
SOVIET PHYSICS JETP VOLUME 18, NUMBER 3 MARCH, 1964 

THE SPACE-TIME STRUCTURE OF THE RELATIVISTIC SCATTERING MATRIX 

Yu. A. GOL'FAND 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor April 6, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 1067-1080 (October, 1963) 

A general, relativistically invariant method is proposed for the construction of the S matrix 
in field theory in which T products are not employed. Based on this method two different 
representations of the S matrix are constructed. It is shown that the problem of construc
tion of the S matrix may be reduced to the solution of a certain set of integral equations. 
The equivalence of the method of construction here proposed with the conventional field 
theory formulation is proven. The unitarity of the S matrix is demonstrated explicitly. 

1. INTRODUCTION 

THE conventional method of construction of the S 
matrix in quantum field theory, which makes use 
of the T product 

S = Texp ~L(x)d4x (1.1) 

[here and in the following we simplify the notation 
by assuming the interaction Lagrangian density to 
be an antihermitian operator: L + ( x) = -L ( x )], 
contains the relativistically not invariant time 
ordering of the operators. The relativistic invari
ance of the T products is insured by the condition 

[L(x), L(y)] = 0 for (x- y) 2 < 0, (1.2) 

which reflects the property of microcausality in 
field theory. However the condition (1.2) does not 
explicitly enter into the definition of the T prod
uct, and this makes it difficult to study the 
"causal" properties of the S matrix written in 
the form (1.1). It is the purpose of the present 
work to construct other representations of the S 
matrix, in which the "causal" properties of the 
theory are more explicitly displayed. 

In the following we shall make great use of the 
concept of a configuration, understanding by a 
configuration 

a set of n points of 4-space. Let us note that the 
configuration is defined by the choice of the points 
Xi independent of their order. Sometimes for no
tational convenience we shall make use (purely 
formally) of the "empty" configuration A 0, which 
contains no points at all. 

The difficulty in the relativistic definition of 
the T product lies in the fact that the configura-

tion An cannot be fully ordered in a natural rela
tivistically invariant way. The T product 

is a symmetric function of the coordinates Xi and 
therefore depends only on the configuration An. 
This circumstance is reflected in the manner in 
which the quantity (1.3) is written. 

Let us consider the n-th term in the expansion 
of the S matrix, Eq. (1.1): 

Sn=n1 !~T{L(An)}dfn (1.4) 

( dr n = d4x 1 ••• d4xn denotes the 4n-dimensional 
volume element). The contribution of each con
figuration An to the integral ( 1.4) is repeated n! 
times. We may therefore write symbolically Sn 
in the form 

Sn = ); T {L (An)}. ( 1.5) 
(An) 

The "summation" in Eq. (1.5) is over all different 
configurations An. 

Expressions of the type (1.5) will be called 
configurational sums. Each configuration is de
fined by certain discrete parameters, which char
acterize the configuration type, and certain con
tinuous parameters-the positions of the points Xi 
that vary within a specified region (see Sec. 3). 
Consequently the summation in ( 1.5) also includes 
the integration over certain continuous variables 
that define the configuration. In concrete cases, 
the integration may be extended over all of space 
without difficulty by making use of the symmetry 
of the integrand function. With the help of the re
lation ( 1.5) it is easy to express the complete S 
matrix, Eq. ( 1.1), in the form of the configurational 
sum 
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S = ~ T {L(A)}. (1.6) 
(A) 

The sum ( 1.6) extends over all possible configura
tions. 

2. THE STRUCTURE OF A CONFIGURATION 
CONSIDERED AS A PARTIALLY ORDERED 
SET 

For points of 4-space one may define a rela
tivistically invariant partial ordering with the help 
of the relation 

x>y. if (x-y)2 ;>0, Xo-Yo>O. (2.1) 

When x and y satisfy the condition (2.1) we say 
that x is later than y or that x follows y. It is 
clear that the ordering condition (2.1) is transi
tive, i.e. if x > y, y > z, then x > z. The condition 
(2.1) is not satisfied for an arbitrary pair of 
points x, y (and thus constitutes partial ordering). 

It is also convenient to define the relation 

x ~ y, if (x- y)2 < 0. (2 .2) 

If x > y then the event x is causally connected 
wfth the event y, and if x ~ y then the events x 
and y are not causally connected with each other. 

The relation (2.1) partially orders any configu
ration of points A. This partial ordering makes it 
possible to define the T product T{L( A)}: if 
x > y then the operator L ( x) stands to the left of 
the operator L ( y); and if x ~ y then the order of 
the operators L ( x) and L ( y) in the T product 
is irrelevant. Such a definition of the T product, 
although fully relativistically invariant, is of 
little use for practical purposes. In order to make 
it more effective it is necessary to study in more 
detail the structure of an arbitrary configuration 
from the point of view of the ordering relation 
(2.1). 

Let us consider first certain special configura
tions. 

Layer-a configuration ca = {xi, ... xa} no 
points of which are causally connected with each 
other, i.e., every pair of points satisfies the rela
tion Xi ~ Xj. In other words all points of a layer 
may be distributed over some space-like hyper
surface a. 

Chain-a configuration Bn = f xi, ... Xn} whose 
points satisfy the condition xi > x2 > ... > Xn· The 
number n will be called the length of the chain. 

Let us introduce now certain ordering relations 
for point configurations which in a certain sense 
generalize the relations (2.1) and (2.2). Let A and 
B be two configurations. We shall denote by a an 
arbitrary point from the configuration A, by b an 

arbitrary point of the configuration B. Let us de
fine the following relations between the configura
tions A and B: 

A ~B, if a ~b, (2.3) 

A ;::;;B, if a> b, or a ~b. (2.4) 

Relations (2.3) and (2.4) are not transitive. Let 
us define now two transitive relations: 

I 

A>B. (2.5) 

if A ;2:, B and every point b proceeds at least one 
point a; 

II 

A>B. 

if A -2: B and each point a follows at least one 
point b. 

(2.6) 

The transitive property of relations (2.5) and 
I 

(2.6) is simply proved. Let, for example, A > B, 

B ! C, then A ! C. First of all A ~ C, because 
if that were not true then there would exist a pair 
of points a and c satisfying the condition c > a. 

However since B ! C one can find a point b > c, 
and consequently b > a, but that is impossible in 

view of the condition A ! B. Let us consider next 

an arbitrary point c from C. Since B ! C one 

can find a point b > c, and since A ! B one can 
find a point a > b. That point a satisfies the con
dition a > c. Thus the configurations A and C 
satisfy all the conditions of the definition (2.5). 
One proves analogously the transitivity of the defi
nition (2.6). 

The ordering relations (2.5) and (2.6) make it 
possible to consider any system of configurations 
as a partially ordered set. At that the orderings 
according to (2.5) and (2.6) are in general different 
from each other. 

If A and B are two configurations then their 
sum A + B is defined as the configuration ob
tained from the union of the points entering into 
A and B. The definition of the sum is generalized 
in a natural way to an arbitrary finite number of 
configurations. 

The fundamental result of the present section 
consists of the following theorem on decomposi
tion. 

An arbitrary configuration A may be expressed 
in two (generally speaking distinct) ways as a sum 
of layers. The first decomposition 

(2. 7) 

satisfies the condition 
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I I I 

cl > c2 > ... > ck; (2.8) 

the second decomposition 

A = c~ + c~ + ... + c~ (2.9) 

satisfies the condition 
II I I II 

c~ > c~ > ... > c~. (2.10) 

The decompositions (2.7) and (2.9) are uniquely 
determined by the configuration A. The number 
of terms in these decompositions is the same and 
equal to the maximum length of a chain contained 
in A. 

The proof of this assertion is carried out as 
follows. We extract from the configuration A a 
set of points Ct for which there are no later 
points [in the sense of (2.1)] in A. Obviously Ct 
constitutes a layer. From the remaining points 
we extract the set of points C2, for which there 
are no later points in the configuration A, except
ing the points Ct. It is clear that every point from 
C2 precedes some point from Ct. Consequently 

Ct J C2• Continuing with this process we obtain 
the decomposition (2.7). The decomposition (2.9) 
is constructed in an analogous fashion except that 
one starts with the lowest layer ck., defined as 
that set of points from A that have no points pre
ceding them. The uniqueness of the decomposi
tions (2.7) and (2.9) follows directly from the 
method of their construction. It is obvious that 
each point of the layer Ck in the decomposition 
(2.7) is the terminal point of a chain of length k, 
and each point of the layer C~ in the decomposi
tion (2.9) is the initial point of a chain of length k. 
The configuration A can not contain chains that 
are longer because if that were the case then not 
all of the terms in the decompositions (2.7) and 
( 2 .9) could be layers. 

In order to get a better idea of the structure of 
a configuration one may make use of diagrams. 
An example of a diagram is shown in Fig. 1. The 
points of the configuration are represented by 
points in the plane. If two points satisfy the rela
tion a > b then they are connected with a line 
directed from b to a. At that if a > b > c, then 
we omit the line ca since the point c is connected 
with the point a by the line cba. In Fig. 1 the 
layers corresponding to the decomposition (2.7) 
are shown as solid lines, and the layers of the 
decomposition (2.9) as dashed lines (these lines 
should not be confused with the directed lines that 
define the ordering!). 

Let us note one more important property of 
configurations which is easily seen in Fig. 1. A 

FIG. 1 

configuration will be called connected if it cannot 
be decomposed into two parts that are not causally 
joined. A disconnected configuration can be de
composed into a number of connected components, 
with the various components no longer causally 
related to each other. The configuration shown in 
Fig. 1 is decomposable into three connected com
ponents. 

3. CHARACTERISTIC FUNCTIONS 

For a quantitative expression of the structural 
relations discussed in Sec. 2 it is convenient to 
introduce the so called characteristic functions. 
In general a characteristic function of some 
property (relation) is defined as a function 
f ( xt, ... xn) which is equal to 1 when all its argu
ments xi satisfy the property in question, and 
equal to zero otherwise. Therefore in defining one 
or another characteristic function it is only nec
essary to specify the range of variation of its 
arguments for which the function is equal to 1. 

In the following we shall need the following 
characteristic functions, which depend on one or 
two configurations and that correspond to the rela
tions defined in Sec. 2: 

Ao(A) = 1, if A is a layer ( 3.1) 

A.0(A,B) = I, if A~B, ( 3.2) 
A(A,B) = I, if A d:B, ( 3.3) 

A!(A,B) = 1, 
I 

if A >B, ( 3.4) 

A~1 (A, B)= I, 
II 

if A>B. ( 3.5) 

A large number of different relations holds be
tween the functions (3.1)-(3.5). For example, 
directly from the definition of layer and the rela
tion (2.3) we obtain for the function (3.1) the rela
tion 

A0(A +B)= A0(A)Ao(B)A.o(A,B). (3.6) 

A function of a configuration will be called 
multiplicative if it satisfies the condition 

f(A + B) = f(A) f(B). ( 3. 7) 

In the Table are shown the multiplicative 
properties of the characteristic functions ( 3.2)
(3.5) that follow directly from their definitions. In 
addition there are given in the third and fourth 
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l.o (A,B) A,B 
A(A,B) A,B 
A! (A,B) B 

A~1 (A,B) A 

columns of the Table the values of the functions 
in the case when one of the arguments stands for 
the "empty" configuration A0• (We use An to de
note a configuration of n points.) It follows from 
Eq. (3.7) that for any multiplicative function f(A 0 ) 

= 1. The remaining values of the functions are 
obtained from Eqs. (3.13) and (3.14). 

The characteristic functions (3.1)-(3.5) can be 
expressed in terms of the elementary character
istic functions corresponding to the relations (2.1) 
and (2.2). The elementary characteristic functions 
depend on two points x, y and are defined by the 
relations 

A+(x, y) = 1, if X> y, 
Xo(X, Y) = 1, if X- Y· 

( 3.8) 
( 3.9) 

The explicit form of these expressions is im
mediately clear from the definition of the functions 
(3.1)-(3.5) and from their multiplicative 
properties given in the Table: 

A 0 (A) = II A-0 (a, a'). (3.10) 

In Eq. (3.10) the product extends over all dif
ferent pairs of points (a, a') from A: 

A-0 (A, B) = II II A-0 (a, b), 
a b 

A (A, B) =II II {A-+ (a, b)+ A-0 (a, b)}, 
a b 

A! (A, B)= II {A (A, b)- A-0 (A, b)}, 
b 

A!1 (A, B) = II {A (a, B)- A-0 (a, B)}. 
a 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Sometimes representations of a different form 
are useful, which express the functions in terms 
of sums over all possible decompositions of the 
given configuration. We give an example of such 
a representation for the function ( 3.3): 

A (A, B)= ~ .~'\!_(A, B') A-0 (A, B"). (3.15) 
B'+B"=B 

The sum in Eq. (3.15) extends over all possible 
decompositions of the configuration B into two 
configurations B' + B", including the cases when 
one of the terms B' or B" is the "empty" con
figuration. 

To prove Eq. (3.15) we make use of the relation 
(3.13) for the case when B consists of one point b. 
We get 

A! (A, b) = A (A, b) - A-0 (A, b) 

or 

A (A, b) =A~ (A, b) + A-0 (A, b). (3.16) 

From Eq. (3.16), making use of multiplicativeness, 
we find 

A (A, b) =II {A! (A, b) + A-0 (A, b)}. (3.17) 
b 

Relation ( 3.15) follows by opening the bracket on 
the right side of Eq. (3.17) and making use of the 
multiplicativeness of the functions A! and i\0 in 
the argument B. 

The main purpose of this Section is to produce 
an explicit representation of the quantity T { L (A)}. 
By making use of the decomposition theorem 
(Sec. 2) we may express an arbitrary configura
tion A in the form of a sum of layers of the type 
(2.7) or (2.9). The following construction applies 
equally to either representation. It is clear that 
in T { L ( A)} there will appear on the left opera
tors L ( x) for points x that belong to the layer 
C1 (in arbitrary order), then those for points that 
belong to the layer c2' etc. 

We shall give an express ion for T { L (A)} not 
for a given specific configuration A, but right 
away for an entire type of configurations Ak which 
according to the decomposition theorem, are de
composable into k layers. The number of points 
in such configurations can be arbitrary but no 
less than k. All configurations of the type Ak may 
be obtained by the following procedure. Consider 
a set of k layers C1, ••. Ck satisfying the condi
tions 

(3.18) 

The sign > in (3.18) stands for either ~ or ~1 . 
Accordingly we shall here and in the following 
sometimes use the function A+ (A, B) (without an 
upper index) with the understanding that it stands 
for either the function A~ of Eq. (3.4) or the func
tion All of Eq. (3.5). Wherever we write the func
tion A+ the corresponding formula is valid in 
both of the indicated cases. 

It is clear that if condition (3.18) is satisfied 
then the configuration 

(3.19) 

belongs to the type Ak and, conversely, all con
figurations of the type Ak can be constructed in 
this way. The characteristic of the condition ( 3 .18) 
is equal to 

(3.20) 
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If the layers C 1, .•• Ck are treated as independent 
variables then the expression (3.20) will be the 
characteristic function of the configuration of the 
type Ak. 

Let us define the operator L ( C ) as depending 
on an arbitrary layer C: 

L (C) = II L (x). (3.21) 

The product in Eq. ( 3.21) extends over all points 
x of the layer C, at that the order of the factors 
in Eq. (3.21) is immaterial in view of the commu
tation relations ( 1.2). Taking into account the pre
ceding remarks we may write the quantity 
T { L ( Ak ) } in the form 

T {L (Ak)} = L (C1) A+ (Cl> C2) L (C2) ••• L (Ck)· ( 3.22) 

Let us emphasize again that the layers C1, ••• Ck 
in expression ( 3.22) are treated as independent 
variables and that, according to Eq. ( 3.20), the 
quantity ( 3.22) is different from zero only if the 
sum (3.19) forms a configuration of type Ak· In 
the construction to follow the relation ( 3.22) will 
play a fundamental role. 

To conclude this section we shall give two 
more specialized relations for characteristic 
functions, which will be used in Sec. 8. Let us 
consider two layers ca and cf3 (in the following 
we shall denote by ca a layer containing a 
points). Let us decompose the layer ca in all 
possible ways into the sum of two sublayers: ca 
= cK + cA.. One of the numbers K or A may, in 
particular, be equal to zero. Let us analogously 
decompose the layer cf3 = CJ-l + C 11 . The relations 
that interest us are of the form 

( 3.23) 

(-It"\~ (C, C'') A~ (C\C')A.0 (C", C') 

( 3.24) 

It is relevant to the validity of these relations 
that ca and cf3 are layers and not some arbitrary 
configurations. For the proof of Eq. (3.23) let us 
note that the configuration ca + cf3 cannot con
tain ·a chain of length greater than two. Hence ca 
+ cf3 is either a layer or can be decomposed into 
two layers. In the first case the only term in Eq. 
( 3.23) that is different from zero (and equal to 
unity) is the term corresponding to A. = v = 0. In 
the general case the situation corresponding to an 
arbitrary relative orientation of the layers ca 
and cf3 is illustrated in Fig. 2a. In this case 

c'l(. :r. c"TST 
cP~ c v 

' b c 

FIG. 2 

there stands out unambiguously from the layer ca 
the sublayer cA.o consisting of all points x from 
ca' for which there exist later points in the layer 
cf3. We may exf.ress the layer ca in the form of 
a sum: ca = c 0 + cKo. Analogously, cf3 = C 110 
+ cl-lo. 

It is easy to show that the relations cKo ! C 11 0, 

CJ-!0 l CAO, CKo ~ CJ-!0 must hold, or, What is the 
same, that the equality 

A~ (C"", Cv') A~ (C~'-•, C1.") A-0 (C''", O'•) = 1 

must hold. The validity of this equality follows 
from the fact that if it were violated then one 
could construct out of the configuration ca + cf3 
a chain of length three, or chains of length two in
volving points belonging to one layer only, which 
is impossible. Thus we have shown that in the 
sum (3.23) one term is always equal to 1. In view 
of the uniqueness of the definition of the sublayers 
cA.o and c 11 o all remaining terms in the sum on 
the left of Eq. (3.23) vanish, and this completes 
the proof of this relation. 

The proof of Eq. (3.24) proceeds somewhat 
differently. The corresponding situation is illus
trated in Fig. 2b. Applying the approach used in 
proving Eq. (3.15) and taking into account the 
multiplicativeness properties \ve may express the 
inner sum in Eq. (3.24) in the form 

~ A~ (C", C~'-) A~ (C1', Cv) "-o (C", C'') 
CI'-+Cv=C•g 

= IT {A~ (C, x) + A; (C', x) A- 0 (C", x}. (3.25) 
X 

The product in Eq. (3.25) extends over all points 
of the layer cf3. But it is easy to show that if the 
layer CCI! = CK + CA, then for an arbitrary point 
x the equality 

A~ (C", x) +A~ (C\ x) A- 0 (C, x) =A~ (CIX, x) (3.26) 

is valid. 
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It is relevant for the validity of Eq. (3.26) that 
the configuration ca is a layer. In that case the 
function Ar( ca, x) = 1 if and only if each point x 
precedes at least one point from the layer ca 
This is clear from the fact that if x precedes some 
one point from ca, then x cannot follow any 
other point from ca either. Utilizing this com
ment and taking into account the fact that no two 
terms on the left side of Eq. (3.26) can simul
taneously equal unity we easily verify the validity 
of Eq. ( 3.26). Making use of Eq. ( 3.26) we may 
express the sum (3.25) in the form Al( ca, cf3) 
and then Eq. (3.24) takes on the form 

~ (- 1 tAl (Ca, C~) = Al (Ca: C~) ~ (- 1 )" (~) 
CX+C"=CO: X=O 

= ba0A~ (C0 , C~) = baob~o· 

We have used here known properties of the bi
nomial coefficients ( f[) and the value of the func
tion Ar( c 0, cf3) given in the Table. 

4. FIRST REPRESENTATION OF THE S MATRIX 

We shall obtain explicit expressions for the S 
matrix starting from the expression for it in 
terms of a configurational sum, Eq. (1.6). These 
expressions will differ by the method used to 
classify the configurations. Let us note that the 
conventional method of representing the S matrix 
in the form of Eq. (1.1) corresponds to the classi
fication of configurations by the number of points 
and is most inconvenient since for an n-point con
figuration An no simple way is known for repre
senting the quantity T{L(An)}. 

In Sec. 3 we discussed the classification of 
configurations by types Ak· The configurations of 
type Ak, containing k layers, may be decom
posed into subtypes Ak ( a 1, ••• ak), where a 1 

denotes the number of points in the upper layer 
c 1, etc. Making use of this classification we may 
rewrite the configurational sum ( 1.6) in the form 

S = 1 + ~ ~ T {L (A1 (()())} 
ct=l 

00 

+ ~ ~ T {L (Az (()(, ~))} + · · · · ( 4.1) 
a, ~~1 

The inner sums in the decomposition (4.1) symbo
lize integration over points of the configuration 
belonging to the given type. The corresponding 
quantities T { L (A)} are defined by Eq. ( 3.22). 

Taking into account that the expression ( 3.22) 
is symmetric with respect to the points within 
any one layer and does not possess any higher 
symmetry, we may extend the integration in Eq. 

( 4.1) to the entire space and introduce at the 
same time compensating factorials. The S 
matrix, Eq. (4.1), takes on the form 

oo 1 I 
S=1+ ~~jL(C")dfa 

Cl=l 

+ ~ cri1~ 1 ~L(C")A+(C",Cil)L(C~)dfa:dr13 + .... 
a,{l=l (4.2) 

Let us remark that the series, Eq. (4.2), is far 
from being an expansion in powers of the coupling 
constant. Additional transformations and simpli
fications of Eq. (4.2) will be discussed in Sec. 6. 

5. SECOND REPRESENTATION OF THE 
S MATRIX 

Let us consider another representation of the 
S matrix based on a classification of configura
tions by their connectedness. Let us denote by 
A ( q) the class of configurations that can be broken 
up into q connected components (see Sec. 2). The 
sum (1.6) may be written in the form 

00 

S = 1 + ~ 2J T{L(A<qi)}. (5.1) 
q=! A(q) 

Let us denote by ~ (c) the contribution to the sum 
( 5.1) of connected configurations: 

( 5.2) 

In order to express the S matrix in terms of 
~(c) we define the operation of /\ 0 product. Let 
F ( A) be a certain operator dependent on the op
erators L ( x) at the points of the configuration 
A, and let G ( B) be an analogous operator de
fined for the configuration B. The operator 

H (A+ B)= "-o (A, B) F (A) G (B) (5.3) 

will be called the /\0 product of the operators F 
and G. Equalities of the form of Eq. (5.3) will be 
abbreviated by 

H = "-o {FG}. ( 5.4) 

The function /\0 ( A, B) in Eq. (5.3) is defined 
by condition ( 3.2) and is different from zero only 
if the configurations A and B are not causally 
connected. Starting from that fact it is easy to 
show that the /\0 product is commutative and 
associative, i.e., possesses the properties of 
normal multiplication. We note that the /\o prod
uct has in fact already been used in the definition 
of the operator L( C) with the help of Eq. (3.21). 

Recalling the definition of a disconnected con
figuration we see that the contribution of discon
nected configurations A ( q) ( q > 1 ) to the sum 
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( 5.1) is expressed as the >..0 product of contribu
tions of connected configurations A (1). This fact 
is expressed by the relation 

~ T {L (A<ql)} = i Ao {~<cl .•• ~<cl}. ( 5.5) 

On the right side of Eq. (5.5) enter q cofactors 
( 5.2). The factor 1/q! compensates for the number 
of equal configurations. 

With the help of the relation (5.5) we may 
formally sum the series (5.1) and represent the 
S matrix in the form 

s = "-o exp ~(c). (5.6) 

Equation (5.6) may turn out to be useful in the 
study of the general "causality" properties of the 
S matrix. 

6. R-OPERATORS 

Extracting from the integrands in Eq. (4.2) the 
dependence of the operators on the coordinates of 
the upper layer ca, we may write the S matrix 
in the form 

S = 1 + ~ ~ ~ R (C") dfc,, (6.1) 
a:=l 

where R ( ca) are certain operators defined on 
the layer ca. Keeping in mind the structure of the 
decomposition ( 4.2) we can derive a set of integral 
equations that must be satisfied by these operators: 

We note that the Eqs. (6.2) may describe two 
different sets of operators depending on whether 
we classify the configurations according to the 
decomposition (2.7) or (2.9). In the first case we 
must set A+ = A l and we get the operators R:I 
and s1, in the second case we must set A+ = All 

and we get Ru and Su. The use of the A+ func
tions and of operators without roman subscripts 
is meant to indicate the validity of the relation for 
both cases. 

Taking into account the condition A~( ca, c 0 ) 

= 1 (see the table) and setting RI ( C0 ) = 1 we may 
rewrite the expression for 81 in a more compact 
form: 

s, (C") = ~ ~! ~A~ (C", C~) RI (C~) df[l. (6.3) 
~~o 

The analogous expression for the operator Sn is 
not valid. 

If we extract from the integrands in the series 
( 4.2) the dependence on the coordinates of the 

lowest layer we shall obtain a different repre
sentation of the S matrix: 

00 

S = 1 + ~ ~~R' (C") dl'a, (6.4) 
C£=1 

with the operators R' satisfying the set of equa
tions 

R' (C") = S' (C") L (C"), 

S' (C") = 1 + ~ ~~ ~ R' (C~) A+ (C8 , C") dl'il. ( 6.5) 
[l~l 

It is clear from Eq. (6.2) that the operator R( ca) 
may be expressed in the form of a configurational 
sum 

The summation in Eq. (6.6) extends over all con
figurations A ( ca) which have a fixed layer ca 
as their highest layer in the decomposition (2.7) 
or (2.9). 

In the following we shall need a more detailed 
relation for the operators R (''double'' relation). 
This relation is of the form 

RI (C(J. + C9) 

= L (C") "-o (C"' C8) ~ ~! ~A~ (C"' C') RI (C9 + C') df) .. 
1-~o (6.7) 

We note that for {3 = 0 the relation (6.7) coin
cides with (6.2), and for a= 0 it turns into an 
identity. In order to prove Eq. (6.7) we make use 
of a representation of the type (6.6) in which the 
upper layer is taken in the form of a sum of two 
parts. Let us denote by Aab ( ca + c/3) configura
tions with the upper layer ca + c/3 having the 
property that the maximum length of a chain that 
starts with a point from ca is equal to a, and the 
maximum length of a chain starting with a point 
from c/3 is equal to b. In that case the sum (6.6) 
may be rewritten in the form 

00 

R, (C" + C8 ) = ~ T {L(Aab (C" + C9))}. (6.8) 
a, b=J 

Substituting Eq. (6.8) into the right side of Eq. 
(6.7) we get 

00 00 

~ T {L (A1. b (C" + C9))}+ ~ T {L (Aa+J. b (C" + C9))} 

b=J 
00 

= ~ T {L (Aab (C" + C8 ))} = R1 (C" + C ), 
a, b~J 

i.e., the left side of Eq. (6.7). 
Relation ( 6. 7) is valid only for the operators 

RI. An analogous relation may be obtained for the 
operators Rh satisfying the relations (6.5). 
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7. EQUIVALENCE WITH THE CONVENTIONAL 
METHOD OF CONSTRUCTION OF THE S 
MATRIX 

We shall show that the S matrix defined by the 
relations (4.2) or (6.1) is identical with the S 
matrix of quantum field theory obtained by con
ventional means. To this end we note that all 
previous relations remain valid if integration over 
all of space is replaced by integration over a 
region bounded by a fixed space-like hypersurface 
cr. We can define the operator 

co 1 ~ 'l 

S [a) = ~ -;!)PI (C) dl'~. (7 .1) 
G(:-:o;Q 

We show that the operator (7.1) satisfies the 
Tomonaga-Schwinger equation. [t, 2] To this end we 
first establish the following important property of 
the operator RI ( ca): if the layer ca lies in its 
entirety below the surface cr then the operator 
RI ( C a ) is independent of a. In other words 

(7.2) 

The validity of relation (7 .2) follows from the 
representation of the operator RI ( ca) in the 
form of the configurational sum (6.6). If the layer 
ca lies below the surface a then this result is 
valid also for any point of the configuration A ( ca), 
therefore the region within which points of config
urations of the type A ( ca) may vary is deter
mined by the layer ca itself and does not depend 
on the surface cr. From here (7 .2) follows im
mediately. Taking Eq. (7 .2) into account we may 
write the variational derivative of the operator 
S [a] in the form 

tJS l~l = ~ -~?\.PI (x + C!l)df!l. 
6J (x) LJ ~I 

{3=0 ~ 

(7.3) 

We now use the equality (6.7), summing its two 
parts over all layers cf3 that lie below the sur
face cr. We get the relation 

§ W~ PI (Ca.+ C~) dl'!l 
/l=O • 

= L (Ca.) §~~A (Ca., C) PI (C)dl',... (7 .4) 
,=0 

[in the derivation of (7 .4) use was made of (3.15)]. 
If in Eq. (7 .4) the layer ca consists of one 

point x, and that point lies on cr, then it follows 
from the property of the A function, A (x, C 7 ) 

= 1, that 

From relations (7 .3) and (7 .5) follows the Tomon
aga- Schwinger equation: 

oS [a )/ocr (x) = L (x) S [a). (7 .6) 

This proves the equivalence of the method pro
posed here for the construction of the S matrix 
with the generally accepted method. 

8. BILINEAR RELATION BETWEEN THE 
OPERA TORS R + AND R 

In this section we obtain a relation between the 
operators R + and R that does not involve the L 
operators. One of the consequences of this rela
tion is the unitarity of the S matrix; consequently 
it may be useful in attempts to construct a field 
theory without the use of a Lagrangian L. 

We write the relation ( 6. 7) in a form analogous 
to (6.2): 

co 

p (Ca., C8)= Ao (Ca., C0 ) ~ -,~, ~A~ (C", C') PI (C0 + c'·) df),. 
),=0 

( 8.1) 

The hermitian conjugate operator R f satisfies 
the relation 

Pi (CO.+ C0) = p+ (Ca., C{l) L+ (C). (8.2) 

Since L + ( ca) = ( -1 )aL ( Ca) we may eliminate 
from Eqs. (8.1) and (8.2) the operator L ( ca) and 
arrive at the equality 

Pi (CO.+ cfl) P (C", C') = (-It p+ (C\ cfl) PI (Ca.+ C). 
(8.3) 

The relation (8.3) is bilinear with respect to the 
operators Rj and RI· 

The unitarity of the S matrix is proved by 
means of the following calculation. We multiply 
both sides of (8.3) by the function Al ( C Y, c/3) 
and sum over all layers ca, cf3, C Y .. The summing 
of the right side yields 

X A~ (CY, C{l) dC:<+:3ml. = ~ pt~! ~ R.t (CP) P1 (C") 

x{ ~ ~ A~(C"',C 1')A!(C< Cfl)A0 (C",CY)} 
cx+c·G=CP CY +C'=C" . 

C0 0 

"-' t l' ,, [ I 
..:..J 3T \ PI (x + C) dr,, -~ L (x) s a . 

Here we have used relation (3.23). Summing the left 
(7.5) side yields 

{l=O' • 
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= ~ c;!lp! ~ Rt (C") RI (C) 

X { ~ ~ (-1)'" Al (C~, CI-)Al 
C7·-ccc'' =CP cB+c'·=C0 

x ( C\ cB) Ao ( c~, C0)} dra+p 

"'V &ao•\o \' + a p = .tJ GYP!.) R1 (C )RI (C )dradrp = 1. 

Here we have used relation ( 3.24). 

9. CONCLUDING REMARKS 

Let us indicate possible ways in which the 
methods and results of this work may be extended. 
They may be divided in three groups. 

1. The analysis of the configuration structure 
(Sec. 2) and the resultant representations of the S 
matrix (Sees. 4 and 5) and the R operators (Sec. 
6) are in substance based on relativistic causality 
in the field theory. Since the causality conditions 
are first formulated in terms of space-time it is 
natural to construct the theory in the x-represen
tation. As is known, causal properties of the 
theory in the x-representation find their reflection 

in analyticity properties of the corresponding 
quantities in the p-representation. Consequently 
one of the main problems consists of the tran
scription of our results into the p-representation. 
It is to be expected that in this way one will obtain 
more complete information than has been hitherto 
possible on the S-matrix analytic properties that 
are due to causality. 

2. The proposed formulation of the theory of 
the scattering matrix opens up new possibilities 
for the construction of generalized field theories. 
For example, Eq. (8.3) may be taken as one of the 
basic relations in attempts to construct a theory 
of a unitary S matrix without use of Lagrangians. 

3. Lastly, the method of configurational sums 
widely used here may also be utilized for the con
struction of approximate theories. To this end the 
summation would be extended over some subgroup 
of configurations instead of all of them. 
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