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The forms of the elementary structures of a toroidal magnetic field are obtained and the 
problem of the structure of the field as a whole is discussed. 

IF the lines of force of a magnetic field occupy a 
certain toroidal region Vi, do not have any singu­
larities within it, and do not leave it, then the mag­
netic field containing such a region is said to be 
toroidal. The field can consist of only the region 
Vi; such is, for example, the field within an arbi­
trarily deformed toroidal perfectly-conducting tube 
over the surface of which Hn = 0. However, the 
region Vi may represent only a part of a more 
general field (the field can also contain several 
toroidal regions). Then we shall refer to the boun­
dary of the region considered above as the separa­
ting surface, and to the region Vi as the internal 
region of a toroidal magnetic field. 

For the time being we shall suppose that the 
separating surface is a closed toroidal surface 
without gaps. Among toroidal fields we should also 
include "straight" fields periodic along the z axis. 
It is evident that a single period L of such a field 
is topologically equivalent to a torus. 

We have shown earlier [t~ that if a straight field 
has a symmetry, in the most general case a screw 
symmetry, then the equations for the lines of force 
have an integral-an equation for the magnetic sur­
faces: 

'¥ = Az (r,O) + o:rA'P (r,O) =canst. (1) 

Here Az and Acp are components of the vector 
potential, and 8 = cp - az, a = 2rr /L, where L 
is the period of the field. 

We assume that among the magnetic surfaces 
of such a field there are some magnetic surfaces 
whose diameter is equal to zero. Such a degener­
ate surface is a helical line of force which can be 
found from the following conditions 

a'I';ao = o, (2a) 

(d 2 'Vidr 2 ) (02'¥Jo02)- (o2 '¥/dro0) 2 > o. (2b) 

Such a line which closes on itself at the end of 
a single period is called a magnetic ~xis. The num­
ber of such magnetic axes in a magnetic field can 
have quite different values. Surfaces which separ-

ate regions with different magnetic axes have 
ridges. 

If we take the simplest irrotational so..,.called 
triple ( l = 3) magnetic field specified by the scalar 
potential 

then such a field has one magnetic axis-the z axis­
and three ridges of the separating surface, which 
are helical lines of pitch L = 2rr /a. The intersec­
tion of the plane z = canst with the magnetic sur­
faces (1) of such field is shown in Fig. 1. 

The lines of force lying in magnetic surfaces 
encircle the magnetic axis [2] in spite of the con­
dition curl H = 0. This encirclement can be char­
acterized by the torsional parameter w (~) whose 
reciprocal 1/w is equal to the average number of 
periods required for an encirclement of the mag­
netic axis. If w is a rational number m/n , then 
the magnetic surface consists of lines of force 
which are closed (in the topological sense) after 
n periods tl. But if a line of force does not close 
upon itself then it covers the surface densely every­
where. 

If we violate the symmetry of the field, for ex­
ample, by superimposing a perturbation having a 
different symmetry 2l or bend a straight field into 
a torus, then the equations for the lines of force 
will no longer have a general integral analogous to 
(1), and, consequently, generally speaking there 
will no longer be any uniquely defined magnetic 
surfaces. However, if a "straight" field has a 
constant z -component H0 which is much larger 
than the periodic part of the field h(r, cp; z), or if 
a field folded into a torus has a component 
Hcp = H0 a/r which is much larger than the com-

1>Exceptions to this are separating surfaces which contain 
only a finite number of closed lines of force to which the 
other lines of force in the surface tend asymptotically. 

2lAs an example we can consider the perturbation of a 
helical field (3) by an axially symmetric corrugated field. 
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FIG. 1 

ponent of h(r, z; cp) which is periodic in cp, then, 
as shown in [ 3 ~, the equations for the lines of force 
averaged respectively over z or over cp do have an 
integral. In the second case it is of the form 

(4) 

Here the bar indicates averaging over cp, while hr 
denotes the variable part of the integral_ Jcpnr dcp 
involving the variable part hr = hr -hr. 0 

·Thus, also in this case there exist magnetic 
surfaces, but in contrast to the former exact sur­
faces these are approximate or adiabatic surfaces. 
In actual stellarators the magnetic surfaces ob­
served by means of electron beams belong to this 
class. 

As the amplitude of the periodic part of the field 
and the degree of asymmetry both increase 3 > the 
structure of the field characterized by adiabatic 
surfaces inserted into one another must more and 
more clearly differ from the true structure of the 
field [4]. However, even in this case we can form 
an idea of the structure of the field. 

Indeed, if w is variable for small h, then there 
exists everywhere a dense set of adiabatic sur­
faces on which w = m/n is a rational number. 
But this means that on these surfaces there exist 
lines of force which close upon themselves after 
n turns (however, now, as we shall see later, such 
lines do not cover the whole surface). As h increa­
ses and the adiabatic surfaces are progressively 
destroyed the closed lines of force will be con­
served as before. This follows, if lines of force 
do not leave vi' from the fixed point theorem 
which states that for any continuous mapping of a 
closed singly connected region upon itself there 
exists at least one fixed point [5]. Moreover, if 
the disruption of the magnetic surfaces is suffi­
ciently small then the closed lines will lie near 

3lThe degree of asymmetry should be interpreted as the 
ratio of the amplitudes of fields having different degrees of 
symmetry. 
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FIG. 2 

those surfaces on which w is rational. Thus, for 
example, it has been shown in [S, 7J by means of a 
numerical calculation that a strongly perturbed 
field does indeed contain a system of closed lines of 
force which close upon themselves after n = 1, 12, 23 
etc. periods, and that these lines of force lie close 
to those surfaces upon which they should lie accor­
ding to the data of the method of averaging. How­
ever, the number of lines which close upon them­
selves once after n turns turns out to be not in­
finite but finite, and in particular [7J equal to two. 

In the neighborhood of the line of force r = r 0( cp), 
z = z 0(cp) which closes upon itself after n turns 
around the torus, the structure of the field can be 
easily determined if the equations for the lines of 
force can be linearized. Indeed, upon substituting 

z = Z0 (cp) + £, r = r 0 (cp) + lJ (A) 

into the equations for the line of force, and on re­
stricting ourselves to terms of order ~ and 11• we 
shall obtain a linear system with coefficients whose 
period is equal to 21rn, where 21r is the period of 
the torus. 

If ~ 1 , 17 1 are the coordinates of the representa­
tive point of the line of force, i.e., of the point of 
intersection of the line of force with the surface 
cp = const, then after one period these coordinates 
will be equal to 

(B) 

where the matrix (O'ik) in virtue of the conserva­
tion of flux div H = 0 has a determinant equal to 
unity 4.' The eigenvalues (A. 1 , A. 2) of the matrix 
(O'ik) are either complex conjugate or real num­
bers satisfying the relation A. 111. 2 = 1 , and there­
fore the following three cases are possible: 

4lSince we are restricting ourselves to an investigation of 
the immediate neighbourhood of the closed line we can take 
the quantity Hz to be constant on a given line of force for 
z = 0 and z = 2rr. 
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1) A1, A2 = e±it\ ft - real 
2) 1.1 = A, A2 = 1/1-, A~ 0, 
3) A1 = A2 = ± 1. 

A -,real 
(C) 

In the first case the representative point moves 
around the fixed point-the trace of the closed line 
of force-along ellipses (Fig. 2a), and in the second 
case along hyperbolas, [moreover, if A > 0 then the 
representative point moves all the time along the 
same branch, while for A < 0 it jumps from one 
branch to the other (Fig. 2b)) . Finally, in the last 
case for A = ± 1 there exists a surface which 
passes through the fixed point upon which all the 
lines of force are closed, while the representative 
points in its neighborhood move (either without or 
with jumping) along neighboring surfaces (Fig. 2c). 
We shall refer to points which do not jump as 
points of the first kind, and we shall refer to 
points which do jump as points of the second kind. 

Evidently the general structure of the field is a 
peculiar addition of neighborhoods of closed lines 
of force. Moreover, for different n we shall, gen­
erally speaking, obtain in the representative plane 
different pictures which acquire increasingly com­
plex structure as n - oo • 

Fields corresponding to the degenerate case 
A = ± 1 are fields with exact magnetic surfaces. 
This degeneracy is, generally speaking, removed 
if the field becomes asymmetric. Although at 
present there are no detailed data on the dynamics 
of the disruption of asymmetric fields, neverthe­
less, one can suppose [7] that in the case of small 
asymmetry the surfaces with w = 1/n on splitting 
assume the form shown in Fig. 3, i.e., around one 
of the lines of force there arises a filament which 
is joined along another line of force which in the 
plane z = const is represented by hyperbolic points. 
This explains the appearance of 2n fixed points in 
the layer with w = 1/n. Thus, around every 
"elliptical" closed magnetic line of force which is 
a magnetic axis of order n there appear magnetic 
surfaces belonging to it which are formed by lines 
of force encircling this n-th order axis. 

As the degree of nonadiabaticity increases the 
rate of rotation about n-th order axes increases [ 7J, 
and when it becomes comparable to the rate of ro­
tation about 0-the original magnetic axis of the 
first order, the structure of the field undergoes 
another change. 

Thus, in the example given in [ 7 ~ the "stable" 
elliptical points are converted for x < x ** into 
hyperbolic points of the second kind, and, conse­
quently, all the fixed points become hyperbolic. 
We have assumed above that the lines of force do 
not leave the region Vi. In Mel'nikov's papers [sJ 

FIG. 3 

it was shown that when symmetric fields are per­
turbed the separating surface, generally speaking, 
acquires gaps. In this case closed lines of force 
may completely disappear. However, if dw/dl/J "' 0 
and the gaps are not too great, then, most probably, 
the picture in typical cases will remain the same, 
as is indicated by the already cited example [7=. 

Finally, when the system.has still greater de­
gree of nonadiabaticity, the role played by the gaps 
becomes, most probably, dominant, and the toroidal 
field practically disappears. 

In summary, we can say that magnetic surfaces 
exist only as a result of degeneracy of more gen­
eral field structures. In the case of fields close to 
symmetric and weakly nonadiabatic the field 
structure is filamentary of the type shown in Fig. 
3. In the case of fields with a sufficiently great de­
gree of nonadiabaticity the lines of force. begin to 
be strongly intertwined, since all or, at any rate, 
most neighborhoods of closed lines of force become 
hyperbolic of the first or of the second kind. 
Finally, as the degree of nonadiabaticity increases 
further the region disappears completely because 
of the growth of gaps in the separating surface. 

Naturally, in specific cases we can observe all 
these stages simultaneously, with the region of 
greatest nonadiabaticity lbin5 in the neighborhood 
of the separating surface 6•7 • 

It should be emphasized that all the arguments 
given in the present paper have utilized only the 
equation of continuity div H = 0 and are not assoc­
iated with the irrotational nature of the field. 

It might be supposed that the observed "quan­
tization'' of plasma pinches [ 9], the filamentary 
nature of astrophysical formations of magnetic 
plasmas are associated with the aforementioned 
characteristic feature of the nondegenerate mag­
netic field. This assertion is supported by the fact 
that instabilities in toroidal plasma configurations 
consisting of inserted surfaces develop in the 
neighborhood of closed lines of force (instabilities 
of Shafranov-Kruskal and Suydam, convective and 
current-convective instability). These instabilities 
can be regarded as a tendency towards the removal 
of degeneracy which was mentioned previously. 

The filamentary structure of a plasma pinch of the 
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type shown in Fig. 3 formed in the course of this 
may turn out to be on the whole sufficiently stable, 
since the plasma pinch will consist of inter­
twined plasma fibers surrounding the ring axis of 
the toroid 0 , 1 , 2 etc. times. These fibers may 
either be at rest or in a state of some stationary 
motion. As a result of the work of Mercier [10Jone 
might suppose that the separate fibers will also be 
sufficiently stable. 

In conclusion we wish to express our deep grati­
tude to M. A. Leontovich for fruitful discussion of 
problems touched in this paper. We are also 
grateful toN. M. Zueva, and M.S. Mikhallova for 
checking on a computer a number of the arguments 
quoted in this article. Finally, we wish to thank 
I. M. Gel'fand and M. I. Graev for continuing in­
terest in these problems. 
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