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The motion of a one-dimensional oscillator whose Hamiltonian depends on a slowly varying 
parameter is analyzed by the methods of classical mechanics. It is shown that throughout 
the process the change of the adiabatic invariant is exponentially small. A method is pro­
posed which permits the derivation in many important cases of a closed expression for the 
pre-exponential factor. 

1. INTRODUCTION 

A mechanical system is characterized by its in­
tegrals of motion, that is, quantities which remain 
constant as the system moves. If the fields acting 
on the system vary slowly in time and in space, 
then the quantities that are conserved in constant 
and homogeneous fields are no longer integrals of 
the motion and vary slowly with time; over suffi­
citmtly long times, the change may turn out to be 
quite appreciable. However, some of these quan­
tities (adiabatic invariants ) have the property that 
they are approximately conserved during the entire 
time of motion in a quasistatic and quasihomogene­
ous field. The question of which quantities are adi­
abatic invariants and to what accuracy they are 
conserved has been the subject of many recently 
published papers [1- 6] 1>. 

In this article we consider systems with one 
degree of freedom, having the following proper­
ties: the Hamiltonian of the system depends on an 
external parameter A, which is a specified func­
tion of the time; when the parameter is constant 
the motion in the system is periodic; the function 
A = A ( yt) changes little during a time of the order 
of T0, the characteristic period of the system. We 
assume that the latter condition is satisfied if y 
« 1, that is, y has the meaning of a parameter 
that characterizes the slowness of the process. 

As is well known, an adiabatic invariant for 
such a system is the action integral (I), calculated 
over a closed curve in phase space, the curve de­
termining the periodic motion for a constant value 
of A. We shall henceforth be interested in the 

llWe note that the method used by Vandervoort [4 ] is in 
error. 

quantity .6.I, the change in the adiabatic invariant 
over the entire time of the process, during which 
A ( yt) changes from a value A_ as t - - oo to a 
value A+ as t- + oo. For an arbitrary nonlinear 
oscillator .6.I is determined by 

M = A exp (Bfr), (1.1) 

(B is independent of y), that is, .6.I is exponen­
tially small in the parameter y. This statement 
can best be proved by investigating the question 
of the adiabatic invariant from the point of view 
of quantum mechanics (see [1•2]) and then allow­
ing the constant n to go to zero. Such an approach 
makes it possible to determine the form of the 
constant B for an arbitrary system of the type 
under consideration. However, the calculation 
of the factor before the exponent is apparently 
best carried out within the framework of classical 
mechanics. In the present article we consider a 
general method which permits us to present in 
many important cases a simple classification of 
the Hamiltonians of systems by their analytic 
properties and to determine the pre-exponential 
factor in closed form; the exponential smallness 
of .6.I will be proved during the course of the ex­
position by the methods of classical mechanics. 

2. GENERAL SOLUTION OF THE PROBLEM 

For a one-dimensional periodic system with 
Hamiltonian H ( q, p, A) ( q and p are the canonic­
ally conjugate coordinate and the momentum), the 
action variable I is defined by the integral I ( E, A) = 

( 21r) - 1 :/) pdq', where the integration is over the 
trajectory H ( q, p, A) = E ( E -energy of the sys­
tern). 

The analysis that follows is best carried out 
using canonically-conjugate variables: the action 

676 
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I and the angle w, whicjl are related to q and p 
with the aid of the generating function S0: 

q 

S 0 = S 0 (q, I, A.)= ipdq', p = p (q, I, A.), q = -q (1, A.). 

(2.1) q 

The function p ( q, I, A. ) is obtained here from the 
equation 

H (q, p, A.) = E (1, A.). 

The Hamiltonian that determines the variation of 
I and w with time is of the form (see, for ex­
ample, [7]) 

:Jf'(l, w, A.) = E (1, "-) + rA.'A (w, I, A.), (2.2) 

where A= (8S0 /8A.)q,I is a periodic function in w 
with period 21r, and the prime denotes differentia­
tion with respect to yt. 

For further analysis we need the explicit form 
of the function A, written in terms of the variables 
q, I, and A.. From the definition of A it follows 
that 

(2.3) 

where 

p = p (q, /,A.); 

H - is the average of HA. ( q, I, A.) taken over a 
period. We choose q (I, A.) in such a way as to make 

~ A (w, I, A.) dw = 0. 
0 

The functions E (I, A. ) , A ( w, I, A. ) , and A. ( yt ) will 
be assumed analytic in all the arguments. 

As t- ± oo we have A.' - 0 and consequently 
I- ~ = const; the asymptotic behavior of the func­
tion w(t) as t - ± oo can be represented in the 
form 

t 

w (t) --+ ~ Q (I±' A (yt')) dt' + W±' t --'> ± 00. (2.4) 
T 

where the lower limit t is chosen to be an arbi­
trary point on the real axis; w_ and w+ are, re­
spectively, the initial and final phases of the mo­
tion; Q(I, A.)= (8E/8I)A. -the frequency of the 
periodic motion for constant I and A.. The final 
value of the adiabatic invariant (I+ ) depends not 
only on L, but also on the initial phase of the mo­
tion, so that our purpose is to determine the func­
tion I+(w_, L ), which is periodic in w_ with pe­
riod 27r. 

To determine I+ ( w _, L ) we introduce the func­
tions S_(w,t,L) and S+ (w, t, 4), which are the 

generating functions of the canonical transforma­
tions from L, w _ and I+, w +, respectively, to the 
"running" values I and w; the S±(w,t,I±) satisfy 
the Hamilton-Jacobi equation 

( as+ ) ( as+ ) as+ E a;; , t + rA.' A w, a;; , t + at = o (2.5) 

and as t- ± oo they are determined by the follow­
ing asymptotic formulas 

t 

S+ = l+w-~E (!+, t') dt', 
T 
t 

S_ = l_w- ~E (!_, t') dt', 
T 

t--'> + oc, 

t--+- oo. (2.6) 

According to the well-known properties of canonical 
transformations, the s± are interrelated by 

S+ (w, t, /+) = S_ (w, t, I_ (w, t, /+))- F (I_ (w, t, /+), /+), 
as_1a1_- aFtai_ = o. 

(2.7) 
Here F (I+, L ) is the generating function of the 
canonical transformation from L w _ to I+ w +; 
L ( w, t, I+ ) is determined in implicit form by the 
second equation of (2. 7). Knowledge of the functions 
s± makes it possible to investigate the motion of 
the system completely, and in particular to deter­
mine the value of I+(w_, L). 

The method presented below for finding 
I+(w_, L) is based on an investigation of the be­
havior of the functions S±(w, t, I±), which are ana­
lytically continued in the complex t plane. Before 
we proceed to the exposition of the method, we in­
dicate some essential properties 2> of the Fourier 
coefficients ( Bn ) of the functions I+ ( w _ , L ) . The 
coefficients Bn are determined by the formula 

t, 

B 0 =I_ Bn = B~n =An(/_) exp{in ~ Q (/_, t') dt'} ,n/ 1. 
t 

(2.8) 

Here t 0 ( L ) is that singular point of the functions 
A.(yt), T(L, t) = 27r/Q(L, t) and A(n)(L, t) (A(n) 
are the Fourier coefficients of the function 
A(w, L, t)), which lies closest to the real axis in 
the half plane 

t, 

Im {~ Q (/ _, t') dt'} > 0; 
I 

the An depend on the parameter y in such a way 
that the point y = 0 is not an essential singularity. 
In this case I Im t 0 I ~ T0 /y and consequently the 
Fourier coefficients Bn are exponentially small 
quantities of the order of exp ( - nK/ y) ( K ~ 1 ) . 

2lThe proof of these properties is given in the appendix. 
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The Hamilton-Jacobi equation contains a small 
parameter y, and therefore for finite It I ~ T0/y 
and Im w ~ 1 the functions S± can be represented 
in the form of an asymptotic series in powers of 
y. In the zeroth approximation when I= L we have 

I 

w (t) = ~ Q (I_, t') dt' + w_, 
T 

that is, the motion of the system is quasiperiodic 
(the coefficients of the next higher powers can be 
readily obtained with the aid of formulas At and 
A3 of the appendix). However, if we consider the 
motion of the system for real t and w _, then the 
asymptotic methods will not make it possible to 
determine .6.I, which, in the case when Im w _ = 0, 
is exponentially small in the parameter y. 

The situation changes radically for complex t 
and w _ , defined by the conditions 

t, 

Im w_ z Im ~ Q (/_, t') dt', Im w (t, w_, /_) G:; l. (2.9) 
r 

The formulas (2.8) show that in the case when 
Im w_ satisfy the first condition in (29), I+(w_, L) 
is no longer exponentially small and can be deter­
mined with the aid of asymptotic methods. The cri­
terion for the applicability of these methods is the 
inequality I yA.' A(w, L, t)l « L /T0 ~ Io/To Oo­
characteristic value of the action variable), which 
is satisfied if the second relation of (2.9) holds. 

From the zeroth-approximation equations it 
follows that the values of t satisfying conditions 
(2.9) lie on a line R0 which is parallel to the real 
axis as Re t - - oo and pass at distances ~ T 0 

from the singular point t 0 (It ) . In accordance with 
the definition of t 0 ( L ) , the functions A. ( yt ) , 
T ( L, t), which govern the quasiperiodic mode of 
motion, have a singularity at t = t 0• This means 
that in the section of the counter R0, where I t - t 0 I 
~ T0, the adiabaticity condition I ElT/Elt I « 1 is 
violated, and it is necessary to determine 
I(t, w_, L) and w(t, w_, L) exactly by expanding 
the function A. = A. ( yt) in the Hamiltonian of the 
system near t 0• At the points of the contour Ro 
where It -t0 I » T0, it is possible to use the asym­
ptotic series for S±(w, t, fr) to determine I(t) 
and w(t); the functions S_(w, t, L) and 
S+ (w, t, I+) can be represented in the form of an 
asymptotic series in powers of y, for values of t 
lying on the left and right branches of R0, respec­
tively. By determining the motion in the vicinity 
of t 0, we can "join" the asymptotic solutions to 
the left and to the right of the point t 0 and find the 
function 

t 

I+ (w_, /_) for Imw_ = ~ Q (/_, t') dt'. 
I 

.6.I can be determined by continuing the function 
I+ ( w _ , L ) analytically in the region Im w _ ~ 1 
(there are no singular points of I+ ( w _, L ) in this 
region) and to calculate its first Fourier coeffi­
cient. 

3. CLASSIFICATION OF THE SINGULAR POINTS 
AND VIRTUAL SCATTERING 

In this section we shall investigate a case when 
the singular points of the functions T ( L , A. ) and 
A (n) (I_, A.) (A. = A. ( yt)) do not coincide with the 
singularities of A.' ( yt) and are closest to the real 
axis. We shall assume throughout the following 
arguments that the analytic function H ( q, p, A. ) has 
no singularities for finite values of q, p, and A.. 
These assumptions are sufficient to indicate the 
classification for the singularities of T and A (n) 
and to find the form of the pre-exponential factor. 

1. For arbitrary complex values of E and A., 
the functions T(E,A.) and A(n)(E,A.) are deter­
mined by the formulas 

q 

T (E, /-) = ~ ~qP, A(n)(E, /-) = i~ ~ z: exp { inQ ~ ~J dq; 

H~-. = H~. (p (q, E, !-), q, !-), Hp = H (q, p (q, E, !-), /-). 

(3.1) 
The function p ( q, E, A.) is determined here from 
the equation H( q, p, ,\) = E, and the integration is 
carried out in the q plane over the closed contour 
L enclosing the two turning points qt, 2 ( E, A.), in 
which Hp(q, E, A.)= 0. (For real E and A. we have 
Im qt, 2 = 0.) The singularities of the integrand in 
(3.1) are the zeroes of the function Hp(q, A., E). In 
the general case considered here, that of a non­
linear oscillator, we can have, in addition to 
qt ( E, A.) and q2 ( E, A.), other values q{ = q{ ( E, A.) 
(outside the contour L ), for which Hp( q, E, A.) = 0. 
The points qi can be interpreted as virtual turn­
ing points. If L has finite dimensions, then the 
singularities of T( E, A.) and A (n) ( E, A.) can occur 
only in the case when some of the points qi ( E, A.) 
are at an infinitesimally short distance away from 
the integration curve 3). On the other hand, when 
finding the singularities of T and A (n) it is nee­
essary to take account of the fact that the values 
of T and A(n) do not change if the curve L is de­
formed in such a way that it does not cross the 

3llf ql and q2 are the only zeroes of Hp, then the singu­
larity ofT and NnJ is possible only if the length of the con­
tour L becomes infinite, that is, as lq,- q2 l ~co. This occurs, 
for example, with a linear oscillator. 
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~.q' 
b 
FIG. 1 

points qi. From the considered properties of the 
contour integral, which determines T and A<n>, 
it follows that for finite dimensions of L the in­
vestigated functions can have singularities in the 
following cases: 

a) For some values of E and A. the points 
qi ( E, A.) and q2 ( E, A.) coalesce, and their approach 
occurs in such a way that qi and q2 are outside 
the contour L, on opposite sides of the curve L' 
joining q1 and q2 and located inside L (this case 
corresponds to the figure of 1a). 

b) The external point q' ( E, A.) coalesces with 
one of the points q1 ( E, A.). or q2 ( E, A.) which are 
situated inside the contour L (Fig. 1b). 

Thus, a singularity of one or the other branch 
of the multiply-valued functions T and A(n) al­
ways occurs when the two turning points coalesce. 
For each given value of E there exist, generally 
speaking, several values q~ (E) at which the dif­
ferent pairs of turning points qi (A., E) coalesce. 
If the points qi ( A.E) and qk ( A.E ) coalesce at the 
point qJ'( E), the latter is determined from the 
expression 

q~ (E) = q; ('A0(E), E) = qk ('A0(E), E), 

where A. 0( E) is specified in implicit form by the 
equation 4 > ~ (A., E ) = qk (A., E ) . Starting from the 
definition of qi (A., E), we can readily show that 
q0( E) is the point of total stoppage of the system, 
that is, when q = q0(E) and p = p0(E) = p(q0(E), 
A.0 ( E ) , E ) the following equations are satisfied 

iJH (q, p, 'A)/iJp = iJH (q, p, 'A)IiJq = 0, H (q, p, 'A) =E. 

This property of the singular points q0 (E) defines 
the character of the dependence of T on E and A. 
when qi and q2 (case a) or q' and q1 (case b ) 
are at a short distance from q0( E). The differ­
ence .6. = A.- A.0( E) « 1 in this case, and at the 
points of the contour L for which the inequality 
I q - qo ( E ) I » I qi - q2 I (or I q' - q1 I ) is satisfied 

4lA situation is possible in which the number of coalesc­
ing turning points exceeds 2. It is then- necessary to satisfy the 
following system of equations: q~(,\,E) = q2(A,E) = ... = q_,(A,E). 
When n > 3, the system is indeterminate, and when n = 3 it 
has a unique solution. It follows therefore that this situation 
is accidental. 

we have Hp (q, A., E) ~ Hp(q, A. 0( E), E). In the vi­
cinity of q0 (E) the values of Hp( q, A., E) are de­
termined by expanding the Hamiltonian H ( q, p, A. ) : 

H (q, p, 'A) = E + H)..!:J. 

+ ~ (Hpp (!:J.p) 2 + 2Hqp!:J.q!:J.p + Hqq(!:J.q) 2), (3.2) 

where .6-p = p- p0( E), .6-q = q- q0( E), and the de­
rivatives are taken at p = p0( E), q = q0( E), A. 
= A.0 ( E ) . Taking into consideration the location of 
the contours relative to the points q!, q2 and q', q1 
(Figs. 1a and b), we obtain from this expansion and 
from (3.1) 

T (E, 'A)= T 0 (E) ln Ito (E)/('A -'A0 (E))l, 'A -'A0 (E)~ 1. 

(3.3) 

Here f0 ( E) - 1 and T0( E) - T0 are expressed in 
terms of the expansion coefficients of the Hamilto­
nian: in case a) we have T0( E) = 2D-112, and in 
case b) we obtain T0( E) = D-112, where D( E) is 
the determinant of the quadratic form in the ex­
pansion (3.2). Formula (3.3) shows that T( E, A.) 
diverges logarithmically when A.- A.0( E). 

2. After clarifying the character of the singu­
larity T ( E, A. ) , we can proceed to find the function 
I+(w_, L ). For this purpose it is necessary to in­
vestigate the motion of the system when t changes 
in the vicinity of the singular point t 0( L ), moving 
along the line Ro (see Sec. 2). By definition, and 
in accordance with the foregoing analysis, t 0( L) 
is one of the solutions of the equation 

'A (rt) = 'A0 (E (!_, t)). 

The motion in the vicinity of t 0 is best investi­
gated by considering the time variation of one of 
the canonically conjugate variables q ( t ) [ or p ( t ) ] 
and the "moving" difference 

!:J. (t) = 'A (yt) - 'A0 (E (I (t), t)). 

(When It -t0 I « T0/y we have .6-(t) « 1.) The 
variables .6. and q are connected by a simple re­
lation, which can be obtained from the equations 

it= Hp, ,i = y'A'(l- Ht.. iJ'A0/dE), 

d'AoldE = IIHJ..(q0 (E), p 0(E), 'A0(E)). (3.4) 

Dividing the second equation by the first and rec­
ognizing that 

I . 1-HJ..(q,/.,o(E},E)d/.,ofdE 
Ill 

q~q,(E) H P (q, Ao (E), E) 

exists, we obtain accurate to terms - y ln y 

db. (q, I_) = lA' ( I ) 
dq Ho X q, - ' 

).. 
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The variable q ( t) should move over a contour 
L (in the complex plane q) such that as t is 
varied along R0 the quantity 1m w(t, L, w_) re­
mains finite. Since w( q, E, A) is given by the 
formula 

r dq' / ,\:, dq' 
w (q, E, A.)= 2Jt ~ HP (q', E, A) 'f Hp(q', E, A)' 

1m w(t) will be finite only when the relative place­
ments of the contour L0 and of the "external" 
turning points q{ (t) = qi (A( yt ), E(t )) are topo­
logically similar to the arrangement of qi and 
the contour of integration L ( t ) in the formula 
for T(E(t), A(yt)). When lt-t0 1 « T0 /y, the 
external points qi ( t ) , as they move in the com­
plex plane, approach the contour L(t) and "pinch" 
it in the way shown in Figs. 1a and b. Then 5> 

qi 2 ( t ) is determined by the formula 
' 

(3.6) 

which is obtained by expanding the Hamiltonian in 
the vicinity of q0• It follows from (3.5) and (3.6) 
that q ( t) "rotates" over the closed contour L0, 

which encloses the points qt ( t ) and q2 ( t ) and p 
passes at a distance ~ yt/21 qt - q2 I from the point 
qo. 

When t varies from some value t_ on the left 
branch R0 to a value t+ on the right branch ( T 0 

« It± -t0 I « T0 /y), the motion of q(t) over L0 

can be broken up into the following three stages: 
1) the variable q moves first from the point q ( L ) 
to the point <it which does not lie in the vicinity of 
q0 ( t 0 ) (the choice of q1 is arbitrary); 2) starting 
with this instant, q ( t) executes N revolutions 
( y-t » N » 1); 3) it moves from the point q1 to 
q ( t+ ) . Accordingly, we obtain from the equation 
q = Hp, accurate to terms of order y, the equality 

-
q, ' 

t. - t = I dq 
7 - .\ H P (q', A ('rt_), E (t_)) 

q(l_) 

(3. 7) 

where Tk is the change in t occurring during the 
k-th revolution. In completing the k-th revolution, 
the system passes twice in the vicinity of q0 ( t 0 ) 

with different values of the moving difference D.k 
and D.k. (Henceforth in the text the prime over 

5>In case b) q', 2 should be replaced by q' and q,. In view 
of the fact that the course of the succeeding argumentation is 
perfectly analogous for cases a) and b), we discuss only 
case a) in detail. 

D.k and q0 will indicate the sequence with which 
the vicinity of q0 ( t 0 ) is passed for specified <it· ) 
Taking this circumstance into account, we obtain 
with the aid of (3.4) the following expression for 
Tk: 

Tk =}To (Eo) en folfo) +In fol~o)). (3.8) 

The dependence of D.k and D.k_ on L and w _ 
will be determined with the aid of the asymptotic 
series where I= as_ (w, t, L)/aw [formula (A.3) 
of the appendix], confining ourselves to first order 
terms in y. Taking (2.3) into account, we obtain 
after simple calculations 

~~-~~=~r~xdqj~xdq= ~2. ~r=rt..'~xdq!Ht 
Lo" Lo L0 

~~ = ( k - N- - ~~ ) ~ T + ~ T q~' X dq I ~ X dq' 
fie La 

q0 = q (!_, 1.0). (3.9) 

Here L0 and L0 are the parts of the contour L0 

separated by the point q0, with L0 being the part 
containing the point Cit; 

t, 

w: = w_ + ~ Q (/_, t') dt'; 
t 

N_ is a positive integer determined by the choice 
of the point L (y-t » N_ » 1 ). 

Let us calculate the derivative 8w(t+, w_, L )/ 
aw_. To this end we substitute expressions (3.8) 
and (3.9) in (3. 7) and differentiate the latter with 
respect to w_. Using the partial-fraction expan­
sion of the logarithm derivative of the r function 
[B], and also the well-known properties of the r 
function: 

zr(z) = f(z + 1), l'(z) l'(l - z) = n/sin nz, 

we obtain as a result of transformations carried 
out accurate to y In y, the formula 

aw (t+, w_, /_) 
---a~ 

2:rt2T0 (Eo) { sin (w~ + ct (!_)) 

= I - T (t+) cos (w~ + ct (!_))-sin (PI- p2) n/2 

q,' 

P1.2 = ~~2 (PI+ P2 = I),a (!_) = 2:n: ~ xdq / ~ xdq + :n:p2. 

q, (3.10) 
Expression (3.10) does not depend on the choice of 
qt. 

On the other hand, when t = t+ the following 
equality holds 

I+ 

w = ~ Q (/+, t') dt' + w+ (w_, !_) + 0 (y). 
T 
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Differentiating this equation with respect to w _ u 
and using the formula (3.3) for Q( E, A.) 
(E = E(I+, A.)), and also the relation 8.6./8I+ 
= ( 211"/ .6-TH~) 8.6./8t, we obtain £0 r----r----,..-----l 

(a~~ ) = 2n :~~ - 1 -0 ( Q (I+' t+)- Q (I+' t0)) + (~:: ) 
t+.I- ATHI. L 

t, 

+ a!_~ Q(l +' t')dl'. 
t 

Comparing this expression with (3.10) we find, 
that the derivative ( 8I+ /8w_)I_ is determined, 
accurate to y2 ln y, by the formula 

1 0 { sin (ru;~ + ex) } 
=--lhH,_T0 (E0) , -i. 

2 cos (w_ +ex)- sin (p1 - p,) rr/2 

(3.11) 

When Im w_ ~ 1, the main contribution to .6-I is 
made by the Fourier coefficients of the function 
I+ ( w _, L ) with n = ± 1. Therefore in case a) we 
obtain from (3.11) 

. 4 
2 R.e {LhH~T0 (£0)/"sin n (Pl;P•l exp i (w_ + ~ Q (!_, t')dt')}· 

t (3.12) 

In case b) analogous calculations lead to the result 

t, 

M = 4 R.e{LhH~T0 (£0) exp i (a+ w_ + ~ Q (!_, t')dt'}, 
t 

q,(l-) 

a = i X dq j ~ X dq, (3.13) 

q, 

where q0( L) is the point at which qi and q' co­
alesce. The quantities a, .6-T, H~, Pi,2, and T0 ( E0 ), 

which enter into the expression for the pre-expo­
nential factor, are the parameters of the problem, 
characterizing the motion of the system in the vi­
cinity of t 0( L ). 

3. The results obtained become particularly 
lucid for a charged particle moving in a slowly 
time -varying potential well U ( q, A. ) , the form of 
which is shown in Fig. 2. The system of trajec­
tories in the phase plane q, p, corresponding to 
a definite A. and different E, is shown in Fig. 3. 
The self-intersecting "figure-8" trajectory is de­
termined by an energy E0 (A.) equal to the value 
of the potential U(q0(A.), A.) at the maximum of 
the barrier separating regions 1 and 2 (Fig. 2). 
The intersection point of the "figure-8" B0 (A.) 
= {q0(A.), P 0(A.)} is the point of complete stop-

17 

FIG. 2 FIG. 3 

page of the system (the turning points qi (A., E) ( q' ) 
and q2 (A., E ) ( qi ) coalesce at q0 (A. )) , and conse­
quently, in accordance with the results obtained 
above, the period T( E, A.) has a logarithmic sin­
gularity in A. when .6. = A.-A.0(E) « 1 (A.0(E) is 
the inverse of E0(A.)). 

The character of the motion of the system under 
consideration depends essentially on the distance 
between t 0, which is a zero of .6-(t ), and the real 
axis. If t0 lies on the real axis, then the particle 
moving in the field U ( q, A. ) experiences a unique 
"scattering" on the singular point 6 > B (A. ( t 0 )) • This 
phenomenon consists in the fact that when the sign 
of .6. ( t) is reversed there occurs an abrupt transi­
tion (within a time ~ T 0 ) from one mode of the 
quasiperiodic motion to the other. For example, 
if the particle was situated in region 3 at the ini­
tial instant, then upon scattering by B(A.(yt0 )), de­
pending on the exact initial conditions, it falls into 
either region one or two (see Figs. 2 and 3 ). In 
the papers by I. Lifshitz, the author, and Nabutov­
ski1 [5- 6], where this phenomenon was considered 
in detail 1>, it was shown that scattering by a sin­
gularity can be characterized by quantities W i and 
W 2, which determine the probability that the par­
ticle will fall into one region or the other. Thus, 
for the transition from the region 3 into 1 or 2, 
the scattering probabilities W i, 2 are determined 
by the formulas 

{ 1, x>O 
Wl + }f/2 =I, Wl = pla(pl), a(x) = o, x<O' 

where Pi 2 have already been determined above 
[ formula~ (3 .1 0) and (3. 9); in this case the counter 
integrals in the expression for Pi-2 are taken along 
the loops of the "figure-8" separating the regions 
1 and 2, so that Im Pi 2 = 0]. 

' In the problem which we have considered, .6-I 

6)ln this case 6I is no longer exponentially small; we can 
show that 6I is then nearly equal to y~. 

7lin those papers we investigated the equivalent problem, 
that of the motion of a quasiparticle with the arbitrary dis­
persion law, placed in a magnetic field that varies slowly in 
time and in space, and also in a weak electric field parallel 
to the magnetic field. 
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is exponentially small, and during the entire proc­
ess the particle is situated in the region having the 
same quasiperiodic mode of motion. Therefore the 
difference ~(t) vanishes only when t 0(I_) is com­
plex with I Im t0 I~ T0/y. This value of t 0(L) de­
termines the virtual stopping point B ( i\ ( yt0 ) ) , and 
the real quantities p1 2 can be interpreted as the 
probabilities of virtu~! scattering by the point 
B( i\( yto )). 

In conclusion we note that the results obtained 
do not hold true for systems which have only two 
turning points (for example, for a linear oscillator 
with slowly varying frequency). However, even in 
this case the method indicated in Sec. 2 frequently 
makes it possible to calculate ~I in closed form 8 >. 

I am deeply grateful to I. M. Lifshitz for con­
tinuous interest in the work and for valuable dis­
cussions. 

APPENDIX 

Let us find the form of S± ( w, t, ~) with the aid 
of the iteration method. Choosing as the zeroth ap­
proximation 

we obtain 

t 

So.± =I ±w- ~ E (I±, t') dt', 
T 

00 

S± =So.±+~ ymSm,±(w, t, I±, r), (A.1) 
m=l 

where Sm ± - 0 as t - ± oo • Substituting (A.1) in 
(2.5) and e'quating terms with equal powers of y, we 
obtain the linear equations which are satisfied by 
Sm,±: 

Q (I ±• t) as1. ±law + as1, ± 1 at=- 'A' A (w, I±, t), 
as2 • ± as2 • ± 1 ag 2 

Q (I ±• t) (f[;) +-----at=- 2 a/ I 1, ± (w, t, I±) 

- ').!A1 (w, I ±• t) I 1, ± (w, t, I±), ... 
Q (I ±• t) iJSm, tfiJw + iJSm, tfiJt = '\jlm (w, t, I±)· (A.2) 

The functions 1/Jm are polynomials of degree m in 
I1 ±• I2 ±• ... , Im ±; the coefficients of the polyno­
rn'ials ~re expre~sed in terms of the partial deriva­
atives of the functions E (I, i\) and A ( w, I, i\) with 

SlFor a linear oscillator, the method of Sec. 2 coincides 
with the method used by Pokrovskir and Khalatnikov[9 ] to 
determine the coefficient of the superbarrier reflection in the 
quasiclassical approximation. 

respect to I (the derivatives are taken at I = ~ ) • 

Solving (A.2) by the method of characteristics, we 
obtain formulas for Sm ±: 

' 
t t 

S1,± =- ~ 'A'A(w-\Q(l±, t~)dt~, I±, t1)dt1 

±oo f 1 

w 

z- 'A'\ A (w', I ±• t) dw'jQ (I ±• t), ... 
•' 

t t 

Sm,±=- ~ 'A''Ijlm(w-~Q(I±,t~)d(l±,t1)dtl. 
too 1, (A.3) 

By examining the asymptotic behavior of S+(w, t, I+) 
as t- - oo, we can show that I+, L, and w _ are 
related by 

co t 

I_=I++ ~ t(w_+~Q(l+,t')dt',t,qdt, (A.4) 
-co ! 

where f( e, t, I+) = f( e + 27T, t, I+), the mean value 
of f is zero, and the Fourier coefficients of the 
function f vary slowly in time, while the singular 
points of these coefficients coincide with the sin­
gularities of A(n) and i\(yt). From (A.4) there 
follow directly the properties indicated in Sec. 2 
for the quantity Bn. 
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