics, 19, 254 (1962). 
11 F. R. Gantmakher, Teoriya matrits (Theory of 

Matrices), Gostekhizdat, 1953, p. 323. 
12 V. v. Sudakov, JETP 30, 87 (1956), Soviet 

Phys. JETP 3, 65 (1956). 

Translated by A. M. Bincer and J. G. Adashko 
179 


