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It is shown that the problem of determining the equilibrium distribution of nucleon density in 
the quasiclassical statistical model of nuclear matter under the assumption of low compressi
bility reduces to determining the equilibrium shape of an effective nuclear surface. In this 
approximation the statistical and the drop models are identical. Corrections to the drop model 
due to the deformation of the diffuse layer and to finite compressibility are derived . . 

IN the statistical model the energy of a nucleus 
may be written as a functional of the nucleon den
sity: 

E = ~ dv (tg (p) + F (p) (Vp)2 + + <I>pz), (1) 

where p and pz are respectively the average den
sities of the total number of particles and of the 
charge. For the sake of simplicity we shall take 
pz to be proportional to p: 

Pz = Zep/A (2) 

( Z is the number of protons, A is the total number 
of nucleons in the nucleus.) 

In Eq. (1) <I> is the Coulomb potential, and (g ( p) 
and F(p) are functions of the density. We assume 
(cf., for example, [i-5]) that 

(6) 

Evol is the volume energy of the nucleus, while R0 

is determined by the condition 

(7) 

It is convenient to go over to dimensionless 
variables taking for the unit of energy the magni
tude of I E * I, for the unit of density p *, and for 
the· unit of spatial variables R0• The Coulomb po
tential is measured in units of ZeR01• We intro
duce the function E (p) defined by the relation 

(g (p)/p = - 1 + B (p). (8) 

For p- 1 

B (p}:;::::; k (p - 1)2, k = xp*2 I I£* I· (9) 

F(p) = ~1i 218Mp, (3) The energy of the nucleus (1) can be written in 

where M is the nucleon mass, t is a numerical 
factor of the order of unity. The specific form of 
the function F ( p ) is not essential for further de
velopment. Inside the nucleus the term containing 
(g(p) is the principal one. The function (g(p)/p 
(energy per particle ) has a minimum at a certain 
value of the density p = p*. For values of p which 
differ little from p * it can be written in the form 

(g (p)/p:;::::; £* + X (p - p*)2, (4) 

where p* corresponds to the equilibrium value of 
the density in an infinite uncharged medium, while 
E* is the nucleon binding energy in such a medium 
( E * < 0 ) . The quantity K is related to the coeffi
cient of volume compressibility of nuclear medium 
E0 by the relationC6J 

X = E~/18p*2A. (5) 

whereC6J 

the form 

E = £~0~ 1 { 1 - 4: ~ dv [pe (P) + i- y 2p-1 (Vp)2 + i Xp<D ]}• 

(10) 
2- ~fi2 

r - 2M I£* I Rf 
Z2e2 

X = RoA I £*1 " (ll) 

The equilibrium density distribution corresponds 
to the energy minimum (10) subject to the additional 
condition that the number of particles is constant 

~ pdv = { rr. (12) 

The parameter y is a small quantity, and our 
problem consists of finding the corresponding ex
pansion for p and for the energy of the nucleus. 
The equilibrium density distribution can be ob
tained from the equation 

2y2~w- dw2 B (w2) jdw- 2 [A.+ X<D] w = 0, (13) 

where w2 = p; A. is a Lagrangian multiplier which 
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can be interpreted as a_correction to the binding 
energy of the particle due to the finite dimensions 
of the nucleus and to the Coulomb interaction. At 
large distances outside the nucleus e:(w2)- 1. 
For y « 1 the main terms in (13) give in the ex
terior region 

(14) 

In the interior region under the condition of low 
compressibility the density differs little from unity. 
The correction can be obtained if we neglect in (10) 
the gradient terms which will give a contribution 
only of order y. By utilizing (9) we obtain 

P int = W 2 int = 1 - { k-1 (/• +X <D). (15) 

In a narrow transition layer of thickness of 
order y the nucleon density varies from the value 
(15) close to unity to an exponentially small quan
tity. This physically defines a certain effective 
nuclear surface. We shall discuss the case when 
there is an axis of symmetry which we shall as
sume to be taken as the z axis. 

Let y = y( z) be the generating curve for the 
effective surface. We introduce a system of coor
dinates associated with the surface. For one of 
the axes we choose the z axis, and we introduce 
in the usual manner the azimuthal angle cp. For 
the axis corresponding to the second variable u 
we take the direction of the external normal to the 
generating curve y ( z ) drawn at the given point. 
Along the u axis we characterize each point by 
the distance from the point under consideration 
to the surface (the internal points correspond to 
u < 0). The element of volume in these variables 
is given by 

dv = Vg dudzdq>, Vg = (R1 + u) (1 + ujR2 ), (16) 

where R1 and R2 are the principal radii of curva
ture. The system of coordinates introduced above 
is orthogonal. 

For a reasonably chosen effective surface in a 
layer of order y near it derivatives with respect 
to u must be of order y-1, while, as will be seen 
below, derivatives of the density with respect to 
z are of order y. This enables us to simplify (13) 
in this region by writing it in the form 

u u 

-2r2 \ a In fgw' 2 du + X(' (D aw• du = 0. (17) .) au ~ au 
+oo +oo 

Here we have utilized the condition w- 0 for 
u > +y. 

In zero order with respect to y we obtain the 
equation 

(18) 

It is, naturally, identical with the equation for the 
equilibrium density distribution for a semi-infinite 
nuclear medium (R1, R2 - oo ), which, for example, 
has been discussed by Wilets [7]. Equation (18) has 
a solution satisfying the boundary conditions 

W0 (-oo) =1, W0 (-l-oo) =0. (19) 

The argument of the function w 0 contains an arbi
trary additive constant which cannot be found from 
conditions (19). It is determined from the addi
tional condition a = 0 ( cf. Eq. (25) below). We 
shall not need the specific form of w0• The only 
essential feature is that w0 has derivatives with 
respect to u of order y-1 in a narrow region of 
order y near the surface, and differs by an expo
nentially small amount from unity and from zero 
respectively for u < -y and u > +y. 

The solution of (17) must go over into (15) for 
u < - y. In the zero order approximation this re
quirement is satisfied. The situation is different 
in the case of terms of higher order. Equation 
(17) gives the correct asymptotic value of the den
sity for u < -y determined by the expression (15) 
only for a particular choice of the effective sur
face since in order that (17) and (15) should be 
identical for u < - y it is necessary that the sum 
of the "extra" terms in (17) should vanish. 

This can be achieved only by a proper choice 
of the effective surface, and, therefore, the con
dition for the existence of an equilibrium density 
distribution also determines the equilibrium shape 
of the nucleus. This condition has the form 

20oH +'A+ X<Ds + 201 (R 1R2t 1 -+-k-1 ['A+ X<DsJ2 

+ [2H ('A+ X<I>s) +X (a<D!au)sl <X = 0. (20) 

Here the constants are given by 

+oo 

0 0 = 2r2 ~ w';du, (21) 

-00 

+oo 

01 = 2r2 ~ uw~2du. (22) 
-00 

The subscript S denotes that the corresponding 
quantities are taken at the surface at the point 
(z,y(z)). 

(23) 

is the average curvature of the surface. The po
tential q, corresponds to a nucleus with a smeared 
out edge and with a density at the center corrected 
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for finite compressibility in accordance with (15). 
The quantity A is determined from the auxiliary 
condition (12) which in the approximation under 
consideration is 

(24) 

where Pint is determined by expression (15), the 
first integral is taken over the volume surrounded 
by the surface, and the second integral is taken 
over the surface 

+oo 
a= s (w2 - e (-u)] du, (25) 

-00 

where e(x) is the unit function. 
The constant a in (20) and in the auxiliary con

dition (23) can be set equal to zero. As we have 
noted earlier, this fixes the additive constant in 
the argument of the function w 0 and determines 
the position of the effective surface within the 
limits of the diffuse layer. 

In first order (the three first terms), Eq. (20) 
formally coincides with the condition for the equi
librium of the surface of a charged drop. Here the 
effect of the boundary being smeared out is also 
taken into account in the first order. 

The density distribution w 0 is given by (18). 
The remaining terms represent a correction of 
the order of the expansion parameter. The den
sity inside the nucleus is in this order determined 
by (15). 

Without the term proportional to k-1 which 
takes into account the finite compressibility of 
nuclear matter, Eq. (20) with the auxiliary condi
tion (24) is identical with the condition for the 
equilibrium of a charged liquid drop which was 
discussed in a paper by one of the authors [S]. It 
was obtained there by means of a direct variation 
of the energy of the nucleus regarded as a func
tional of the surface, where for the surface tension 
a correction was taken into account which was pro
portional to the average curvature of the surface: 

Es = 0 0 ~ dS (!- fH); 

r =- 20d0o. 

(26) 

(27) 

We now find an expression for the energy of the 
nucleus. In order to do this we must substitute in 
the integral (10) in the inner region w = Wint [ cf., 
(15)] and we must use equation (17) for w within 
the limits of the diffuse layer. As a result we ob
tain the following expression for the energy: 

E = E~o' {I -in Oo ~dS (1- fH) 

- E~-it :k ~ dv 0 [/..2-X21D2 ]}. (28) 

Here for A and <I> we take their zero order values, 
the same as in the liquid drop model. 

The term rH represents the change in the sur
face energy due to the deformation of the surface 
layer. The Coulomb energy E~> is calculated as 
is usually done in the liquid drop model, i.e., for 
such a distribution of nucleons for which the den
sity is equal to unity within the surface and to zero 
outside it. The sum of these terms can be inter
preted as the energy of some effective uniformly 
charged drop with a sharp boundary, although ac
tually the fact that the boundary is smeared out is 
taken into account up to terms of second order in 
y. The term proportional to k-1 takes into account 
the compression of nuclear matter within the nu
cleus. As k - co only the "drop" terms remain 
in formulas for the energy and for the surface, 
and in the auxiliary equation. 

For a spherical nucleus we have in the zero 
order approximation 

')., = 200 -X, (29) 

E = E(o> {1 -30 (1 -f)-~ X- k-1 (02 -~XO + !_X2)} 
vol 0 5 0 5 ° 70 

(30) 

or, singling out the explicit dependence on A and 
Z we obtain 

E = E•A + aA'!. + (b - a2/c) A'1• 

+ dZ2A -•;, [1 + (a/cA'1')(I-~x)J, (31) 

where x is defined by (37) ( cf. below), 

a=3JE.J00A'Ia, b=-arA'1•, d=3e2/5r0, (32) 

with 
r 0 = (3/4np*)'1•, 

c =:= E~/2A. 

(33) 

(34) 

None of the constants in (32)-(34) depends on A 
and Z. Assuming a definite density distribution 
near the surface of the nucleus we can calculate 
with the aid of formulas (21) and (22) the quantities 
0 0 and 01> and then estimate a and b. For this 
it is necessary that the condition a = 0 be fulfilled. 
This occurs, in particular, for the Fermi density 
distribution: 

w~ = [1 + e(2U/Yl]-1. 

For y ~ 1.0 A - 1/ 3 (see [SJ) we obtain 0 0 

= 0.5A-113 and r = -l.OA-113• For I E*l = 16 
MeV[9] we have the values a~ 24 MeV and 
b ~ 24 MeV. The quantity a does not differ 
appreciably from the coefficient of A 213 in the 
semiempirical formulas for nuclear masses, 
which is equal to 15-25 MeV depending on the 
specific form of the formula. 
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In modern semiempirical formulas for nuclear 
masses the compressibility of nuclear matter is 
in fact not taken into account ( cf., for example, 
[ 10•11 ]). It can be estimated from the value of the 
nuclear radius by means of relation (24). In first 
approximation in terms of y the radius of the 
effective surface is given by 

R = 1- ac-1 A-'f, (1- { da-1 Z2 A-1)= 1- 0 0j3k+Xf30k. 

(35) 

A similar result was apparently for the first 
time obtained in the paper by Fli.igge and Woeste 
[ 12 ] In its usual form formula (35) can be written 
as 

R =To A'!,- dc-1 To (1- x), (36) 

where x is defined as usual in the liquid drop 
model: 

X= {(Z2/A) dja = (Z2/A)/(Z2/A)crit, 
(Z2/A)crit =50. (37) 

The approximation of order y2 discussed here 
corresponds, roughly speaking, to terms of order 
A 113 in the formula for the nuclear mass. In the 
same order there also arise corrections associ
ated with the degeneracy of single particle quantum 
states (corrections due to shells). The single par
ticle quantum corrections would correspond to 
terms of order A 0 (or y 3 ) • It is obvious that the 
quantum corrections are of an accidental nature 
and cannot be significant unless we are dealing 
with strictly defined quantum stationary states. 
Both models discussed here correspond to the 
quasiclassical approximation and because of this 
can be utilized only for the description of nuclear 

properties averaged over a group of levels of a 
single nucleus or generally over a group of nuclei. 
In this case the accuracy of the quasiclassical 
theory can be entirely adequate. In any case it is 
better than that given by the usual quantum condi
tions for the applicability of the quasiclassical 
approximation for the description of quantum 
states. 
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