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The amplitude is obtained for quasiclassical scattering in a centrally symmetric field into 
classically unattainable angles. The position of the Regge poles and the asymptotic behavior 
of the scattering matrix in the complex angular momentum plane are investigated for a cer
tain class of potentials U ( r) at energies E satisfying the conditions: E » I U ( r) I along the 
real axis and A.« a (A. is the wavelength of the incident particle). 

1. FORMULATION OF THE PROBLEM 

WHEN a classical particle is scattered by a weak 
potential field ( U « E ) there exists a limiting 
scattering angle e0( E). From the classical point 
of view the particle cannot be deflected by an angle 
greater than e0( E). In quantum mechanics there 
can arise no restrictions on the scattering angles, 
and there always exists a small, but finite, proba
bility of scattering into the range of nonclassical 
angles e > e0( E). 

The very formulation of the problem of scatter
ing into the range e > e0 makes sense only for 
quasiclassical particles whose wavelength A. is 
considerably smaller than the characteristic di
mensions of the potential a. Indeed, the quantum 
uncertainty in the scattering angle is of order A./ a, 
and if this quantity is not small compared to e0 

there is no sense in speaking of a limiting angle 
of scattering. 

At very high energies (conditions for this will 
be found in greater detail later) the Born formula 
can be used for the scattering amplitude f( e) 

m \ i r f (8) = 2:t .) e q U (r) dv, (1.1) 

where q = k2 - k1, ~. k1 are the momenta of the 
particle before and after scattering, m is the mass 
of the particle. Of interest is that range of ener
gies in which the Born approximation is not appli
cable. However, certain important conclusions can 
be drawn from the Born approximation. In the 
spherically symmetric case formula (1.1) as
sumes the form 

00 

f (8) =2m~ U (r) sin qr rdr. 
0 q 

(1.2) 

For large q the scattering amplitude falls off in 

accordance with a power law as q increases if 
U ( r) has singularities on the real axis or is odd. 
But if U ( r ) is an even analytic function without 
singularities on the real axis, then f( e) is an ex
ponentially small quantity for not too small values 
of e. 

In the region in which the Born approximation 
is not applicable it has been customary to use 
adiabatic perturbation theory [t, 2]. In the case of 
a nonanalytic or an odd potential the first nonvan
ishing approximation of this theory apparently 
yields the correct result. However, in the case 
of an analytic even potential it turns out that all 
the approximations of adiabatic perturbation the
ory give contributions to f( e) of the same order. 
Here a situation arises analogous to that investi
gated in the case of the problem of reflection by 
a one -dimensional potential at energies above the 
barrier [a]. 

In this paper we investigate scattering into the 
range of nonclassical angles by an even analytic 
potential U ( r ) . As will be shown later, in the 
case of a potential which falls off sufficiently 
rapidly at infinity the principal role is played by 
the singularities of the potential closest to the 
real axis. We shall assume that these are simple 
poles. In virtue of the fact that U ( r) is real along 
the real r axis and is even, there will be four such 
poles at points ± r 0, ± r6'. We shall denote by R 
the residue at the point r 0 ( 0 < arg r 0 < 7!/2 ). 

As our starting point we use the well known 
Faxen-Holtsmark formula 

f (8) = 2~k ~ (2l + 1) e 2i 81 P1 (cos 8). 
1=0 

(1.3) 

With the aid of Watson's transformation [4J, which 
has recently found wide application in the physics 
of high energy particles, we transform the sum 
(1.3) into the integral: 
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1 \ dv 
f (6) =- 2k ~ VS (v) pv-'f, (-COS 6) COSV1t, 

r 
(1.4) 

where the contour r encompasses the real semi
axis of v as shown in Fig. 1, while S ( v) denotes 
the function exp ( 2iov_l) continued analytically 

2 
from half-integer positive values of v to the 
whole complex plane. 

Without making any claim as to rigor, we de
scribe the general idea of the calculation. We be
gin with the range of the classical scattering angles: 

'Afa<B<B0 • (1.5) 
In this range after the contour of integration has 
been suitably transformed the integral (1.4) must 
be evaluated by the saddle-point method [SJ. For 
each scattering angle fJ there will be found two 
real saddle points v1 ( fJ ) , v2 ( fJ ) -two real impact 
parameters corresponding to the given scattering 
angle (we recall that particles passing through the 
center of the potential and at infinitely great dis
tances are not deflected ) . At fJ = fJ 0 the two im
pact parameters coincide and v1 = v2• As the angle 
is increased further the saddle points move into 
the complex v plane and f( fJ) becomes exponen
tially small. 

Thus, the calculation of f( fJ) must be preceded 
by an investigation of the analytic properties of 
S( v) in the complex v plane. In an earlier paper 
[6] 1> a method was developed for investigating the 
asymptotic behavior of S( v) in the quasiclassical 
case based on a study of the behavior of the solu
tions of Schrodinger's equations in the complex r 
plane. We shall investigate the analytic properties 
of S( v) with the aid of this method. 

For convenience we shall write out the formulas 
relating S( v) to the coefficients Av. Bv and av, 
bv: 

S ( ) . ivreA /B -1 • lvnb / 
'V = le v v = av + le ., av. (1.6) 

The coefficients Av, Bv, av, bv define the asym
ptotic behavior of the functions jv, hU>: 

r-+ 0 
(1. 7) 

r-+ + oo 

(1.8) 

All the definitions and notation which are not ex
plained in the text of the present communication 
have been taken over from [6]. 

1>We shall hereafter denote references to formulas from 
this paper by the numeral I preceding the number of the formula. 

FIG. 1 

2. THE POLES OF S(v) (REGGE POLES) 

The poles of S( v) coincide with the zeros of 
the integral functions Bv and av in consequence 
of formula (1.6). Of course, not all the zeros of 
av are at the same time poles of S( v); if av0 = 0 
then the pole is either at the point v0 or at - Vo 
( cf., [6J). First of all we note that Bv certainly 
does not vanish if there do not exist at least two 
singularities lying on or near a line of a given 
level. Indeed, let us consider the line belonging 
to the lowest level which passes through a singular 
point in the upper half-plane and +oo (the lines 
passing through r 1 in Fig. 2 ). 2> On one of the 
branches of this curve j v is represented by a 
single exponential. As a result of going around a 
singular point and passing onto a branch leading 
to + oo an exponential increasing in the upward 
direction always appears. 

From this argument it follows also that Bv 
vanishes only in the case when two singular points 
lie on the line belonging to the lowest level which 
passes through the singular points and goes to
wards + oo. If v lies in the upper half-plane then 
the zeros of Bv occur when r 1 and r2 lie on a 
line of the same level. In this case two different 
configurations are possible: r 2 lies on a branch 
of the line of the [ 0, r 1 ] level (Fig. 3) or on a 
branch of the line of the [ + oo, r 1 ] level (Fig. 4). 

FIG. 3 FIG. 4 

2>we recall the definitions of the complex turning points [•]: 
R • R• 

fl=vjk, '•=ro+ k•-v•fr~' rs=-ro- k•-v•;r~2 • 
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FIG. 5 FIG. 6 

The former configuration corresponds to poles 
lying on the line Li in the v plane (Fig. 5). The 
line Li is defined by the equation 

(2.1) 

It leaves the neighborhood of the point 3> v = kr0 

and proceeds upwards being for large values of v 
asymptotically parallel to the imaginary axis. The 
latter configuration (Fig. 4) corresponds to poles 
lying on the line L2 in the v plane (Fig. 5). The 
curve L2 is defined by the same equation (2.1). It 
goes from the point v = kr0 downwards and to the 
left approaching the real axis at values of v close 
to vi, where vi is the negative real value of v for 
which the boundary of the "eye" ( cf. [6], Sec. 3) 
passes through ± r 0 and ± rti (Fig. 6). Beyond the 
point vi (2.1) formally yields solutions lying in the 
lower half-plane of v. Actually Bv has no zeros 
at such values of v. 

If v lies in the lower half-plane, then a level 
line which passes through r 2 necessarily inter
sects the cut associated with the pole - r3' (Fig. 7). 
Therefore, for Im v < 0 ( Re v < 0) we must re
quire that the points ri and ra (or, what is the 
same thing, - ri, - r 3 ) should lie on the same 
level line (Fig. 7) 

(2.2) 

The poles corresponding to the configuration of 
Fig. 7 lie on the line La (Fig. 5) defined by (2.2). 
The line La intersects the real axis at the point vi. 

We have indicated the lines of poles in the com
plex v plane. However, we have not as yet inves
tigated the real v axis. For real values of v the 
points r 2, r 3 always lie on a line of the same level. 
But for I vI < I vii this level line goes from + oo to 
- oo (Fig. 8). Therefore, the coefficient av of the 
exponential Z + which increases downwards is not 
altered. From this it follows that av ~ 0 and S( v) 
has no poles. 

The configuration for real I vI > I vii is shown 
in Fig. 9. If v > 0, then jv increases with increas
ing r and at the upper boundary of the "eye" is 

3>Near v = kr0 all three points ro, q, rz can be near one 
another (cf., (6 ], Sec. 5). 

FIG. 7 

FIG. 8 FIG. 9 

represented by a single exponential increasing up
wards. This exponential also does not vanish for 
Re r- + oo. Consequently, also in this case Bv 
~ 0. But if v < 0, then jv decreases with increas
ing r, and the arguments used by us fail. Thus, 
Regge poles can also lie near the real axis for 
Re v < vi. In this case it is more convenient to 
investigate the position of the zeros of av. Since 
there are no poles for v > 0, then poles of S( v) 
correspond to all the zeros of av near the negative 
semi-axis. 

We now derive the equations which determine 
the position of the Regge poles. We assume that 
U' = ( v - kr 0 ) /kr 0 is sufficiently great: 

o~V,.U0 1E for (UoiE)'1'kr0 ";?> 1, 

o > (kr0)'1' for (U0 1 E)"'kr0 ~ 1. 

Then, as shown in Sec. 5 of [6], the points ri and 
r 2 are far from each other. For the sake of defi
niteness we consider the configuration of Fig. 3. 
The function j v is represented on the segment 
[ 0, r 2 ] in the form 

jv (r) = N (v) Z+ (r, r1)· (2.3) 

Further, after going around r 2 we have on the 
segment [ r 2, ri] 

jv = N (v) e1<r,,r,) (Z+ (r, r2)- F (~J Z_ (r, r2)). (2.4) 

Finally, after going around ri we have on the seg
ment [ri, +oo] 

jv = N (v) (Z+ (r, r1) + iZ_ (r, r1) - e21<'•·'•>F (~2) Z_ (r, r1)). 

The condition Bv = 0 assumes the form 
(2.5) 

(2.6) 

Equation (2.6) can be conveniently written in the 
following form 

(r2 , r 1) = nn + +n + fi In F (~2). (2.7) 
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In the case of not too high energies ( r 2, r 0 ) 

» 1, for example, the case U0kr0 /E » 1. In this 
case I ~21 » 1 and F(~ 2 ) = -i. Then equation 
(2. 7) formally coincides with Bohr's condition. In 
the opposite limiting case I (r2, r 0 ) I « 1, when 
the Born approximation is applicable to radial 
functions, it follows from (1.4.4): 

(r2 , r1) = (n + +) n ++iin (2n£2). (2.8) 

From formula (2.8) it follows that for high ordinal 
numbers the poles logarithmically approach each 
other ( o 11 "' 1/ln n ) and Re 11 increases like 
Im 11/ln 11. 

The series of poles lying near the curve L2 

(Fig. 10) is associated with the configuration of 
Fig. 4. The equation which determines the poles 
of this series is derived in a manner analogous to 
(2. 7) and has the form 

(r2, r1) = nn + + n- i iln F (£2)· (2.9) 

There exists some arbitrariness in the choice 
ofthe sign of Pw In connection with this we can 
assume that both series are numbered by positive 
values of n. Another possibility consists of as
cribing positive numbers to one of the series and 
negative numbers to the other. The last possibil
ity is convenient at high energies. In this case all 
the solutions of (2.8) correspond to I ~ 2 1 » 1. 
Therefore, formula (2.8) describes continuously 
both series of poles in going over from positive 
to negative values of n. 

It is natural to call the series of poles situated 
near the curve L2 the physical series, since at 
negative energies in the case of a potential well 
these poles correspond to bound states (an analo
gous situation is investigated in detail in [7J). We 
shall call the series of poles situated along L the 
f . t 
1rst unphysical series, and we shall call the poles 

associated with L3 the second unphysical series. 
The equation for the poles of the second unphysical 
series has the form 

(2.10) 

The point rt is situated on the unphysical sheet 
below the cut from r = 0. 

For the investigation of the poles situated near 
the real axis for Re 11 < lit we shall find the quan
tity a 11 . The solution hV> increases as we move 
from Re r - + oo to the segment of the line of the 
level [r2, -raJ (cf., Fig. 9). Along [r2, -raJ the 
function h1,0 has the form 

hS1> = Vli ei(+oo.r,) z+ (r, r2)· (2.11) 

In going around first the point r 2, and then ra, we 
obtain along the segment [ ra, - r 2 J: 

h~1 > = Vk e-i(+oo,r,) {i''•·'•>z+ (r, r a)+ [F(£a) /''•·'•1 

+F(£2) e-i(r,,r,)) Z_(r, r3)}. (2.12) 

Wenowgoontotheboundary of the "eye" above 
the cut. In this case Z_(r, ra) increases, while 
Z + ( r, r 3 ) diminishes, so that at the boundary of 
the ''eye'' there remains only the function 
Z_(r, ra), if its coefficient is not equal to zero. 
In going around the point r t ~ 11 /k we again obtain 
two exponentials, so that for r < rt along the real 
axis h~0 has the form 

h~1> = Vk e-t(+oo.r,)-i(r,,r,> (F (£a) i''•·'•> + F (£2) e-i(r,,r,>) 

(2.13) 

It can be seen from (2.13) that in order for a 
to vanish it is necessary that the following equa~ 
tion be satisfied 

F (£s) /''•·'•> + F (£2) e-i(r,,r,> = 0, (2.14) 

and this can be rewritten in the equivalent form: 

(ra, r2) = (n + ±) n -f i In [F (£2) IF (£a) I. (2.15) 

For l11 I » l11t I "' I kr0 I we obtain from (2.15) 

'Vn =- (n + ±) n/(n- 2cp0), (2.16) 

where cpo = arg r 0• The distance between neighbor
ing poles is equal to 1r I ( 1r - 2cp 0 ). We note that it 
tends to infinity as the poles of U ( r) approach the 
imaginary axis. In the region l11l "' l11tl the dis
tance between the poles increases somewhat. 

Within the limits of its accuracy formula (2.15) 
yields purely real values of 11. But it was shown 
in Sec. 2 of [SJ that the poles cannot be real. In 
actual fact the poles near the real axis do have 
small imaginary parts, but in order to find them 
we must improve the accuracy of the method, and 
as a result of this it becomes more complicated. 
Since we shall not subsequently need to know the 
exact position of the poles, we shall investigate 
them only qualitatively in order to elucidate the 
relation between the poles of the physical and of 
the second unphysical series and the poles lying 
on the real axis. 

We denote by nt (E) the number of poles of the 
physical series from kr0 to lit· Up to quasiclas
sical accuracy this number coincides with the or
dinal number of the pole nearest to lit: 

n1 (£) = ~' p" dr 
v;lk 

(2.17) 

(here we approximately replace r 1 by llt/k). 
Further, we denote by n2 ( E ) and na ( E ) the num
bers of poles of the second unphysical series and 
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of the series near to the real axis which are clos
est to v1• From (2.10) and (2.15) we obtain approx
imately 

r, r, 

1?2 (£) = ~ [iv dr, n3 (£) = \ Pvdr. (2.18) 
VI,'/(, r, 

From (2.17) and (2.18) it follows that 

(2.19) 

Relation (2.19) is an expression of the "law of 
conservation" of the number of poles. 

The general picture of the motion of the poles 
appears in the following fo.r:m. The poles situated 
near the real axis and above it move away from 
the real axis as the energy is increased and move 
upwards following the point kr0• The breaking away 
occurs at the moment when the point v1 approaches 
the pole. The poles which are far away from v1 
are all situated above the real axis, and almost do 
not move at all until the point v1 reaches them. 
The poles of the second unphysical series move in 
the direction towards the real axis as the energy 
increases. After each successive pole of this 
series has approached the real axis (to within a 
distance of the order of unity ) it begins to move 
along the real axis and below it in the direction of 
I v 1. 

Schematically the position of the poles is shown 
in Fig. 10. It is natural to include all the poles 
lying near the real axis and above it in the phys
ical series and all those lying below the real axis 
in the second unphysical series. 

We now consider the neighborhood of the point 
v = kr0• Here we shall require more specific as
sumptions about the relations between the param
eters. We consider two cases ( cf., Sec. 5 of [GJ). 

A. (U0 /E) 314 kr0 » 1. In this case any two sin
gularities are far from one another. If these dis
tant points are turning points, then the equation 
which determines the poles has the previous form 
(2. 7). But if the turning points are close, then in 
accordance with (1.4.5)-(1.4. 7) the poles of S( v) 
are determined by the equation 

1/f (i-- TJ) = 0 (2.20) 
or 

:rtl] = (r2 , r 1 ) = (n + -b :rt. (2.21) 

Condition (2.21) is joined onto (2. 7) for large 17· 
The turning points become close when v is close 
to the points kr0 ( 1 ± i -J 2U0 /E ). Consequently, 
the physical and the first unphysical series origi
nate in these particular points. The first poles 
will be at a distance of the order of unity from the 
indicated points and from each other. The position 
of the poles at the beginning of the series is shown 
schematically in Fig. 11. 

B. ( U0 /E )314 kr0 ~ 1. In this case inside a 
circle of radius ( kr0 ) 213 about the point v = kr0 

all three singular points are close to each other, 
and we cannot indicate any poles lying inside this 
circle. 

We evaluate the residues at the poles of S( v ). 
In order to do this it is necessary to evaluate sep
arately the coefficients Av, Bv and then to find the 
value of the residue 

Res S (v) = Avn I (dB"n I dv). (2.22) 

Without reproducing the calculations we quote the 
results. For the poles of the first unphysical 
series and for the complex poles of the physical 
series we have 

[ (' dr l- 1 . Res S (vn) = - ie21 (+co,r,) 2v ) r2pv e'"~ · (2.23) 
r, 

For the poles of the second unphysical series we 
have 

•. r;' d -1 

I\es S (vn) =- ie2i(-oo,r,l l.2v \ --/--] e1"~. 
._ r fl.) 

r, 
(2.23') 

For v ~ kr0 the absolute values of all the residues 
are of order of magnitude unity and do not contain 
exponentially small or exponentially large factors. 

The zeros of av can be easily obtained if we 
show on the same diagram the poles of S( v) and 
S ( - v) (Fig. 12). In order to evaluate the residues 
of bv/av we utilize formula (1.2.16). 

j [S (v)- S (- v)l = -sin v:rt (bv I a,). (2.24) 

Since the residues of S( v) are of order of magni
tude unity, then for I Im v I » 1 the residues of 
bv/av are exponentially small. 

3. BEHAVIOR OF S( v) IN THE COMPLEX PLANE 
AND THE CHOICE OF THE CONTOUR OF IN
TEGRATION 

It is necessary to investigate the behavior of 
S( v) only in the upper half-plane of v, since the 
unitarity condition (1.2.17) enables us to continue 
S( v) into the lower half-plane of v. We now obtain 
the quasiclassical asymptotic behavior of S( v ). 
This asymptotic behavior turns out to be different 
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FIG. 13 

in different regions of the upper half-plane. The 
boundaries of the regions are formed by lines of 
poles and of zeros (we recall that the lines of 
zeros are symmetric to the lines of poles with 
respect to the real axis ) . The picture of the re
gions in the v plane having different asymptotic 
behavior of S( v) is shown in Fig. 13. 

In region 1 the usual quasiclassical expression 
(1.6.16) for S(v) holds: 

(3.1) 

In region 2 we obtain by methods indicated in Sec. 6 
of [GJ 

S (v) ..• -iF (sz) e2t(+oo, r,)+tvcc • (3.2) 

Finally, in region 3 we have 

s (v) ~~ e2l(+oo.-r,)+iv". (3.3) 

In region 1 the function S ( v ) - 1 as lv I - oo • 

In region 2 as lv I - oo S ( v) falls off at different 
rates in different directions. If we move along the 
line L1 the magnitude of S ( v ) does not decrease 
at all. Along the line L[ it decreases like 
exp (iv*1r ). In region 3 as lv I - oo S( v) every
where falls off like exp ( i v1r). Correspondingly in 
the lower half-plane in region 1 * the function S( v) 
- 1; in region 2* it increases differently in dif
ferent directions (from 1 along L{ to exp (- iv1r) 
along La) and in region 3 * it increases like 
exp (- iv*1r ). 

The asymptotic behavior of the even part Ss ( v) 
and of the odd part Sa ( v ) of S ( v ) can be easily 
obtained if we know the asymptotic behavior of 
S ( v). The boundaries for the applicability of the 
different asymptotic forms for Ss ( v) and Sa ( v) 
can be obtained if we show on the same diagram 
the boundaries for the different asymptotic forms 
of S( v) and S(- v ). In each of these regions the 
asymptotic form of Ss ( v), Sa ( v) coincides with 
the asymptotic form of the larger of the quantities 
1,12 S( v); ± 1,12 S(- v ). We note that the magnitude of 
bv/av does not increase as lv I- oo. Indeed, 
bv/av = -Sa(v)/sin v1r, and the function Sa(v) 
does not increase faster than sin v1r. 

The knowledge of the asymptotic behavior of 

S( v) enables us to determine how we can deform 
the contour of integration r in the formula (1.4) 
(Fig. 1). For convenience we write out once again 
Watson's integral: 

1 r dv f (8) = - 2k \ V S(v) P v-'/, (--COS 0) cos vrt . 
-r 

(3.4) 

We quote here well known formulas which deter
mine the asymptotic behavior of Legendre polyno
mials for large complex values of v: 

P,_,1, (-cos 0) = V 2 I JtV sin 0 cos [ v (Jt - 8) - Jt/4]. 

(3.5) 

We shall show that by suitable deformation it is 
always possible to make the contour r (Fig. 1) 
symmetric with respect to the point v = 0. Indeed, 
in the upper half-plane of v the function S( v) does 
not increase. The convergence of the integral is 
guaranteed by the factor exp (ive ), and the contour 
r can be arbitrarily deformed in the upper half
plane. Of course, in doing this it is necessary to 
take into account the residues from the poles which 
cut across the contour in the course of the defor
mation. In the lower half-plane the contour cannot 
be placed arbitrarily, since S ( v) increases in re
gions 2 *, 3 *. The contour can be pulled in the di
rection La (Fig. 13) only as long as S( v) grows 
not faster than exp (- ive ). But such a curve can 
always be found between L[ and La. Therefore, 
it is always possible to deform the contour r into 
the contour r1 symmetric with respect to v = 0, 
so that in the course of deformation it will only 
cut across poles belonging to the first unphysical 
series (Fig. 14). 

In the integral over r 1 we can replace S ( v ) 
by the odd part Sa ( v) in virtue of the parity prop
erties of the integrand. Thus, our transformations 
have led to the following expression for f( e): 

1 ~ dv t (6) =- 2-k vSa (v) Pv-'f, (-cos 6) ---cos vn 
r. 

where the summation is taken over the poles of the 
first unphysical series. 

FIG. 14 
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4. THE FUNCTION h~1 > AND QUANTITIES 
ASSOCIATED WITH IT 

We begin by calculating the integral I over the 
contour r 1 occurring in the first part of formula 
(3.6): 

1 r dv 
I = - 2:-k I vSa (v) Pv-'.l. (- cos 0) ---

-' 2 cos '\'Jt r. 

cc ~ ~ V tg 'Vl't /!, P v-•;, (- COS 0) dv. 
.... • av (4.1)* 

If we make use of the quasiclassical asymptotic 
behavior of Sa ( v) obtained in Sec. 3, then we can 
show that the integrand in (4.1) does not have a 
saddle point. 

The absence of a saddle point is associated with 
the fact that in region 2 (Fig. 15) the quantity Yv 
= bvlav has the asymptotic behavior 

rv ~e2i(r,,-oo), (4.2) 

while in region 3 in the same figure we have 

(4.3) 

If we formally obtain the saddle point Vst in the 
integral (4.1) with the asymptotic behavior (4.2), 
then it turns out that Vst = kr3 cos ( 8/2 ). Conse
quently, Vst lies in region 3 of Fig. 15, but in this 
region the asymptotic behavior (4.2) is not appli
cable. And if we obtain the saddle point by utilizing 
the asymptotic behavior (4.3), then it turns out to 
be equal to kr2 cos ( 8/2 ), and lies in region 2 
where the asymptotic behavior (4.3) does not hold. 

In order to overcome this difficulty it is neces
sary to break up Yv into two terms y2v, Yav• so 
that y2v would have the asymptotic behavior (4.2) 
in region 2, while Yav would have the asymptotic 
behavior (4.3) in region 3. We emphasize that this 
decomposition must be exact, and not approximate, 
since one of the terms is exponentially greater 
than the other one, so that any inaccuracy in the 
determination of the greater one exceeds the value 
of the smaller term. 

In order to carry out this program we define 
the solution h~1 > of the Schrodinger equation in 
such a manner that in the first nonphysical sheet 
below the cut associated with the point r 0 this so
lution should behave like h~1 > in the physical sheet. 
Then in the physical sheet the asymptotic behavior 
of h~0 will be the following: 

h~l) = {~vel.kr + ~ve-~kr r -> + 00 

ave'kr + bve-lkr r ->- 00 
(4.4) 

From (2) follows the connection between 11~1 >, h~0 , 
h (2). 

v . 

*tg =tan. 

Ji ~l) = avh~l) + ~vh~2). ( 4. 5) 

Between the coefficients which determine the 
behavior of hV>, h~2 >, h.~ll at infinity [ cf. definition 
(I.2. 7)] there exist the following relations 

a= lid -be, 
~=db -ba 

(4.6) 
(4. 7) 

(here we have utilized the fact that the Wronskian 
is constant). From (4.5) and (I.2.7) we obtain on 
utilizing (4.6) 

rv = r2v + Yav' Yav = bv (av. r2V = -a~ I a (a- ~c). 
(4.8) 

Asymptotic investigation of the individual terms on 
the right hand side of (4.8) leads to the following 
results. 

In regions 1, 2, 3 in Fig. 16 we have 

Yav :::::::: F (sa) e2i(r,, -oo). (4.9) 

In region 4 on the same diagram we have 

Yav :::::::: ie2i(r,, -oo). (4.10) 

The boundaries of regions having different asym
ptotic behavior in Figs. 16 and 17 are formed by 
lines in the v plane whose equations have the fol
lowing form 

r, 

Im ~· pvdr = 0, lm ~ Pv dr = 0. 
r, r, 

They are lines of poles and zeros of the quantities 
S(v), or Yv· or Yav· 

We recall that bv and av are even functions of 
v. In regions 1, 2, 4 in Fig. 16 the difference be
tween the quantities Yv and Yav is exponentially 
small in comparison with either of them. Never
theless, we shall obtain this difference with the 
required accuracy. In region 3 the quantity Yv 
is exponentially greater than the quantity Yav· 

The asymptotic behavior of y2v in the region 
crosshatched in Fig. 17 is given by the formula 

FIG. 15 

FIG. 16 FIG. 17 
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(4.11) 

In regions 1, 2, 4 and those symmetric to them with 
respect to zero in Fig. 16 where Yv and y3v alm_ost 
coincide, Y2V is small in comparison with these 
quantities. Since Yv does not increase as I vI - oo, 

it follows from this that Y2V also has the same 
property. 

5. THE SCATTERING AMPLITUDE IN THE 
DOMAIN OF NONCLASSICAL ANGLES 

We return to the integral I (4.1) and decompose 
it into two terms: 

I= /2 +fa, 

In = _1_ \ v tg vrtP v-", (- cos e) r nv dv, 
~k j ' .... i\ 

(n = 2, 3). (5.1) 

The Legendre function Pv_.!(- cos a) is an in-
2 

tegral even function. For I v I » 1 the asymptotic 
behavior of Pv-! has the form (3.5). 

We consider first the integral 12• The integrand 
in I2 is proportional to the small exponential 
exp ( 2i<I> 2( v )) for values of v having a large mod
ulus but not lying near the real axis. The function 
<I> 2 ( v) has the following form in the region cross
hatched in Fig. 17: 

<D2 (v) = (r2 , - oo) =f v (:n:- 6)/2. (5.2) 

The minus sign corresponds to the upper half-plane 
of v and the plus sign corresponds to the lower 
half-plane. The saddle points ± v2 are determined 
by the equation: 

acD/av /v, = 0. (5.3) 

In a rough approximation we replace in (5.2) r 2 

by r 0 and neglect the potential in Pv· In this ap
proximation equation (5.3) yields 

v2 = hr0 cos (0/2). (5.4) 

In the same approximation we obtain 

<Dz ( ± v2) = kr0 sin (0/2). (5.5) 

The effective size of the region of integration is of 
the order 

I kr0 sin (0 I 2)/'". (5. 6) 

The path ffo 2 over the saddlepoint is determined by 
the equation 

The path fJ'2 over the saddlepoint has the form 
shown in Fig. 18 in which for convenience we have 
also shown the lines of poles of the quantity y2v. 
The line P 2 passes through the point v2 at an 

angle 37r/4 - cp 0 /2 with respect to the real axis 
( cp 0 = arg r 0 ). In moving from the initial position 
of r 1 (Fig. 14) towards ffo 2 (Fig. 18) the contour of 
integration cuts across the poles of the function 
Y2V in the complex v plane. The contributions of 
these poles are exponentially small compared to 
the contribution from the neighborhood of the 
saddlepoint. 

Indeed, the poles of the integrand are of the 
same order of magnitude as the asymptotic form 
of the integrand near the line of poles (at a dis
tance of order of magnitude unity from it). But 
along the contour of integration the integrand falls 
off exponentially with distance from the saddlepoint. 
From this it follows that the contribution of the 
pole nearest to the contour is exponentially small 
in comparison with the contribution from the 
saddlepoint. The contribution from the other poles 
is even smaller. 

Along the line of steepest descent (5. 7) it is 
possible to approach the real v axis sufficiently 
closely. However, in crossing the axis the asym
ptotic behavior of Pv_.!(- cos (}) changes. We 

2 
connect the lines of steepest descent passing 
through the saddlepoints v2 and - v2 by the seg
ment MN lying near the real axis and passing 
through the point v = 0. Although the s-egment MN 
does not satsify the condition of steepest descent 
(5. 7) the values of the integrand along it are every
where exponentially small in comparison with the 
value of this function at the saddlepoint. 4> 

The discussion given above does not hold for a 
close to 1r, since in this case the two saddlepoints 
± v2 become close. The condition under which the 
contributions from ± v2 are still independent has 
the form 

n- e ?>I kro 1-'l,. (5.8) 

In the region 1r - (} ~ I kr0 1-112 the results obtained 
below are accurate only up to a factor multiplying 
the exponential. 

Evaluation of the integral I3 is carried out in 
an analogous fashion, and in the same rough ap
proximation yields the value ~ exp (- 2ikr6' sin( a/2 )) 
which is of the same order as I2• 

We now evaluate the series of residues from the 
poles of S( v) in formula (3.6). The contribution 
from the first pole of the unphysical series v1 is 
of order of magnitude exp (iv1a ). But v1 ~ kr0 
±iV2U0/E, if (U0/E)3/ 4 kr0 » 1. For (U0 /E)314 x 
kr0 » 1 the angular range of applicability of for-

4lFor example, at the point v = 0 this function can be easily 
estimated. It is equal to exp(2ikro) with an accuracy up to a 
factor multiplying the exponential. 
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~ 

FIG. 18 

\ 
\ 

mulas obtained by the saddle-point method is re
stricted by the requirement that the interval of in
tegration (5.6) should not contain any poles. From 
this we obtain 

0 ~ (U0 I E)''.. (5.9) 

In the opposite case the exact location of the 
poles is unknown. If we assume v1 "" kr0, then the 
contributions from the poles of S( v) and of the 
saddle-point integral are of comparable magnitude 
for 

(5.1 0) 

In the angular region restricted by the inequali
ties (5.8), (5.9) in the case (U0/E )314 kr0 » 1, and 
by (5.8), (5.10) in the case (U0 /E )314 kr0 ~ 1 it is 
sufficient to take into account only the contribution 
from the saddle points. We write it out exactly: 

f (6) = %-- r0 F (- iR. I k sin (0/2)) 

x exp {2i (r2 , - oc) - V 2 (Jt - 6)} 

- 2... r~F (iR.• I k sin (0 I 2)) 
2 

x exp {2i (r3,- oo)- v3 (Jt- 0)}. (5.11) 

In the limiting case U0 I kr0 I /E « 1 formula 
(5.11) goes over into the result of the Born ap
proximation (1.1): 

f (0) ~ Jtq-1 (r0R,eiqr, + r~R.'e-iqC:). (5.12) 

In the other limiting case U0 I kr0 I /E » 1 it is nec
essary to substitute into formula (5.11) the values 
of kr2, kr3, v2, v3, evaluated with an accuracy such 
that the error in the index of the exponentials would 
be considerably less than unity. 

In the case U0kr0 /E"' 1 the quantities r 2, r3, 
v2, v3 can be found with the required accuracy ex
plicitly, and formula (5.11) assumes in this case 
the following form: 

r0 F ( iR ) f (6) = 2 - k sin (6 I 2) 

r, 

+ exp t r0 sm -z-- t {2 .k . 6 . ~ U dr 
2 _,:.00 V1-r~cos2 (612)lr2 

r, 
. ~ Udr -l 

_ 00 V1- r~' cos2 (6 I 2) I r2 

iR* I 1 ) } 
k sin (6 1 2) ~ 2 + In 2 · 

(5.13) 

In the derivation of formula (5.13) some simpli
fying circumstances have been utilized. First of 
all, the accuracy in the determination of ~'2• v3 

need not exceed the magnitude of -./ kr0 • There
fore, we can restrict ourselves to the zero order 
approximation (5 .4). Secondly, 

~· U dr ~· U dr 

~ V 1 - v2 I r 2 = ~ V 1 - v2 I r 2 -oo 3 +co 3 

(5.14) 

in view of the parity of U ( r ) and of the relation 
r 
\ U dr 
.l V 1- v2 I r 2 = O. 

-r 

(5.15) 

We note that the integral (5.14) is of order 
u 0E-1 r 0 ln (U0 /E ). We can easily give a physical 
interpretation of the first two terms in the indices 
of the exponentials in (5.13). For this it is suffi
cient to note that 

2kr0 sin (0/2) = qro, (5.16) 
~ ~ 

\ U dr = \ U dz, 
· V 1 - r2 cos" (6 I 2) I r" .) -t-oo o -oo 

(5.17) 

where q = I k2 - k1 1. The integral on the right hand 
side of (5.17) is taken along a straight line parallel 
to the z axis (direction of motion of the incident 
beam) in three-dimensional space. Thus, these 
terms represent the first terms of a formal ex
pansion in powers of U/E of action corresponding 
to motion along a rectilinear trajectory. Formula 
(5.13) shows that in the nonclassical region scat
tering occurs as if it were caused by a hard sphere 
of complex radius r 0• 

From (5.13) it can be seen that for the calcula
tion of the factor in front of the exponential it is 
not possible to restrict oneself, as has been done 
in the paper by Schiff and Saxon [1], to the first 
powers in the expansion of action in powers of 
U/E, since in doing this no account is taken of the 
terms iR(! + ln 2 )/k sin ( 1:1/2 ), and the function 
F ( ~ ) is replaced by its argument. This is valid 
only in the limiting Born case I Ukro/E I « 1. 

We quote the formula for the effective scatter
ing cross section for the case of the Fermi poten
tial: 

U(r) = Uo [(e<r-p)fa + Jtl + (e-(r+P)/a + JtlJ. (5.18) 
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Here p defines the size of the scattering center, 
a is the size of the region over which the boundary 
is smeared out. The calculations have been car
ried out on the assumption p »a. The condition 
for a quasiclassic situation has in the present case 
the form ka » 1. The result has the form 

da = 2p2e-4da sin (9/2)+~Y sh2 (rty/2) 

X {1 + e~u (4kp -2y In e'si~~6/2) + 2cp (y))}' (5.19)* 

where 

y ~ U0ka/E sin (8/2), cp (y) = arg r (iy/2). (5.20) 

The authors consider it their pleasant duty to 
express their sincere gratitude to L. D. Landau 
for numerous discussions during 1958-1959. 
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