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A. light beam transmitted through an anisotropic
material located in a Kerr cell (condenser, seg-
ment of wave guide, resonator) is modulated in
frequency and amplitude (1] if a variable field is
applied to the Kerr cell. )

The use of the Kerr cell as a light modulator
has been considered frequently, [1-5] especially
in recent years, as a method of modulating co-
herent optical radiation.[3:%] In the present note
we propose a new method for determining the re-
laxation time of the anisotropy based on measure-
ments of the intensity of the components of the
amplitude-modulation spectrum of the light trans-
mitted through a Kerr cell.

Optimum amplitude modulation of the light is
realized when the principal directions of the po-
larization device form an angle of 90° with each
other and an angle of 45° with the electric field
(another case of optimum amplitude modulation
corresponds to parallel orientation of the princi-
pal directions of the polarizers and an angle of
45° with the field direction). The field of a light
wave transmitted through the polarizer, Kerr cell,
and analyzer is expressed as follows:

+L/2 .
Yo=Y ,sin {g S (ny — ny) dx}
-L,
* +L/2
X exp {i [mt — —’;— S (np 4 ns)dx + %]} , (1)

=L/2
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np=n-+ ABE(t), ns=n—L1ABE%(t), (2)
where Yp is the amplitude of the field leaving the
polarizer; k and w are the wave number and fre-
quency of the light; L is the path length of the light
in the electric field; np and ng are the refractive
indices for light with electric vector parallel and
perpendicular to the electric field E; n is the re-
fractive index in the absence of field; B is the Kerr
constant and A is the wavelength of the light.

If the frequency of the electric field @ > 1/7
(7 is the relaxation time of the anisotropy) the
molecules cannot follow the field variations and
Eq. (1) will not contain frequency-dependent com-
ponents, but will only exhibit a constant (dc) com-
ponent; the spectrum of the transmitted light will
only contain the frequency of the incident light.
However, if Q7 « 1 the transmitted light will con-
tain all the components of the modulation spectrum
with maximum intensity. In the intermediate case
QT ~ 1 the strengths of the amplitude-modulation
components will depend on © or, for fixed €, on .

In order to describe the effects quantitatively
we assume that yj = (nj —n) [ where (nj —n) is
either np—n or ng—n at a definite point in the
Kerr cell] and is given by the following equation:

d!/,' 1 1 5
@ = Vi = 5 BABE? (1), @)

Here, the subscript i = p or s, with
bp=2/3» bsz —1/3‘

If dyj/dt = 0, then yj = biBE%(t) and we obtain
Eq. (2); however, if the field E is switched on and
off instantaneously, i.e., if E = 0 in Eq. (3) then
yi =y} exp (—t/7) and the artificial anisotropy
produced by the field decays exponentially.

We assume for simplicity that E(t) does not
contain a dc term and is expressed by the har-
monic function E(t) = E; cos Qt. Solving Eq. (3)
for this case we have

Yi = S OBMES (1 + [1 + (2Qt7v}] " cos (291 + @)} (4)

Here, ¢ is the phase shift between the electric
field and the double refractor with tan ¢ = 2Q7;.
The usual methods for determining 7; are essen-
tially different ways of determining ¢.

2
To determine the quantity 3 = f_ i//z (nj —n)dx

we must integrate Eq. (4) in the direction of the
light beam within the limits — L/2 and L/2 with
the origin of coordinates taken at the center of
the element. Account should also be taken of the
fact that t = nx/c in Eq. (4) while the phase of the
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electric field is @t at the time the light passes
through the origin. In this case

sin KL
T (2Qt 4 q))] ,

= 3 LABE;[1 + 4;

A =11+ (292", K =2xn/A. (5)

Choosing the length of the Kerr cell so that L
= A/4, where A is the wavelength in the medium,
we have

P — %meBEg[l + 2 Ascos (201 + cp)] . (6)

Taking account of Egs. (2) and (6) and substituting
the values np and ng in Eq. (1), we have

Yo=Y, %exp [i <o)t —% a—kLn + —})] {exp (i2a)

X exp [ia sin/li cos (29t + q))]
% €XP [ia % Aj;cos (29t + (p):I} , (7)

where a = 1/2 ﬁLBE%. Expanding Yy in Eq. (7) in
Bessel functions and computing the intensity of the
n-th component at frequency 2nQ (n is an integer)
we have

In=Y¥o= 11, {7 (szads) + 75( - aa,)
—2(— 1", (%aAs) Jn (%a/lp) cos2a}. (8)

The quantity Aj varies from zero to unify and at
small values of a the ratio of L., the intensity
of the light at frequency w + 2%, to I;, the inten-
sity of the light at the fixed frequency, will be zero
(assuming that Ap = Ag, i.e., that 7p =7g = 1)

I/l = a2 [1 -+ 4Q272) 2, 9)

Equation (10) can be used to find 7.

The relaxation time for the anisotropy can also
be found from the formulas given above without
assuming that 7, = 75 = 7.

A very clean pattern of discrete splitting of the
frequency of light transmitted through a Kerr cell
filled with nitrobenzene has been observed at a
modulation frequency € = 27 x 107 cps[43 and light
has been modulated at Q ~ 27 x 1010 cps;[®] these
results indicate the effectiveness of the method
and show that it may be useful in resolving the dis-
crepancy between the measurement of 7 in the
Kerr effect!’] and in scattering of light. (8]
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AT present the energy in a bremsstrahlung beam
is measured in different laboratories by several
types of ionization chambers, which are calibrated
by means of a calorimetric or some other absolute
method.

In several Soviet Laboratories the measure-
ments are performed by means of a standard cham-
ber developed by the A. F. Ioffe Physico-technical
Institute. The sensitivity of this chamber was de-
termined calorimetrically in the energy range
Eymax = 10—90 MeV.[] I the USA the Cornell
thick-walled chamber [2) and the duraluminum
chamber of the National Bureau of Standards are
used; the latter has been calibrated by means of
a calorimeter in the range Eymagx = 7—170 MeV.[3]

The duraluminum chamber is used also in sev-



