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An effective method is developed for the study of the scattering matrix S( v) in the complex 
angular momentum plane l = v- Y2 in nonrelativistic quantum mechanics. The method is 
based on a study of the properties of the quasiclassical solutions of the radial Schrodinger 
equation in the complex radius-vector plane. 

1. INTRODUCTION 

RECENTLY the analytic properties of the scatter
ing matrix S ( v) in the complex angular momen
tum plane have been intensively studied. These 
studies were aimed mainly at a clarification of 
the high energy asymptotic behavior of the scat
tering amplitude in the relativistic region. How
ever in the absence of a consistent quantum field 
theory it is necessary to make definite assump
tions about the location of the poles of S ( v) in the 
complex plane. These assumptions are based on 
the analogy with nonrelativistic quantum mechan
ics. For this reason the study of the analytic 
properties of S ( v) in nonrelativistic quantum 
mechanics constitutes an important problem. 

On the other hand such a study is of interest 
for its own sake since it makes possible a full 
solution of the problem of quasiclassical scatter
ing of particles by potential fields. 

In what follows we consider the motion of a 
particle in a spherically symmetric potential 
U ( r). It is assumed that the particle energy 
E » U ( r) on the real axis r. In addition we take 
U ( r) to be an even analytic function of r having 
no singularities on the real axis. These conditions 
are not essential limitations on the method con
sidered and are adapted for the sake of simplifi
cation only. 1) 

In this note we outline the method for investi
gation of S ( v) in the complex v plane in the 
quasiclassical case. Applications of the method 

1>The case when U (r) is not regular on the real axis has 
been investigated by the same method (1] on the example of a 
rectangular spherical well. 

for a complete clarification of the asymptotic be
havior and of the poles of S ( v) and for calcula
tions of the scattering amplitude will be given in 
a following communication of the authors. 

2. DEFINITION AND BASIC PROPERTIES 
OF S(v) 

Let us suppose that the potential U ( r) falls 
off faster than 1/r as r - oo and that r 2U ( r) 
- 0 as r- 0. 

For physically meaningful! positive half-integer 
values of v = l + 1/ 2 the function S ( v) is defined 
as follows. There exists a solution j v ( r) of the 
radial Schrodinger equation 

d2jv . (k2 v2- 1/4) . - 0 dro --j- - U - , 2 ]v -

(k2 =2m E, u =2m U(r)), (2.1) 

which behaves like rV+t/ 2 as r - 0. As r - oo 

the function j v ( r) takes the asymptotic form 

iv (r) = Tv cos( kr - v T - : + 6v-•;,) = A.eikr + B.e-ikr. 

. . . (2.2) 
By defmthon 

S (v) = e2; 8v-•;, = iei•" AviB.. (2.3) 

These definitions can be extended without any 
changes to arbitrary complex values of v provided 
that Re v > 0. It is only necessary to remark that 
j v ( r) has a branch point at r = 0 for other than 
half-integer values of v. We agree to draw the 
cut along the negative real r semiaxis. 

For Re v < 0 the definition of j v ( r) needs to 
be made more precise. At first glance the defini
tion of j v ( r) by its behavior as r - 0 is in this 
case ambiguous. Indeed, an addition of the second 
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independent solution j_v( r) of Eq. (2.1) with an 
arbitrary constant coefficient will leave unaffected 
the behavior of jv as r--.. 0. We therefore make 
out definition more precise by assuming that 
j v ( r) can be represented by the series: 

. V 21t ,v+'/, 00 
( r )2n 

}v (r) = zvr (v + 1) 2_; Gn 2 
n=O 

(ao = 1). (2.4) 

For noninteger v the series for j v ( r) and 
j_v( r) have no common powers of r. In this way 
the definition (2 .4) fixes j v ( r) uniquely for all v 
other than negative integers. In that last case we 
shall understand by j v ( r) the limit to which this 
function tends as v tends to the corresponding 
value. 

The factor 1/r ( 1 + v) in Eq. (2.4) insures the 
analyticity of j v ( r) for negative integer v. Ac
cording to the general theory of differential equa
tions of the Fuchs class (see, e.g., [2] ), for nega
tive integer v the function j v ( r) coincides with 
l-v ( r) apart from a constant factor. Had we de
fined j v ( r) without the factor 1/r ( 1 + v), then 
j v ( r) would develop poles for negative v. Let us 
recall that our considerations apply only to even 
potentials U ( r). For other potentials an analogous 
situation develops also for halfinteger values of v. 

The function j v ( r) defined in the indicated 
manner is an entire function of v. The same ap
plies to the coefficients Av and Bv· It therefore 
follows that S ( v) can have only poles as a function 
of v, 

It is useful to give one more definition of j v ( r), 
equivalent to Eq. (2.4). Let us consider in the 
limit as I r I --.. 0 a line in the complex r plane on 
which I rv I = I r-v I = 1. It is not hard to see that 
this line is the logarithmic spiral 

(2.6) 

Let us define now the functions h~t) ( r) and 
h~2 ) ( r) as those solutions of Eq. (2.1) which go 
like e±ikr as r --.. + ""· As r --.. - oo, with the 
point r = 0 circuited from above, the h~) and h~) 
go over into superpositions of incoming and out
going waves: 

The functions h~t) and hU) are entire even 
functions of v. Consequently the same is true of 
the coefficients av. bv, cv. and dv. From Eq. 
(2.2) and the definitions of hVl,C2l it follows that 

(2.8) 

Let us establish the relation between S ( v) and 
the coefficients av. bv, c v. dv. To that end we 
use Eq. (2.6), setting in it r -- oo along the up
per edge of the cut. Making use of the asymptotic 
behavior (2.2) and (2.7) we get 

On equating the coefficients of eikr and e-ikr we 
get a homogeneous system of linear equations for 
Av and Bv: 

- av A. + (e1<v+';,)1t - c.) B. = 0. (2.10) 

Setting the determinant of the system (2.10) equal 
to zero we obtain 

Re v In I r 1 - Im v arg r = 0, 
On the other hand it follows from the constancy 

<2 ·5) of the Wronskian of hVl and hU' that 

which passes through all the sheets of the Riemann 
surface of j v ( r). Let us require that j v ( r) be
have like rv+t/2 as we approach zero along this 
spiral. Such a definition is unambiguous for com
plex v since the other independent solution j_ v ( r) 
behaves like r-v+t/2 and has the same magnitude 
(in modulus) as the first and hence is easily dis
tinguishable against its background. For negative 
v again additional comments are needed, since in 
that case the spiral becomes a circle which does 
not go through zero. In that case h ( r) may again 
be defined as a limit. 

Since the potential is even, we can establish a 
relation between j v ( r) and j v ( - r). The function 
jv(-r) is, just like jv(r), a solution of Eq. (2.1) 
that goes like const rv+t/2 as r --.. 0. It then fol
lows from the uniqueness of j v ( r ) that 

(2 .12) 

On substituting of Eq. (2.12) into Eq. (2.11) we 
find 

bv + Cv = 2i COS Vll:. (2.13) 

From the second of the Eqs. (2.10) we get with 
the help of Eq. (2.13) 

(2.14) 

Finally, from the definition (2.3) and from (2.14) 
we get 

S (v) = lla. + e1<v+'f,)n bvla •. (2 .15) 

Equation (2.15) makes it possible to explicitly 
resolve S ( v) into even and odd parts. In particu
lar the odd part Sa ( v) is given by 
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Sa (v) = ; [S (v)- S(- v)l = -sin v:n: (bvfav). (2.16) Z = /..,Z+ + J.lZ_. ( 3.3) 

For E > 0, which is the only case of interest 
to us, S ( v) satisfies the unitarity condition de
rived by Regge: 

S* (v*) S (v) = 1. (2 .17) 

It follows from Eq. (2.17) that the poles and 
zeros of S(v) lie at complex conjugate points. 

Since av and b v are entire functions of v it 
follows that the poles of S ( v) are at the same 
time zeros of av· The converse of this statement 
is, however, not true since we could have simul
taneously the equality bv = -e-i(v+1/2)7T. That this 
equality should hold is by no means an accident. 
Suppose that at the point v0 there is indeed a pole, 
i.e., that av0 = 0 and bv0 ;r -e-i<vo+t/2)7T. Then a 
zero of av occurs also at -v0• But at that point, 
as will be shown, b_v0 = -e-i<-vo+J/2)7T Indeed, 
suppose this to be false. Then at the points ± v0 

there are poles and at the points ±v6 there are 
zeros of S ( v). But that is in contradiction with 
Eq. (2.15) when the parity of av and bv is taken 
into account. Consequently at the pole point v 0 we 
have 

bv, = - e-i(-v,+'/,)1t. (2.18) 

In conclusion we mention one more important 
property of S ( v): for positive values of E the 
poles of S ( v) cannot lie on the real v axis. In
deed, for real v the function h ( r) is real (since 
the boundary condition at r - 0 and the coeffi
cients in the Schrodinger equation are real). On 
the other hand it follows from Eqs. (2.2) and (2.3) 
that the pole of S ( v) cannot be real. 

3. QUASICLASSICAL SOLUTION OF THE 
SCHRODINGER EQUATION AND LEVEL 
LINES 

In the quasiclassical case ( ka » 1) considered 
here the functions S(v), bv/av, and others can be 
found explicitly. To that end we make use of the 
method developed in [4•5]. Our method is based on 
a study of the behavior of the functions j v and hv 
in the complex planes of r and v. 

It is well known that in the quasiclassical ap
proximation the Schrodinger equation (2.1) has 
solutions in the form (see, for example, [s]): 

r 

Z±(r, r) = ,)- exp(±i~pvdr), (3.1) 
r Pv _ 

r 

The general solution may be expressed in the 
form 

Equation (3.3) does not define A and !-! unam
biguously. It is necessary to impose upon these 
coefficients an additional condition which may be 
chosen in the following form: 

dZ!dr = ipv (/..,Z+ - J.lZJ. ( 3.4) 

When the condition (3.4) is satisfied the quantities 
A and !-! are slowly varying functions of r. 

There exist lines in the complex r plane on 
r 

which the functions exp ( ±i J Pvdr) oscillate with
r 

out changing in modulus. These are, obviously, 
the level lines 

r 

Im ~ Pvdr = const. (3.5) 

r 

On these lines the quantities A and !-! remain con
stant with a relative accuracy dp~ 1/dr. However, 
this assertion makes sense only if the two terms 
on the right side of Eq. (3.3) do not differ appreci
ably in magnitude. If, however, the ratio of the 
magnitudes is less than or of the order of dp~Vdr, 
then the extraction of the smaller term from the 
background of the larger exceeds the accuracy. 

The quasiclassical approximation becomes in
applicable near the "turning points" at which Pv 
vanishes. Therefore, after passing through the 
neighborhood of a turning point along a level line 
the coefficients A and !-! may have changed sub
stantially. The same may happen in the neighbor
hood of any singularity of the potential U ( r). 

On moving along a path that crosses the level 
lines we find that one of the exponentials grows 
and the other diminishes. Therefore if the solu
tion Z was correctly given on some level line in 
the form of the sum (3.3), in which the two terms 
are of comparable magnitude, then as we move 
across the level lines the solution will be given by 
just one of the exponentials (the growing one). If 
the coefficient of the growing exponential was zero 
to start out with, then the accuracy of the method 
is not sufficient to determine the behavior of the 
solution in the corresponding region. 

In the following we will make constant use of 
various pictures showing the distribution of the 
level lines. We therefore study now the distribu
tion of the level lines for various values of v. Let 
U0 be a quantity characteristic of the potential on 
the real r axis. First we note that for U0/E « 1 
the level lines corresponding to motion in the po
tential field are nearly the same in the entire r 
plane as the level lines for free motion [i] depicted 
in Fig. 1. 
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FIG. 1 

As r -0 Pv ""' iv/r and the level lines are 
given by the logarithmic spirals Re ( v ln r) 
= const [see Eq. (2.5)], passing through all the 
sheets of the Riemann surface Z v ( r, r). Figure 
1 shows a turn of each spiral, the turn lying on 
the "physical" r sheet. The point r 1 = v/k 
represents a turning point (complex turning point 
in a centrifugal potential): Pv ( rj) = 0. Near r 1 

we have approximately Pv( r) ""'const vr- r 1• 

Therefore three branches of level lines depart 
from the turning point at an angle of 2n /3 to each 
other. 

As r - ± oo we have Pv - k and the level 
lines approach asymptotically straight lines 
parallel to the real r axis. A more detailed study 
shows that the level lines starting from r 1 ap
proach at infinity the straight line Im r = ( n /2) 
Im r 1• In the case Re v > 0, Im v > 0, depicted 
in Fig. 1, the right branch of this line approaches 
its asymptote from below and the left branch from 
above. 

Let us assume that the singularities of u ( r) 
that lie nearest to the real r axis are simple 
poles. Since u ( r) is real on the real axis and is 
even, it follows that there must be four such poles: 
at ±ro and ±rti. Let us denote the residue of u ( r) 
at the point r 0 ( 0 < arg r 0 < n /2) by R. Then the 
residues at the points -r0 and ±rri are respec
tively -R and ±R*. Near the poles lie zeros of 
p~ which we will denote by ±r2 and ±r3: 

r - r + R 
' 2 - 0 k• 2 2 ' - v /r0 

( 3.6) 

For the case of motion in a "weak" potential 
field ( Uo/E « 1) the level lines can be appreci
ably distorted only in a relatively small neighbor
hood of the poles of the potential (Fig. 2). The 
structure of the level lines near poles of u ( r) can 
be understood as follows (4). The poles ±r0 and 

* ±ro represent branch points of infinite order of 
solutions of the Schrodinger equation. Let us 
agree to draw cuts from them parallel to the 
imaginary r axis. The level lines go off to one 
side only of the points ±r0 and ±rti, because in 
the neighborhood of r 0 

r 

~ Pv dr = const (r- r 0)'1•. 

The points ±r2 and ±r3 represent turning points 

-<=.L rz I __ 
~~ 
~·t 

a 

FIG. 2 
b 

and three branches of level lines depart from 
them, just like from r 1. Two of them go to ±oo 
(Fig. 2a), or to zero and infinity (Fig. 2b). On the 
same sheet of the r Riemann surface as r - ± oo 
and r - 0 there cannot exist two lines of the same 
level. It therefore follows that the third branch of 
the level lines that comes out of the turning points 
±r2 and ±r3 necessarily goes under the cut onto 
another sheet of the Riemann surface (as shown on 
Fig. 2 by dashed lines). 

We do not present a detailed picture in the lower 
half-plane in view of the fact that the level lines 
are symmetric with respect to zero. The remain
ing changes, introduced into the picture of the level 
lines by the potential, reduce to insignificant shifts 
and deformations of these lines by amounts of 
relative order U0/E. 

Real values of v present a special case. In that 
case the free motion level lines have the charac
teristic form depicted in Fig. 3 ("eye"). For mo
tion in a potential field for E » U 0 one has the 
picture shown in Fig. 4. The poles may turn out 
to lie outside (Fig. 4a) as well as inside (Fig. 4b) 
the "eye." 

FIG. 3 

FIG. 4 

For values of v equal in magnitude but opposite 
in sign we obtain the same picture of level lines. 

The Schrodinger equation solutions that are of 
interest to us are prescribed by boundary condi
tions at zero and at infinity. As r tends to zero 
or infinity the potential U ( r) plays a negligibly 
small role and therefore the coefficients A. and f1 
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in Eq. (3.3) tend to constant values. The decompo
sition (3.3) acquires in these regions an asympto
tically exact meaning, independent of the magni
tude of the ratio A/J.L. Along the level lines the 
coefficients A and f.L are conserved with quasi
classical accuracy. They may however change if 
the level line passes through a sufficiently small 
neighborhood of a turning point or a singular point 
of the potential. Beside, there exist level lines 
that do not go through the regions Re r - ±oo or 
r - 0 (see Fig. 2). In order to obtain the coeffi
cients A and f.L in the entire plane one must state 
the "connecting formulas" across the singular 
points and the turning points, i.e. one must find 
out how A and f.L vary in the neighborhood of these 
points. 

4. CONNECTING FORMULAS 

The connecting formulas are established as 
follows. The asymptotic solution Z is known on 
one side of the singular point. It is necessary to 
connect with it the solution that is exact in the 
neighborhood of the singular point, and then find 
the asymptotic behavior of the exact solution on 
the other side of the singular point. The asymp
totic solution so obtained determines the changed 
coefficients A and f.L. 

For the one-dimensional case the connecting 
formulas have been obtained by the method out
lined in a number of papers.[4•7•8J We give here 
just the results that will be useful to us later. 

a) Simple turning point. [7] Near the simple 
turning point r 1 one has approximately Pv 

= constvr=-r;. The level lines have the form 
shown in Fig. 5. Let us take the lower limit of 

FIG. 5 

integration r in Eq. (3.1) equal to r 1. Let the co
efficient A of the exponential Z +, which decreases 
on motion inward of region I, be equal to unity on 
the branch L 1, and let the coefficient f.L of Z_ be 
equal to zero.2) Then, as before, A= 1 and f.L = 0 
on L 3 and A= 1 and J.L = -i on L2. 

Thus, the solution expressible in terms of a 

2)The symbolz Z + and Z- [see Eq. ( 3.1)] do not determine 
the solution uniquely, since p v changes sign upon crossing a 
turning point. To make the solutions unique it is necessary to 
specify the direction in which they decrease or increase. 

r 
single exponential on the level line Im J Pv dr = 0 

rt 

remains a single exponential on another line of 
the same level if the transition between these lines 
can be achieved by going through a region within 
which the solution is small. If instead the solution 
is large within that region, then in the transition 
there is added to the original exponential another 
one with the coefficient +i depending on whether 
the passage was clockwise or counter-clockwise. 

b) Pole and turning point near each other. [4] 

The level lines are shown schematically in Fig. 6. 

FIG. 6 

We set in this case r = r 2. If A = 1 and f.L = 0 on 
L 1 (it is assumed that Z + grows inward region II) 
then we have on L2 

')., = 1, (4.1) 

r, 

F (£) = 2nie-2Un<-~~e>;r (- £) r (1- £) (4.3) 

For I~ I » 1 the function F ( ~) = -i and we 
return again to the case a). Let us also write out 
the asymptotic behavior of F ( ~ ) for small ~: 

F (£) =- 2ni£. (4.4) 

On going around counterclockwise as before 
A= 1, but J.L = -F(~2)· 

c) Two zeros near each other [a] (Fig. 7). Let 

r I 
~ L~ /r, I L, 

FIG. 7 

us choose r = r1 ( r1 is that turning point from 
which departs the level-line that goes to zero). 
Let A = 1 and f.L = 0 on L 1 ( Z + decreases into the 
region 1). Then on L 2: 

')., = 1, l.l = G ('IJ), (4.5) 

'I]=+~· Pv dr, (4.6) 
r, 

G ('IJ) = V2nie~-~ In <-~>;r (1/2 - 'IJ). ( 4.7) 
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As T/- co, G ( T/) - +i and we come back to case 
a), going around counterclockwise. 

In some cases there arises the problem of 
connecting formulas when two turning points and 
a pole lie close to each other. Unfortunately this 
problem leads to a differential equation with un
known explicit solution and consequently the con
necting formulas for this case have not been 
found. 

5. LOCATION OF SINGULAR POINTS 

In what follows we shall call singular points not 
only the poles of the potential but also the turning 
points. 

If the turning point r 1 ::::< v /k is far from the 
pole r 0 then, as was already shown, the second 
turning point r 2 is close to r 0 [see Eq. (3.6)]. Let 
us introduce the notation 

a= (v- kr0)/kr0 , X = (r- r0)/r0 , 

U0 = R12mr0• 
(5.1) 

In terms of a, x the function Pt takes on the 
form 

p~ = k2x-1 (2x2 - 2ax- U0/E). (5.2) 

The roots of the equation p~ = 0 are 

X1. 2 = a/2 ± Va2/4 + U0/2E. (5.3) 

A measure of the distance between the points 
ri and rk is given by the quasiclassical "phase" 

(i, k = 0, 1, 2; X 0 = 0). ( 5.4) 

The points ri and rk are to be considered as 
distant from each other if I ( ri, rk) I » 1. As we 
have already mentioned, our method yields effec
tive results if even just two of the three points r 0, 

r 1, and r 2 are distant from each other. Let us 
study first the "distances" ( ri, rk) as functions 
of a for fixed values of U0/E, and kr0• 

1. lal » 1Uo/EI 112 . 

In this case I x 1 I ::::< I a I » I x 2 I ::::< I Uo/Ea 1. 
Neglecting x 2 compared with x 1 we find 

0 2'/, 
(r 0 , r 1) = kr0 1 12~ V x- X1 dx = i 3 kr0d'!., 

x, 

( 5.5) 

Since ( r 0, r 1 ) » ( r 0, r 2 ), it follows that ( r 1, r 2 ) 

::::< ( r 0, r 2 ). 

2. a« (U0/E) 112• 

Then x 1 ::::< -x2 ::::< ..;-=u-=--0-;/-::--2E=, 

f-. /x•- x2 • (Uo)'/• 
(ro, rl) ~ kro .\ v-x-1 dx = LCkro 2£ ' 

x, 

(r0 , r 2) = i (r0 , r 1), (r1 , r 2) = (i- 1) (r0 , r 1). (5.6) 

Here C is a constant of order of magnitude of 
unity. 

3. a~ ( U 0/E) 1/ 2 . 

Here one must consider separately the case 
when a is near the branch points of the roots 
±i {2U0/E. Let 

a = i V2U0/E + e (5.7) 

Then 

x1.2= i VV0/2E ± (2UJE)'1• V2[8. (5.8) 

Hence 

(ro, rl) = (ro, r2) =- V2 e3nif4kr0 (U012E)'1•, (5.9) 

(rl> r2) =canst kr0 (U0/E)'1•e. (5.10) 

If instead £ ~ V U 0/E then 

(ro, r1) ~ (r0 , r2) ~ (r1, r2) ~ kr0 (UJE)'1•. 

Let us consider now the various possible rela-
tions between the parameters U0/E and kr0• 

A. kr 0 ( U0/E ) 314 » 1. 
A.l. a» (U0/E) 1/ 2• 

In accordance with Eq. (5.5) one has in this 
case ( r 0, r 1 ) » 1, ( r 1, r 2 ) » 1. For ( r 0, r 2 ) one 
has according to Eq. (5.5) ( r 0, r 2 ) » 1 if a« 
a« (kr0U0/E) 2, and (r0, r 2 ) ;S 1 if a;?:, (kroUo/E) 2• 

Regardless of the value of ( r 0, r 2 ) the case A.l. 
is "soluble" (a pair of "distant" points exists). 

A.2. a « V U0/E. 
In accordance with Eq. (5.6) ( r 0, rj), ( r 0, r 2 ), 

and ( r 1, r 2 ) » 1. Case A.2. is also soluble. 
A.3. a~ ( U0/E) 112 • 

According to Eqs. (5.9) and (5.10), ( r 0, rt) and 
» » 

( r 0, r 2 ) » 1. In addition ( r 1, r 2 ) ~ 1 if£ :;;;, 
( kr0 )- 1 ( U 0/E) - 1/ 4 • Thus case A is fully soluble. 

B. kr0 ( U 0/E) 314 ~ 1. 
B.l. a » (kr 0)- 213 ;?:, ( U0/E) 1/ 2. 

According to Eq. (5.5) ( r 0, r 1 ) ~ ( r 1, r 2 ) » 1, 
( r 0, r 2 ) :;;;, 1. Case B.l. is soluble. 

B.2. a:S(kr0)- 213 • 

According to Eqs. (5.5), (5.6), (5.9) and (5.10) 
we have 

Case B.2. is not soluble. 
In case B our method permits the study of the 

asymptotic behavior not in the entire v plane but 
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only outside a neighborhood ~ ( kr0 ) 1/ 3 of the 
point v0 = kr0• 

6. BEHAVIOR OF j v AND hv IN THE COMPLEX 
r PLANE 

The knowledge of level lines and connecting 
formulas makes it possible to obtain quasiclassical 
asymptotic solutions of the Schrodinger equation 
for arbitrary complex values of v and r. Let us 
show how this is done on the example of the sim
plest picture of level lines, Fig. 2a. 

Let us start with h~1). By definition this func
tion has for Re r- + oo just one exponential which 
increases in the direction of decreasing Im r (for 
brevity we shall say in what follows that it in
creases on moving down). First let us find its 
asymptotic behavior on level lines going through 
singular points. 

The sections of the level lines between the 
points r and r' will be denoted by [r, r']. On the 
lines [+ 00 , r 1], [+ 00 , r 2], and [+ 00 , r:J we have 
everywhere 

h~1> =VIi e- i <+co. r> z+ (f, r), 

where we have introduced the notation 
±co 

(6.1) 

(±=,r)= ~(pv-k)dr-ki. (6.2) 
r 

The normalization factor e-i(+oo,r1) was intro
duced into Eq. (6.1) in order that h~1l, in agree
ment with its definition, have the asymptotic be
havior eikr as r- +oo. 

The asymptotic behavior, Eq. (6.1), is also true 
on the line [- 00, r 1]. On the line [r1, OJ we have 
according to the connecting formula a) 

h~1 > = llfie-i <+co. r,) (Z+ (r, f 1)- iZ_ (r, f 1)). (6.3) 

On the line [- 00 , r:Jl we have according to the 
connecting formula b) 

h;1> = Vke-i<+co.r,) (Z+ (f, fa)+ F (sa) Z_ (r, r3)), (6.4) 

where F ( ~) is defined by Eq. (4.3) and . 
-ro 

1 ~ . R* sa=-- pdf=tv . 
:rt v k2 - v2 I r' 2 

r, 0 

( 6.5) 

Let us agree to denote by the symbol points 
that lie on unphysical sheets of r. On the line 
[ -~. r 2] the asymptotic behavior of h~1) again co
incides with Eq. ( 6.1). On the line [ -~. r 2] we 
have according to the connecting formula b) 

h~1> = Vfie-i<+co. r,> (Z+ (r, r2) + F (s2) Z_ (r, r2)). (6.6) 

The level lines that go through singular points 
correspond to borders of regions within each of 

which the asymptotic behavior is determined by 
the exponential that increases as one moves from 
the border into the given region. 

In the case considered here the asymptotic be
havior of hCJl is below the lines [-'00, r 2] and 
[ -'06, r 3] close to the asymptotic behavior of the 
corresponding function for free motion h~co. 
Above these lines in h(1) differs substantially 
from h~(1). Formula (4) makes it possible to ob
tain the coefficients av, bv [see definition (2.7)] 

av = exp {- i (+ oo, fa)+ i (- oo, fa)}, (6.7) 

bv = F (sa) exp {- i (+ oo, ra)- i (- oo, ra)}. (6.8) 

The asymptotic behavior of hV l in the lower 
half plane, we well as the asymptotic behavior of 
hUl, are found in an analogous manner. 

Let us turn to the functions j v· According to 
its definition j v is represented by one exponential 
on the line [0, rtJ. Taking into account the nor
malization (2.4) the asymptotic behavior of h on 
[0, rtJ has the form 

iv=N (v) Z+ (r, r 1), N (v) = (2n)'l·vv+'l·e-v/r(v + 1). (6.9) 

The normalization factor N ( v) ~ 1 for I v I » 1 
(an exception is provided by the neighborhood of 
the negative semiaxis v). In the case under con
sideration ( Re v > 0) h decreases as r - 0. It 
therefore follows that on [ -oo, rtJ the asymptotic 
behavior (6.9) holds. On [ +oo, rtJ we have ac
cording to the connecting formula a) 

(6.10) 

Above the lines [ r 1, ± oo] there remains just the 
one exponential that grows on moving upward, say 
Z +' 3) It therefore follows that on the lines 
[-oo, r 3], [+oo, r 3], [-~, r 2 J, and [+oo, r 2 ] the 
asymptotic behavior (6.9) holds. 

On the line [- '00, r 3 ] we have according to b) 

iv = N (v) ei<r,, '•> (Z+ (r, ra) -F (sa) Z_ (r, ra)). (6.11) 

Analogously we find on the line [ +~, r 2 ] 

iv = N (v) et<r,:r,) (Z+ (r, r 2 ) + F (s2) Z_ (r, r2)). (6.12) 

From Eq. (6.10) we easily obtain the coefficients 
Av, Bv [see definition (2.2)]: 

Bv = iN (v) e-i <+co. '•>, (6.13) 

and S (v), making use of definition (2.3): 

(6.14) 

3)0n going round point r, the solution Z + goes formally 
over into iZ-. Therefore the continuation of jy from the 
lines [-oo, r,] and [+oo, r,] upwards gives the same result. 
This question is considered in detail in [7 ] and in [']. 
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Equation (6.14) agrees with the usual quasi
classical expression for e 2ioz (see, e.g., [6J, p. 
4 71). The only difference is that the angular mo
mentum l and the turning point r 1 are complex 
quanti ties. 

Let us compare now Eq. (6.14) with the other 
formula (2.15), which expresses S(v) in terms of 
av and bv. We will show that within the limits of 
accuracy the first term in Eq. (2.15) coincides 
with the right side of Eq. (6.14). Indeed, accord
ing to Eq.'(6.7) 

a~l ~ exp {i (+ oo, r3) + i (r3, -oo)}. (6.15) 

The integral in the exponent in Eq. (6.15) is taken 
from -oo to + 00 along a complex contour that 
passes above the branch point r 1 of Pv· Let us 
draw a cut from r 1 to +00 and displace the con
tour of integration to the real axis. At that there 
arises a second contour of integration encompas
sing the cut. The integral along the contour en
compassing the cut is equal to 2 ( + oo, r 1). The 
integral along the real axis, with the point r = 0 
passed from above, is as a consequence of the 
evenness properties equal to vrr (half of the resi
due at the point r = 0). Thus 

(+ oo, r3) + (r3,- oo) = 2 (+ oo, r1) + vn. (6.16) 

Equation (2.15) also makes possible the evalu
ation of the odd part Sa ( v) of the scattering 
matrix S(v). From Eqs. (6.7) and (6.8) we find 

Sa (v) = -sin VJt (bvlav) ~ -sin vn F (~a) e2i (r,, -co). 

(6,17) 
On comparison of Eq. (6.17) with (6.14) we 

discover that Sa ( v) is exponentially small in 
comparison with S(v): 

1 Sa (v)/S (v) 1 = i- 1 F (~3) II e2i <r,. r,> J. ( 6.18) 

Although the error in the determination of the 
quantity 1/av in Eq. (6.15) is substantially larger 
than Sa ( v) it is legitimate to keep the second 
term in Eq. (2.15) because the decomposition into 
an odd and even part is an exact decomposition. 

We remind the reader that only one of the pos
sible level line pictures was considered here. 
Any other distribution of the lines can be investi
gated by the same methods. 
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